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[IpuBeneHb! pe3ynbrarThl BIMSHUS 00Iy4YeHHs TPU KOMHATHOW TEMIIepaType HU3KOOHEPreTHUeCKUMH HOHAMH KPHII-
tToHa (3Heprus 280 k3B u ¢moenc 5 - 10" cm?) Ha CTPYKTYpHO-()a30BO€ COCTOSTHHE MHOTOKOMITOHEHTHBIX TBEPIBIX
pactBopoB Ha ocHoBe cucteMbl V — Nb — Ta — Ti. Merogamu cKkaHUPYIOIIEH 3JIEKTPOHHOM MUKPOCKOIIMU U PEHTIEHO-
CTPYKTYPHOI'O aHaJin3a ObLIIO YCTaHOBJICHO, 4TO ChOpMHUPOBaHHBIE OMHAPHBIC, TPOMHbIC U YETBEPHBIE CIIJIABbI CUCTEMbI
V — Nb — Ta — Ti aBIsIFOTCS PaBHOKOMITO3UITHOHHBIMHI OHO(A3HBIMH TBEPIBIMU PACTBOPAMH, UMEIOT OTHOPOIHOE pac-
TIpeJiesIeHNe JIEMEHTOB B IIPUIIOBEPXHOCTHOM CJIO€ M 00JIAal0T CKUMAIOIIMMHU MUKPO- ¥ MaKpOHAPSDKEHHSMH, PACCUH-
TaHHBIMU MeToiamu Xoufiepa — Baruepa u sinzw. [Tpu oOryyeHnr HOHAMU KpUIITOHA cIUIaBoB cucteMbl V — Nb —Ta — Ti
CYIIECTBEHHBIX U3MEHEHHI B CTPYKTYPHO-(a30BOM COCTOSIHUH HE BBIsIBIEHO. Pacnazia TBEp10ro pacTBOpa U HapyeHUs
PaBHOKOMIIO3UIIMOHHOCTH ¥ OJHOPOIHOCTH PACIIPE/IeNICHHs 3JIEMEHTOB B IIPUIIOBEPXHOCTHOM CJIo€ He mpoucxoaut. O6-
Jy4eHHe NOHAMH KPHUIITOHA NMPUBOJANUT K N3MEHEHHIO YPOBHS MUKPO- M MAaKpPOHAIIPSHKEHHUH ISl BCEX CIIJIABOB CHCTEMBI
V—-Nb-Ta-Ti.

Knrouegvie cnosa: BbIcOkOHTpONHIiHBIE CIIaBbl; BOC; MHOTOKOMIIOHEHTHBIE TBEP/bIE PACTBOPHI; 00IydeHne; pa-
JIMAIOHHBIC 1e(DeKThI; HOHBI KPUITOHA; OCTATOYHbIC HAIIPSIKECHHS.
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SOLID SOLUTION OF THE V — Nb — Ta — Ti SYSTEM
IRRADIATED BY KRYPTON IONS

V. V. UGLOV" S. V. ZLOTSKY®, M. M. BELOV, A. E. RYSKULOV®",
L A. IVANOV®, A. E. KURAKHMEDOV", D. A. MUSTAFIN®, A. D. SAPAR®, KE JIN®

*Belarusian State University, 4 Niezalieznasci Avenue, Minsk 220030, Belarus
®Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan,
1 Ibragimova Street, Astana 050032, Kazakhstan
“Beijing Institute of Technology, 5 South Street, Zhongguancun, Beijing 100811, China

Corresponding author: V. V. Uglov (uglov@bsu.by)

The results of the effect of irradiation at room temperature by low-energy krypton ions with an energy of 280 keV and
a fluence of 5 - 10" cm 2 on the structural-phase state of multicomponent solid solutions based on the V — Nb — Ta — Ti
system are presented. By scanning electron microscopy and X-ray diffraction analysis, it was found that the formed
binary, triple and quadruple alloys of the V — Nb — Ta — Ti system are equiatomic single-phase solid solutions, have
a homogeneous distribution of elements in the near-surface layer and have compressive micro- and macrostresses
calculated by Halder — Wagner and sin*y methods. The conducted studies have shown that no significant changes in
the structural-phase state were detected when the alloys of the V — Nb — Ta — Ti system were irradiated by krypton ions.
There is no decay of the solid solution and disturbance of the equiatomic and uniformity of the distribution of elements in
the near-surface layer. Irradiation by krypton ions leads to a change in the level of micro- and macrostresses for all alloys
of the V— Nb — Ta — Ti system.

