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Abstract: The article is devoted to the study of melted ingots, plates rolled from them, and the
resulting spherical powder made of corrosion-resistant 316L steel with the addition of 0.2 wt.%
and 0.5 wt.% Ag. The study of antibacterial properties, microstructure, and distribution of silver
concentrations, as well as qualitative analysis of silver content was carried out. The optimal mode
of homogenization annealing of the ingot was 1050 ◦C for 9 h, which leads to the formation of an
austenitic structure. It is shown that the addition of a small amount of silver does not affect the
formation of the austenitic structure and silver is distributed evenly throughout the volume of the
ingot. The austenitic structure also prevails in the plates after rolling. Silver is distributed evenly
throughout the entire volume of the plate. It is noted that the addition of 0.2 wt.% Ag does not
affect the strength, elongation, and microhardness of steel, and the addition of 0.5 wt.% Ag does not
significantly reduce the strength of steel, however, all samples meet the mechanical characteristics
according to the ASTM A240 standard. The qualitative chemical composition of samples made of
corrosion-resistant steels was confirmed by X-ray fluorescence analysis methods. By the method of
energy-dispersion analysis, the presence of a uniform distribution of silver over the entire volume of
the powder particle was determined. The particles have a spherical shape with a minimum number
of defects. The study of the antibacterial activity of plates and powder shows the presence of a clear
antibacterial effect (bacteria of the genus Xanthomonas campestris, Erwinia carotovora, Pseudomonas
marginalis, Clavibacter michiganensis) in samples No. 2 and No. 3 with the addition of 0.2 wt.% and
0.5 wt.% Ag.

Keywords: corrosion-resistant steel; silver; plasma dispersion; spherical powder; antibacterial properties;
microstructure; chemical composition

1. Introduction

Corrosion-resistant steels have found wide application in various industries due to
their resistance to general corrosion, high temperature oxidation, durability, high strength,
and ductility [1–4]. One of the most popular steels is corrosion-resistant austenitic steel
316L, used in the manufacture of many products where maximum corrosion protection is
required [5–9].

The use of traditional grades of austenitic steels in the manufacture of products in
contact with aggressive media can contribute to protein adsorption, biofilm formation, and,
as a consequence, corrosion or the formation of a source of bacterial infection [10–13]. To
eliminate this problem, the material must have antibacterial properties. Studies of scientists
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have shown that modifying corrosion-resistant steels by adding silver to the composition
can give them antibacterial properties [14–20].

In the study [14], 0.1, 0.2, and 0.3 wt.% Ag were added to corrosion-resistant 304 steel,
and were smelted in an induction furnace in nitrogen medium to determine the effect of
silver on antimicrobial and antibacterial activity. The results show that the content of 0.2
and 0.3 wt.% Ag gives the alloy 99.5% and 99.9% antibacterial activity, respectively, to the
bacteria Staphylococcus aureus and Escherichia coli. In the study [15], 0.03 and 0.09 wt.%
Ag were added to 316 steel, which also show an increase in antibacterial activity to the
bacterium Escherichia coli with an increase in the Ag content [15]. In the study [16], the
effect of adding 0.2 wt.% Ag in duplex stainless steel 2205 was studied. It is shown that
the antibacterial properties of the material are 100% resistant to Escherichia coli and 99.5%
resistant to Staphylococcus aureus. These studies show the feasibility of adding a small
amount of silver as an alloying element to corrosion-resistant steel.

For further production of products made of corrosion-resistant steel, different methods
of obtaining blanks can be used. Casting, forging, stamping, precise cutting, pressing, cut-
ting, manufacturing from rolled products, welding, or a combined method are often used.
Methods for obtaining blanks are selected taking into account the requirements: accuracy,
the nature of the raw material base (homogeneous or heterogeneous structures can be com-
bined), cost, technical characteristics, physico-chemical properties, and other parameters.
The methodology is selected using profitability analysis and complex calculations.

