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Приведены результаты влияния облучения при комнатной температуре низкоэнергетическими ионами крип-
тона (энергия 280 кэВ и флюенс 5 ⋅ 1015 см–2) на структурно-фазовое состояние многокомпонентных твердых 
растворов на основе системы V – Nb – Ta – Ti. Методами сканирующей электронной микроскопии и рентгено-
структурного анализа было установлено, что сформированные бинарные, тройные и четверные сплавы системы 
V – Nb – Ta – Ti являются равнокомпозиционными однофазными твердыми растворами, имеют однородное рас-
пределение элементов в приповерхностном слое и обладают сжимающими микро- и макронапряжениями, рассчи-
танными методами Холдера – Вагнера и sin2 ψ. При облучении ионами криптона сплавов системы V – Nb – Ta – Ti 
существенных изменений в структурно-фазовом состоянии не выявлено. Распада твердого раствора и нарушения 
равнокомпозиционности и однородности распределения элементов в приповерхностном слое не происходит. Об-
лучение ионами криптона приводит к изменению уровня микро- и макронапряжений для всех сплавов системы 
V – Nb – Ta – Ti.

Ключевые слова: высокоэнтропийные сплавы; ВЭС; многокомпонентные твердые растворы; облучение; ра-
диационные дефекты; ионы криптона; остаточные напряжения.
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The results of the effect of irradiation at room temperature by low-energy krypton ions with an energy of 280 keV and 
a fluence of 5 ⋅ 1015 cm–2 on the structural-phase state of multicomponent solid solutions based on the V – Nb – Ta – Ti 
system are presented. By scanning electron microscopy and X-ray diffraction analysis, it was found that the formed 
binary, triple and quadruple alloys of the V – Nb – Ta – Ti system are equiatomic single-phase solid solutions, have 
a homo geneous distribution of elements in the near-surface layer and have compressive micro- and macrostresses 
calculated by Halder – Wagner and sin2 ψ methods. The conducted studies have shown that no significant changes in 
the structural-phase state were detected when the alloys of the V – Nb – Ta – Ti system were irradiated by krypton ions. 
There  is no decay of the solid solution and disturbance of the equiatomic and uniformity of the distribution of elements in 
the near-surface layer. Irradiation by krypton ions leads to a change in the level of micro- and macrostresses for all alloys 
of the V – Nb – Ta – Ti system.

Keywords: high-entropy alloys; HEA; multicomponent solid solutions; irradiation; radiation defects; krypton ions; 
residual stress.

Introduction
Recently, nuclear power has been one of the most efficient sources of electricity [1]. With the development 

of technological progress, the need to increase the efficiency of nuclear reactors is also growing. Thus, the 
development of new generation IV nuclear reactors requires the use of materials with high mechanical pro-
perties at elevated temperatures and resistance to radiation exposure (when interacting with nuclear reaction 
products) [2]. 

Currently known austenitic steels are not suitable as new reactor materials due to their strong radiation 
swelling, and in the case of ferritic-martensitic steels, creep resistance and embrittlement at irradiation tempe-
ratures above 550 °C remain unresolved problems [3–5]. Therefore, the issue of developing new radiation- 
resistant materials is currently relevant for the world’s research laboratories. 

High-entropy alloys (HEA) based on a single-phase solid solution and a large number of basic elements in 
equimolar or almost equimolar ratios are promising for obtaining radiation-resistant materials for nuclear po-
wer [6]. The HEA includes alloys consisting of five or more elements with a concentration from 5 to 30 at. %. 
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It is believed that the maximisation of the configuration entropy of the HEA contributes to the formation of 
a single-phase disordered solid solution instead of the precipitation of complex intermetallic phases, as a re-
sult of which the alloy has a simple structure with improved properties compared to traditional alloys [7–9]. 
Numerous studies have shown that HEA have a high elastic limit, fatigue strength, thermal and corrosion 
resistance, creep resistance, radiation resistance [7; 10]. The properties of these alloys are associated with 
four main features: high entropy, greater deformation of the crystal lattice compared to traditional metals and 
alloys, multi-element composition and delayed diffusion [10]. A high degree of chemical disorder and lattice 
distortion in HEA increase the scattering of electrons and phonons, which leads to a decrease in thermal and 
electrical conductivity. The consequence of this is a slowing down of energy dissipation during the collision 
cascade and an increase in the duration of the thermal burst, which increases recombination between vacan-
cies and interstitials [11–13]. In addition, the energies of formation and migration of vacancies and interstitial 
atoms have a wider energy distribution, which also increases the recombination of defects [14 –16]. Due to the 
complexity of the composition, impurity-defect clusters formed by the interaction of point defects move along 
a chaotic trajectory, unlike directional movement in simple metals. This leads to an increase in the number of 
internode clusters in the area enriched with vacancies, which increases the recombination of defects [17].