Keywords: high-entropy alloys; HEA; multicomponent solid solutions; irradiation; radiation defects; krypton ions;
residual stress.

Introduction

Recently, nuclear power has been one of the most efficient sources of electricity [1]. With the development
of technological progress, the need to increase the efficiency of nuclear reactors is also growing. Thus, the
development of new generation IV nuclear reactors requires the use of materials with high mechanical pro-
perties at elevated temperatures and resistance to radiation exposure (when interacting with nuclear reaction
products) [2].

Currently known austenitic steels are not suitable as new reactor materials due to their strong radiation
swelling, and in the case of ferritic-martensitic steels, creep resistance and embrittlement at irradiation tempe-
ratures above 550 °C remain unresolved problems [3—5]. Therefore, the issue of developing new radiation-
resistant materials is currently relevant for the world’s research laboratories.

High-entropy alloys (HEA) based on a single-phase solid solution and a large number of basic elements in
equimolar or almost equimolar ratios are promising for obtaining radiation-resistant materials for nuclear po-
wer [6]. The HEA includes alloys consisting of five or more elements with a concentration from 5 to 30 at. %.
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It is believed that the maximisation of the configuration entropy of the HEA contributes to the formation of
a single-phase disordered solid solution instead of the precipitation of complex intermetallic phases, as a re-
sult of which the alloy has a simple structure with improved properties compared to traditional alloys [7-9].
Numerous studies have shown that HEA have a high elastic limit, fatigue strength, thermal and corrosion
resistance, creep resistance, radiation resistance [7; 10]. The properties of these alloys are associated with
four main features: high entropy, greater deformation of the crystal lattice compared to traditional metals and
alloys, multi-element composition and delayed diffusion [10]. A high degree of chemical disorder and lattice
distortion in HEA increase the scattering of electrons and phonons, which leads to a decrease in thermal and
electrical conductivity. The consequence of this is a slowing down of energy dissipation during the collision
cascade and an increase in the duration of the thermal burst, which increases recombination between vacan-
cies and interstitials [11-13]. In addition, the energies of formation and migration of vacancies and interstitial
atoms have a wider energy distribution, which also increases the recombination of defects [ 14—16]. Due to the
complexity of the composition, impurity-defect clusters formed by the interaction of point defects move along
a chaotic trajectory, unlike directional movement in simple metals. This leads to an increase in the number of
internode clusters in the area enriched with vacancies, which increases the recombination of defects [17].

However, at the moment, most of the researches of radiation damage of HEA were aimed at studies of face
centred cubic structure HEA based on transition metals (Co — Cr — Fe — Mn — Ni). High-entropy alloys based
on refractory elements of the 4, 5, 6 alloy group show considerable potential for structural applications [18].
Thus, according to the literature, the main elements included in the composition of refractory materials are
molybdenum and tantalum due to their excellent high-temperature strength and titanium due to its high duc-
tility [19]. Research of alloys based on the NbTaV, where X is Ti, W, Mo, shown that these alloys have high
strength, ductility and oxidation resistance [20; 21]. The alloy TiVNbTa shows excellent compressive mecha-
nical properties at room temperature (G, = 1273 MPa) and elevated temperature (G, decreases to 688 MPa
when the temperature reaches 900 °C) [22]. Alloys based on the Ti — V — Cr — Zr — Nb system have also consi-
dered as high temperature, structural materials which exhibit low densities and high hardness [23]. Therefore,
refractory HEAs (which contain Ti, Zr, Hf, Ta, V, Nb, W, and Cr) are one type of contender because they
display exceptional high melting points, ductility, and strength at elevated temperatures [24—26].

The purpose of this work is to study the structural and phase state of binary, triple and quadruple systems
of concentrated solid solutions based on the V — Nb — Ta — Ti system irradiated by low-energy krypton ions.

Materials and experimental details

Concentrated solid solutions based on the V — Nb — Ta — Ti system, specifically V, VNb, VNbTa, VNbTaTi were
manufactured at the Beijing Institute of Technology. Samples were synthesised using high purity metals (>99.9 %)
by arc melting and casting in a copper cell, followed by homogenisation. Then vacuum annealing was carried out for
24 and 72 h at the temperature of 1150 °C followed up cold rolling up to 85 % reduction in thickness.

The samples were irradiated at a DC-60 heavy ion accelerator located in Astana (Kazakhstan). The implan-
tation was performed at room temperature with krypton ions, since krypton is one of the fission products of
uranium. The energy Kr'*" ions were 280 keV and irradiation fluence was 5 - 10'> cm .