There is also an active introduction of austenitic steels into additive technologies in
the manufacture of various products. Additive methods are in demand due to the need for
rapid production of products of complex geometric shape [21–27]. The raw material for
additive methods is spherical powder or wire [28–33].

Therefore, obtaining and researching various blanks from new corrosive steel for the
further manufacture of products with antibacterial properties is an urgent task.

The purpose of this work was to analyze the antibacterial properties, microstructure,
and distribution of silver concentrations by volume of the material, as well as qualitative
analysis of silver in ingots, plates rolled from it, and spherical powders obtained from
corrosion-resistant 316L steel with the addition of 0.2 wt.% and 0.5 wt.% Ag.

2. Materials and Methods

Three compositions of corrosion-resistant 316L steel were smelted (sample No. 1 is the
initial steel). Next, 0.2 wt.% Ag was added to sample No. 2, and 0.5 wt.% Ag was added to
sample No. 3. The detailed chemical composition is presented in Table 1.

Table 1. Chemical composition of steels (wt.%).

Steel C,% Cr,% Ni,% Ag,% Si,% Mn,% Mo,% Si,%

No. 1 0.023 17 10 0 0.5 1.5 2 0.5

No. 2 0.023 17 10 0.2 0.5 1.5 2 0.5

No. 3 0.023 17 10 0.5 0.5 1.5 2 0.5

The melting of the canopies was carried out in an argon arc furnace with a non-consumable
tungsten electrode LK200DI from Leybold-Heraeus (Leybold-Heraeus, Cologne, Germany).
The ingots were subjected to homogenizing annealing in a vacuum of 2 × 10−5 mmHg at a
temperature from 900 to 1050 ◦C for 9 h in a vacuum furnace ESQVE-1, 7.2, 5/21 SHM13
((LLC "Scientific Production Enterprise" NITTIN ", Belgorod, Russia). A detailed technology
for obtaining ingots is presented in [34].

For further studies of the effect of the addition of silver and titanium on the properties
of the samples, plates with a thickness of 1 ± 0.1 mm were obtained by rolling.

The deformation of cast blanks was carried out by hot rolling on a double-roll mill
DUO-300 (CJSC Istok ML, Nizhny Novgorod, Russia), with partial absolute compression
per pass: 2 mm to the thickness of the workpiece 4 mm (13–20% per pass), then 1.0 mm to
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the thickness of the workpiece 2.0 mm (6–10% per pass), then 0.5 mm to the final thickness
of the workpiece 1 ± 0.1 mm (3–5% per pass). The workpieces were heated before each
deformation in a KYLS 20.18.40/10 muffle furnace by HANS BEIMLER (HANS BEIMLER,
Berlin, Germany) for 20–25 min to a temperature of 1100 ◦C before the first rolling and for
5 min during intermediate heating. After heating, the workpiece was rolled with cold rolls,
which contributed to a sharp cooling.

Spherical powder was also obtained from the melted ingots by rolling, rotary forging,
drawing, and further plasma spraying of wire. The detailed technology is presented in [34].

To study the structure, the slots were obtained by pressing samples on a pneumo-
hydraulic press IPA 40 (Remet, Milan, Italy) at a temperature of 170 ◦C and exposure
for 20 min into Aka-Resin epoxy resin. The preparation of samples for metallographic
examination was carried out at the Buehler Phoenix 4000 installation (Buehler, Lake Bluff,
Illinois, USA) by sequential grinding and polishing after pressing on a Piatto diamond
disc with a grain size of P120 for 3 min, P320 for 5 min, P600 for 5 min; on a diamond disc
of fine grinding Aka-Allegran-3 with DiaMaxx Poly suspension with diamond particle
sizes of 6 microns for 5 min; and on Akasel NAPAL velvet with DiaMaxx Poly suspension
with diamond particle sizes of 3 and 1 microns for 3–5 min on each. Etching of the surface
of the samples was carried out with a mixture of acids for high-alloy steels, consisting
of 20% nitric acid (HNO3), 10% sulfuric acid (H2SO4), 5% hydrofluoric acid (HF), and
65% water (H2O). The etching duration was from 10 to 20 min. After etching, the slates
were washed with distilled water and ethyl alcohol.