However, at the moment, most of the researches of radiation damage of HEA were aimed at studies of face 
centred cubic structure HEA based on transition metals (Co – Cr – Fe – Mn – Ni). High-entropy alloys based 
on refractory elements of the 4, 5, 6 alloy group show considerable potential for structural applications [18]. 
Thus, according to the literature, the main elements included in the composition of refractory materials are 
molybdenum and tantalum due to their excellent high-temperature strength and titanium due to its high duc-
tility [19]. Research of alloys based on the NbTaV, where X is Ti, W, Mo, shown that these alloys have high 
strength, ductility and oxidation resistance [20; 21]. The alloy TiVNbTa shows excellent compressive mecha-
nical properties at room temperature (σy = 1273 MPa) and elevated temperature (σy decreases to 688 MPa 
when the temperature reaches 900 °C) [22]. Alloys based on the Ti – V – Cr – Zr – Nb system have also consi-
dered as high temperature, structural materials which exhibit low densities and high hardness [23]. Therefore, 
refractory HEAs (which contain Ti, Zr, Hf, Ta, V, Nb, W, and Cr) are one type of contender because they 
display exceptional high melting points, ductility, and strength at elevated temperatures [24 –26].

The purpose of this work is to study the structural and phase state of binary, triple and quadruple systems 
of concentrated solid solutions based on the V – Nb – Ta – Ti system irradiated by low-energy krypton ions.

Materials and experimental details
Concentrated solid solutions based on the V – Nb – Ta – Ti system, specifically V, VNb, VNbTa, VNbTaTi were 

manufactured at the Beijing Institute of Technology. Samples were synthesised using high purity metals (> 99.9 %) 
by arc melting and casting in a copper cell, followed by homogenisation. Then vacuum annealing was carried out for 
24 and 72 h at the temperature of 1150 °C followed up cold rolling up to 85 % reduction in thickness.

The samples were irradiated at a DC-60 heavy ion accelerator located in Astana (Kazakhstan). The implan-
tation was performed at room temperature with krypton ions, since krypton is one of the fission products of 
uranium. The energy Kr14+ ions were 280 keV and irradiation fluence was 5 ⋅ 1015 cm–2.

Changes in the structure and phase composition after irradiation were evaluated by X-ray diffraction ana-
lysis on a Ultima IV diffractometer (Rigaku, Japan) in the geometry of a parallel beam using copper radiation 
(λ = 0.154 18 nm). To study only the surface layer implanted with krypton, samples were taken at a fixed small 
angle of incidence of X-rays (1°) [27]. In this geometry, the penetration depths of X-rays for V, VNb, VNbTa, 
VNbTaTi alloys were 284; 146; 72 and 62 nm, respectively [27]. To exclude the influence of the texture of 
the alloys, the survey was carried out with a constant rotation of the sample at a speed of 30 rps. The effect of 
irradiation on the structure of the samples was studied by changes in macrostresses (sin2 ψ method) and micro-
stresses (Halder – Wagner method) [28; 29].

The distribution of elements in the near-surface layer and its morphology were studied using Rutherford 
backscattering spectroscopy (RBS) and proton induced X-ray emission (PIXE) on a DC-60 accelerator, scanning 
electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDX) on a scanning electron micro-
scope LEO-1455VP (Carl Zeiss, Germany). Rutherford backscattering spectroscopy was conducted using an 
accelerated 14 N2+ beam with an energy of 1 MeV per nucleon.