Changes in the structure and phase composition after irradiation were evaluated by X-ray diffraction ana-
lysis on a Ultima IV diffractometer (Rigaku, Japan) in the geometry of a parallel beam using copper radiation
(A =0.154 18 nm). To study only the surface layer implanted with krypton, samples were taken at a fixed small
angle of incidence of X-rays (1°) [27]. In this geometry, the penetration depths of X-rays for V, VNb, VNbTa,
VNbTaTi alloys were 284; 146; 72 and 62 nm, respectively [27]. To exclude the influence of the texture of
the alloys, the survey was carried out with a constant rotation of the sample at a speed of 30 rps. The effect of
irradiation on the structure of the samples was studied by changes in macrostresses (sin®y method) and micro-
stresses (Halder — Wagner method) [28; 29].

The distribution of elements in the near-surface layer and its morphology were studied using Rutherford
backscattering spectroscopy (RBS) and proton induced X-ray emission (PIXE) on a DC-60 accelerator, scanning
electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDX) on a scanning electron micro-
scope LEO-1455VP (Carl Zeiss, Germany). Rutherford backscattering spectroscopy was conducted using an
accelerated '*N?* beam with an energy of 1 MeV per nucleon.

The calculation of energy losses was carried out in the SRIM-2013 program using the Kinchin — Pease mo-
del [30]. Figure 1 shows the distribution profiles of implanted Kr'*" ions and the results of modelling radiation
damage (measured in displacement per atom, dpa). The maximum range of krypton ions was about 200 nm with
the maximum damage for vanadium at a depth of 80 nm. The highest value of the damaging dose is 12.6 dpa
for vanadium and 13.5 dpa for VNbTaTi. The concentration of implanted Kr'*" ions does not exceed 1 %.
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Fig. 1. Profiles of the distribution of implanted Kr'*" ion (a)
and the damaging dose (b) in samples V, VNb, VNbTa, VNbTaTi by depth

Results and discussions

Table 1 shows the results of the elemental composition analysis calculated by the PIXE and EDX me-
thods. As can be seen from the table for binary, triple and quadruple systems, an equiatomic (within an error
of 5—6 %) distribution of elements over the depth was confirmed by the EDX method, and the equiatomic and
homogeneous distribution of elements over the surface was confirmed by the PIXE method.

Table 1

Results of the elemental composition in the initial samples
of the V— Nb — Ta — Ti system calculated by the PIXE and EDX methods

Chemical Concentration, at. %
Sample
element PIXE method EDX method

v v 100.0 100.0

A\ 50.0 49.5

VNb

Nb 50.0 50.5

A\ 32.0 33.9

VNbTa Nb 33.0 34.2
Ta 35.0 31.9

A\ 24.5 23.6

. Nb 25.5 26.1

VNbTaTi

Ta 26.0 25.9

Ti 24.0 24.5

Analysis of images of samples by the SEM method showed the uniformity of the surface structure of the
samples V, VNb, VNbTa and VNbTaTi (fig. 2). The results of the study of the distribution of elements revealed
a homogeneous distribution (within an error of 5-6 %) of elements over the surface of these samples (fig. 3).
Small deviations from the uniformity of the distribution of elements are probably associated with the grain
structure of materials.

According to the literature data, the equiatomic composition of multicomponent solid solutions may in-
dicate the formation of single-phase solid solutions [8]. The study carried out by X-ray diffraction analysis
confirms this assumption (fig. 4).

The general appearance of the X-ray diffraction pattern of non-irradiated binary, triple, and quadruple alloys is
characterised by a slight asymmetry of the diffraction lines which is due to the possible heterogeneity of the struc-
ture due to the local heterogeneity of the alloy elements with different atomic radii of the elements and typical for
multicomponent high-entropy alloys. As can be seen from fig. 4, all samples are single-phase solid solutions with
a body-centered cubic lattice. The lattice parameter for samples V, VNb, VNbTa, VNbTaTi increases with increasing
complexity of the composition of the systems and is 0.3027; 0.3177; 0.3227; 0.3234 nm, respectively. The growth
of the lattice parameter is associated with an increase in the atomic radius of the elements in the composition.
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Diffractograms of V, VNb, VNbTa and VNbTaTi samples irradiated by krypton ions show that the phase com-
position does not change (no decay of solid solutions has been detected). However, there is a more pronounced
asymmetry of peaks and their displacement towards smaller angles compared to the original diffractograms,
which indicates deformation of the crystal lattice in the near-surface region caused by irradiation (fig. 5).