Optical microscopy was performed on an Altami MET 5S microscope (Altami, St.
Petersburg, Russia) using a video camera with a resolution of 14 megapixels built into the
device and special Altami Studio 4.0 software.

Morphology, microstructure, and mapping (determination of the concentration dis-
tribution of chemical elements) for ingots and powder were studied using a scanning
electron microscope JEOL JSM-IT500 (JEOL, Tokyo, Japan) with a power of 15 kW with the
prefix of energy-dispersive microanalysis INCA ENERGY. For the rolled plates, an electron
microscope Tescan Vega II SBU (TESCAN, Brno, Czech Republic), Tescan company with
equipment for energy-dispersive microanalysis (INCA Energy 300, Oxford Instruments
company (Oxford Instruments, Abingdon, UK)), was used. During the study, images of the
sample surface with high spatial resolution obtained in the secondary electron mode were
analyzed. Mapping (distribution of chemical composition) was also carried out. The slates
of all compositions were prepared as samples for the study. An electrically conductive resin
was used in the manufacture of the grinds.

Qualitative analysis of the elemental composition was performed on an X-ray fluores-
cence wave dispersion spectrometer of the BRUKER S8 Tiger sequential type (BRUKER,
Karlsruhe, Germany). For X-ray fluorescence analysis, slates of all compositions were
prepared as samples for the study.

To determine the antibacterial activity of the samples, bacteria of the genus Xan-
thomonas campestris, Erwinia carotovora, Pseudomonas marginalis, and Clavibacter
michiganensis were used. Colonies of bacteria grown in a test tube were transferred
to a test tube with sterile distilled water to create a bacterial suspension. Then samples
were placed on the sowing surface and kept for 5 days at a temperature of 28 ◦C. The
antibacterial activity for sowing was evaluated by the phenomenon of bacterial growth
retardation around the material.

3. Results

Micrographs of the ingot structure of samples No. 1 (316L), No. 2 (+0.2 wt.% Ag),
and No. 3 (+0.5 wt.% Ag) after smelting and homogenization annealing at 900 ◦C, 950 ◦C,
1000 ◦C, and 1050 ◦C are shown in Figure 1.
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Figure 1. The effect of the method of production on the microstructure of ingots (optical microscope).

After smelting, uneven structure and predominance of dendritic structure are observed
on all ingots, which may indicate liquation (heterogeneity of chemical composition). After
homogenization annealing at temperatures of 900 ◦C and 950 ◦C, the dendritic structure
is preserved for 9 h. During homogenization annealing at a temperature of 1000 ◦C, the
dendritic structure is partially preserved for 9 h, but partial recrystallization of the alloy is
observed. For complete recrystallization, homogenization annealing is used for 9 h at a
temperature of 1050 ◦C, which leads to the alignment of the structure and the formation of
equiaxed austenite grains with a size of ~50 microns. A further increase in temperature
is impractical, due to an increase in grain, which can lead to difficulties with further
plastic deformation.

Also, surface images were obtained using a scanning electron microscope and spectral
analysis (mapping) was carried out (Figure 2).
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As can be seen from Figure 2, the mapping shows a uniform distribution of silver in
ingots of compositions No. 2 and No. 3.

The rental was carried out with preheating to a temperature of 1100 ◦C. After heating,
the ingot was rolled, which contributed to a sharp cooling. The structures and distribution
of silver over the area of the rolled plates of samples No. 1, No. 2, and No. 3 obtained with
an optical microscope and a scanning electron microscope are shown in Figure 3.