The calculation of energy losses was carried out in the SRIM­2013 program using the Kinchin – Pease mo-
del [30]. Figure 1 shows the distribution profiles of implanted Kr14+ ions and the results of modelling radiation 
damage (measured in displacement per atom, dpa). The maximum range of krypton ions was about 200 nm with 
the maximum damage for vanadium at a depth of 80 nm. The highest value of the damaging dose is 12.6 dpa 
for vanadium and 13.5 dpa for VNbTaTi. The concentration of implanted Kr14+ ions does not exceed 1 %.
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Results and discussions
Table 1 shows the results of the elemental composition analysis calculated by the PIXE and EDX me-

thods. As can be seen from the table for binary, triple and quadruple systems, an equiatomic (within an error 
of 5– 6 %) distribution of elements over the depth was confirmed by the EDX method, and the equiatomic and 
homogeneous distribution of elements over the surface was confirmed by the PIXE method. 

Ta b l e  1
Results of the elemental composition in the initial samples  

of the V – Nb – Ta – Ti system calculated by the PIXE and EDX methods

Sample Chemical 
element

Concentration, at. %
PIXE method EDX method

V V 100.0 100.0

VNb
V 50.0 49.5

Nb 50.0 50.5

VNbTa
V 32.0 33.9

Nb 33.0 34.2
Ta 35.0 31.9

VNbTaTi

V 24.5 23.6
Nb 25.5 26.1
Ta 26.0 25.9
Ti 24.0 24.5

Analysis of images of samples by the SEM method showed the uniformity of the surface structure of the 
samples V, VNb, VNbTa and VNbTaTi (fig. 2). The results of the study of the distribution of elements revealed 
a homogeneous distribution (within an error of 5– 6 %) of elements over the surface of these samples (fig. 3). 
Small deviations from the uniformity of the distribution of elements are probably associated with the grain 
structure of materials.

According to the literature data, the equiatomic composition of multicomponent solid solutions may in-
dicate the formation of single-phase solid solutions [8]. The study carried out by X-ray diffraction analysis 
confirms this assumption (fig. 4). 

The general appearance of the X-ray diffraction pattern of non-irradiated binary, triple, and quadruple alloys is 
characterised by a slight asymmetry of the diffraction lines which is due to the possible heterogeneity of the struc-
ture due to the local heterogeneity of the alloy elements with different atomic radii of the elements and typical for 
multicomponent high-entropy alloys. As can be seen from fig. 4, all samples are single-phase solid solutions with 
a body-centered cubic lattice. The lattice parameter for samples V, VNb, VNbTa, VNbTaTi increases with increasing 
complexity of the composition of the systems and is 0.302 7; 0.317 7; 0.322 7; 0.323 4 nm, respectively. The growth 
of the lattice parameter is associated with an increase in the atomic radius of the elements in the composition.

Fig. 1. Profiles of the distribution of implanted Kr14+ ion (a)  
and the damaging dose (b) in samples V, VNb, VNbTa, VNbTaTi by depth
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Diffractograms of V, VNb, VNbTa and VNbTaTi samples irradiated by krypton ions show that the phase com-
position does not change (no decay of solid solutions has been detected). However, there is a more pronounced 
asymmetry of peaks and their displacement towards smaller angles compared to the original diffractograms, 
which indicates deformation of the crystal lattice in the near-surface region caused by irradiation (fig. 5).

Irradiation does not lead to a significant change of the equiatomic distribution of elements, as evidenced 
by the results of EDX and PIXE (table 2). According to the results of RBS, krypton is observed only in pure 
vanadium and both its concentration and depth agree with the results obtained in the program SRIM­2013. 
Krypton was not detected on the other alloys, possibly due to the low concentration and close atomic numbers 
of krypton and neobium.

Ta b l e  2
Results of the elemental composition in irradiated samples  

of the V – Nb – Ta – Ti system calculated by the PIXE and EDX methods

Sample Chemical 
element

Concentration, at. %
PIXE method EDX method

V V 100.0
  99.2* 100.0

VNb
V 50.0 49.7

Nb 50.0 50.3

VNbTa
V 29.0 36.3

Nb 35.0 31.2
Ta 36.0 32.6

VNbTaTi

V 21.0 25.2
Nb 29.0 25.4
Ta 29.0 24.3
Ti 21.0 25.1

*At depth of 90 nm the highest concentration of krypton ions (0.8 at. %) is ob - 
served. 