Irradiation does not lead to a significant change of the equiatomic distribution of elements, as evidenced
by the results of EDX and PIXE (table 2). According to the results of RBS, krypton is observed only in pure
vanadium and both its concentration and depth agree with the results obtained in the program SRIM-2013.
Krypton was not detected on the other alloys, possibly due to the low concentration and close atomic numbers
of krypton and neobium.

Table 2

Results of the elemental composition in irradiated samples
of the V— Nb — Ta — Ti system calculated by the PIXE and EDX methods

S Chemical Concentration, at. %
ample
P element PIXE method EDX method
v v - 100.0
\% 50.0 49.7
VNb
Nb 50.0 50.3
\% 29.0 36.3
VNbTa Nb 35.0 31.2
Ta 36.0 32.6
\% 21.0 25.2
. Nb 29.0 25.4
VNbTaTi
Ta 29.0 24.3
Ti 21.0 25.1
*At depth of 90 nm the highest concentration of krypton ions (0.8 at. %) is ob-
served.

Fig. 2. Surface morphology in the initial samples surface
V (a), VND (b), VNbTa (¢), VNbTaTi (d)
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In addition, after irradiation, there is no segregation of elements on the surface, as can be seen in the results
of the SEM (fig. 6). As well as in the initial samples, a homogeneous distribution of elements over the surface is
observed (fig. 7).

To quantify the effect of radiation damage on the structure of samples, changes in micro- and macrostresses
relative to non-irradiated samples were calculated. Orientation (110) was used to determine macrostresses. The ob-
tained dependences were approximated by a linear function to obtain stress values.

Figure 8 shows the values of the received stress. Compressive stresses prevail in all initial samples. The ad-
dition of niobium and tantalum in VNb and VNbTa samples leads to an increase in the level of compressive
stresses, which is associated with a large atomic radius of these elements compared to vanadium. In the VNbTaTi
alloy, due to the presence of Ti, which has a lower atomic radius, and also reduces the modulus of elasticity
of the alloy, a lower level of compressive stresses is observed. Irradiation by krypton ions leads to a decrease
in macrostresses, which can be explained by several reasons. Probably difference in atomic size between the
elements leads to the reduction of electron and phonon mean free paths, which can affect the formation ener-
gy and migration barriers of defects in the material [31]. The atomic size difference of the elements in the
solid solutions also contributes to an increase in atomic scattering and a decrease in the focused movement
of interstitials along the close-packed direction, which prevents interstitials from moving quickly out of the
region with a high concentration of vacancies. This promotes defect recombination in these alloys. Besides,
lattice distortion can also reduce defect mobility therefore many of the interstitial clusters were stationary and
remained in the region where defects were formed, resulting in a higher rate of defect recombination [32; 33].
As a result, a large number of interstitial clusters of small size are formed, which causes tensile stresses and
leads to a decrease in the overall level of compressive stresses [34]. In contrast, an increase in compressive stres-
ses is observed in microstresses, which may be due to radiation-stimulated diffusion of lighter elements to the
boundaries of the coherent scattering region [35]. However, it is not possible to assess which of the elements
is more stable at the moment. It is also hard to say with certainty that there is a dependence of stresses on the
complexity of the composition.

Fig. 6. Surface morphology in the samples surface
V (a), VNb (b), VNbTa (¢), VNbTaTi (d) irradiated by Kr'** ions with an energy of 280 keV
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Conclusions

Equiatomic single-phase binary, triple and quadruple solid solutions based on the V — Nb — Ta — Ti system
with a body-centered cubic lattice were obtained by arc melting with subsequent homogenisation. Compres-
sive stresses were detected in all initial materials. The addition of Nb and Ta to the alloy leads to an increase in
the level of compressive stresses, while the addition of Ti leads to their decrease.

The phase composition and structure of the near-surface layer of binary, triple and quadruple solid solutions
based on the V — Nb — Ta — Ti system are resistant to irradiation by krypton ions with an energy of 280 keV
and a fluence of 5 - 10" cm 2. Irradiation by krypton ions leads to the formation of tensile stresses of the first
kind. There is an increase in microstresses in multicomponent solid solutions, which may be due to the radia-
tion-stimulated diffusion of lighter elements to the boundaries of the coherent scattering region, which leads to
an increase in microstresses due to the dimensional factor.
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