Materials 2022, 15, x FOR PEER REVIEW 6 of 13 
 

 

The rental was carried out with preheating to a temperature of 1100 °C. After 170 
heating, the ingot was rolled, which contributed to a sharp cooling. The structures and 171 
distribution of silver over the area of the rolled plates of samples No. 1, No. 2, and No. 3 172 
obtained with an optical microscope and a scanning electron microscope are shown in 173 
Figure 3. 174 

Composition No. 1 Composition No. 2 Composition No. 3 
Microstructure of plates (light optical microscopy) 

   
Composition No. 1 Composition No. 2 Composition No. 3 

Microstructure of plates (scanning electron microscopy) 

   
Composition No. 1 Composition No. 2 Composition No. 3 

Distribution of silver by area 

   

Figure 3. Influence of silver content on the microstructure of steel plates. 175 

A grain structure is observed in the plates, which may indicate that recrystallization 176 
occurs after the plate exits the rolls. A grain structure is also observed on a scanning 177 
electron microscope. Mapping shows a uniform distribution of silver over the area of the 178 
plates in compositions No. 2 and No. 3. 179 

The morphology of powder particles obtained by flame atomization was studied 180 
(Figure 4). The morphology of the powder particles with the addition of silver does not 181 
differ from the initial composition. The powder obtained by plasma atomization shows 182 
high sphericity and roundness with a minimum number of defects. Mapping shows a 183 

Figure 3. Influence of silver content on the microstructure of steel plates.



Materials 2023, 16, 319 7 of 14

A grain structure is observed in the plates, which may indicate that recrystallization
occurs after the plate exits the rolls. A grain structure is also observed on a scanning
electron microscope. Mapping shows a uniform distribution of silver over the area of the
plates in compositions No. 2 and No. 3.

The morphology of powder particles obtained by flame atomization was studied
(Figure 4). The morphology of the powder particles with the addition of silver does not
differ from the initial composition. The powder obtained by plasma atomization shows
high sphericity and roundness with a minimum number of defects. Mapping shows a
uniform distribution of silver on the surface of powder particles of compositions No. 2 and
No. 3.
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Figure 4. SEM images of powder particles and the distribution of silver on the surface (No. 1—316L;
No. 2—316L +0.2 wt.% Ag; No. 3—316L +0.5 wt.% Ag).

Also, images of the surface of the powder particles in secondary electrons (SED) and
topographic and phase contrast (BED-C) in the back-reflected ones were obtained using a
scanning electron microscope, and spectral analysis of the surface (mapping) was carried
out (Figure 5).
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As can be seen from Figure 5, the particles in the cross section have a spherical shape
and a grain structure. Mapping shows a uniform distribution of silver in powder particles of
compositions No. 2 and No. 3. This distribution should improve the antibacterial properties
of the samples and can increase resistance to pitting and inter-crystalline corrosion.

Also, for qualitative analysis, X-ray fluorescence analysis was performed, which shows
the presence of silver in the samples, which indicates that all blanks contain silver. This
method is an express method that does not determine the exact chemical composition. A
qualitative analysis was carried out in [34] on the Analytik Jena PlasmaQuant 9100 optical
emission spectrometer (Analytik Jena, Jena, Germany). The results show that the silver
content does not change during the production of blanks of various form factors and
corresponds to the content in composition No. 2—0.179 ± 0.073% and in composition
No. 3—0.4972 ± 0.171% for ingot and 0.1956 ± 0.075%, 0.4851 ± 0.178% for powder,
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respectively [34]. The examination of the plates for the silver content also shows values for
composition No. 2—0.1983 ± 0.062% and for composition No. 3—0.4964 ± 0.163%.