Fig. 2. Surface morphology in the initial samples surface  
V (a), VNb (b), VNbTa (c), VNbTaTi (d )
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Fig. 3. Distribution profiles of elements  
in the initial samples VNb (a), VNbTa (b), VNbTaTi (с)
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Fig. 4. X-ray diffraction pattern of the initial samples  
of the V – Nb – Ta – Ti system

Fig. 5. X-ray diffraction pattern of samples of the V – Nb – Ta – Ti system  
irradiated by Kr14+ ions with an energy of 280 keV
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In addition, after irradiation, there is no segregation of elements on the surface, as can be seen in the results 
of the SEM (fig. 6). As well as in the initial samples, a homogeneous distribution of elements over the surface is 
observed (fig. 7).

To quantify the effect of radiation damage on the structure of samples, changes in micro- and macrostresses 
relative to non-irradiated samples were calculated. Orientation (110) was used to determine macrostresses. The ob-
tained dependences were approximated by a linear function to obtain stress values. 

Figure 8 shows the values of the received stress. Compressive stresses prevail in all initial samples. The ad-
dition of niobium and tantalum in VNb and VNbTa samples leads to an increase in the level of compressive 
stresses, which is associated with a large atomic radius of these elements compared to vanadium. In the VNbTaTi 
alloy, due to the presence of Ti, which has a lower atomic radius, and also reduces the modulus of elasticity 
of the alloy, a lower level of compressive stresses is observed. Irradiation by krypton ions leads to a decrease 
in macrostresses, which can be explained by several reasons. Probably difference in atomic size between the 
elements leads to the reduction of electron and phonon mean free paths, which can affect the formation ener-
gy and migration barriers of defects in the material [31]. The atomic size difference of the elements in the 
solid solutions also contributes to an increase in atomic scattering and a decrease in the focused movement 
of interstitials along the close-packed direction, which prevents interstitials from moving quickly out of the 
region with a high concentration of vacancies. This promotes defect recombination in these alloys. Besides, 
lattice distortion can also reduce defect mobility therefore many of the interstitial clusters were stationary and 
remained in the region where defects were formed, resulting in a higher rate of defect recombination [32; 33]. 
As a result, a large number of interstitial clusters of small size are formed, which causes tensile stresses and 
leads to a decrease in the overall level of compressive stresses [34]. In contrast, an increase in compressive stres-
ses is observed in microstresses, which may be due to radiation-stimulated diffusion of lighter elements to the 
boundaries of the coherent scattering region [35]. However, it is not possible to assess which of the elements 
is more stable at the moment. It is also hard to say with certainty that there is a dependence of stresses on the 
complexity of the composition.

Fig. 6. Surface morphology in the samples surface  
V (a), VNb (b), VNbTa (c), VNbTaTi (d ) irradiated by Kr14+ ions with an energy of 280 keV
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Fig. 7. Distribution profiles of elements  
in the samples VNb (a), VNbTa (b), VNbTaTi (c)  
irradiated with Kr14+ ions by an energy of 280 keV
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Conclusions
Equiatomic single-phase binary, triple and quadruple solid solutions based on the V – Nb – Ta – Ti system 

with a body-centered cubic lattice were obtained by arc melting with subsequent homogenisation. Compres-
sive stresses were detected in all initial materials. The addition of Nb and Ta to the alloy leads to an increase in 
the level of compressive stresses, while the addition of Ti leads to their decrease.

The phase composition and structure of the near-surface layer of binary, triple and quadruple solid solutions 
based on the V – Nb – Ta – Ti system are resistant to irradiation by krypton ions with an energy of 280 keV 
and a fluence of 5 ⋅ 1015 cm–2. Irradiation by krypton ions leads to the formation of tensile stresses of the first 
kind. There is an increase in microstresses in multicomponent solid solutions, which may be due to the radia-
tion-stimulated diffusion of lighter elements to the boundaries of the coherent scattering region, which leads to 
an increase in microstresses due to the dimensional factor.
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