The study of antibacterial activity shows the presence of a clear antibacterial effect
in samples No. 2 and No. 3 with the addition of 0.2 wt.% and 0.5 wt.% Ag. As a result
of the experiment conducted in Petri dishes with samples No. 2 and No. 3, one can see
a clear antibacterial effect around the samples in comparison with the control (a sterile
zone around the studied samples) and, thereby, suppression of bacterial growth and
development. Figures 6 and 7 show a decrease in the number of bacteria due to the
suppression of bacterial growth and development. Composition No. 2, with the addition of
0.2 wt.% Ag, shows an antibacterial effect to bacteria of the genus Pseudomonas marginalis
and Clavibacter michiganensis, and composition No. 3, with the addition of 0.5 wt.% Ag,
shows an antibacterial effect to bacteria of the genus Xanthomonas campestris, Erwinia
carotovora, and Clavibacter michiganensis (Table 2).
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Variant Form

Type of Bacteria

Xanthomonas
Campestris

Erwinia
Carotovora

Pseudomonas
Marginalis

Clavibacter
Michiganensis

Diameter of the Sterile Zone (cm)

No. 1 Plate - - - -

No. 1 Powder - - - -

No. 2 Plate - - 1.5 1.6

No. 2 Powder - - 1.3 -

No. 3 Plate 1.8 1.7 - 1.8

No. 3 Powder 1.7 1.7 - 1.7

The obtained results of the evaluation of the effect of silver on antibacterial properties
show that an alloy with a low concentration of silver 0.2 wt.% provides an antibacterial
effect to the bacteria Pseudomonas marginalis and Clavibacter michiganensis, but does not
show a pronounced antibacterial effect to the bacteria Xanthomonas campestris, or Erwinia
carotovora. An increase in the concentration of silver in the alloy provides an antibacterial
effect to bacteria of the genus Xanthomonas campestris, Erwinia carotovora, and Clav-
ibacter michiganensis, but does not show an effect for bacteria of the genus Pseudomonas
marginalis. These patterns are manifested both for plates and for spherical powders.
Therefore, with the possible production of products by additive layer-by-layer methods, a
gradient structure can be formed using spherical powders with different concentrations of
silver, which should provide a synergistic effect and prevent bacterial contamination of the
surface from all the bacteria studied. The proposed method of using spherical powders can
be implemented by directed energy deposition (DED) methods [35,36]. In practice, with
additive manufacturing, spherical powders of different chemical compositions should be
filled into separate bunkers.
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Figure 7. Powder samples in bacterial suspensions (No. 1—316L; No. 2—316L +0.2 wt.% Ag; No.
3—316L +0.5 wt.% Ag).

4. Conclusions

Ingots, rolled plates, and spherical powders made of corrosion-resistant steel with the
addition of 0.2 wt.% Ag and 0.5 wt.% Ag are obtained in the ingots after smelting, and the
dendritic structure prevails. The optimal regime of homogenization annealing (1050 ◦C for
9 h) is revealed, which leads to the formation of an austenitic structure, its alignment, and
the formation of equiaxed grains with a size of ~50 microns. It is shown that the addition of
a small amount of silver does not affect the formation of the austenitic structure and silver
is distributed evenly throughout the volume of the ingot.
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According to the results of optical and scanning microscopy, it should be said that an
austenitic structure is observed in the plates. Silver is distributed evenly throughout the
entire volume of the plate.

The qualitative chemical composition of samples made of corrosion-resistant steels is
confirmed by X-ray fluorescence analysis methods.

By the method of energy-dispersion analysis, the presence of a uniform distribution of
silver over the entire volume of the powder particle is determined. The particles have a
spherical shape with a minimum number of defects.

The study of the antibacterial activity of plates and powder shows the presence of
a clear antibacterial effect in samples No. 2 and No. 3 with the addition of 0.2 wt.% and
0.5 wt.% Ag. Composition No. 2, with the addition of 0.2 wt.% Ag, shows an antibacterial
effect to bacteria of the genus Pseudomonas marginalis and Clavibacter michiganensis, and
composition No. 3, with the addition of 0.5 wt.% Ag, shows an antibacterial effect to bacteria
of the genus Xanthomonas campestris, Erwinia carotovora, and Clavibacter michiganensis.
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