СТРУКТУРНЫЕ СВОЙСТВА AG-СОДЕРЖАЩИХ ТОНКИХ ПЛЕНОК CU₂ZNSNS4, ПОЛУЧЕННЫХ МЕТОДОМ СПРЕЙ-ПИРОЛИЗА

А.А.Зглюй

Белорусский государственный университет, Минск; alesyazglyuy@gmail.com; науч. рук. – М. С. Тиванов, канд. физ.-мат. наук, доц.

Тонкие пленки Cu_2ZnSnS_4 были синтезированы методом распылительного пиролиза с последующим отжигом в диапазоне температур 425 - 525°C и легированы Ag. Элементный и фазовый состав, а также микроструктура, были исследованы с помощью рентгеноспектрального микроанализа, рентгенодифракционного анализа, сканирующей зондовой микроскопии и растровой электронной микроскопии для установления влияния Ag и температуры отжига на структурные свойства Cu_2ZnSnS_4 .

Ключевые слова: пленки Cu₂ZnSnS₄; спрей-пиролиз; структура; морфология.

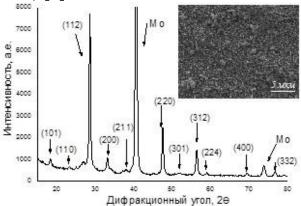
ВВЕДЕНИЕ

Среди тонкопленочных фотоактивных материалов прямозонный полупроводник р-типа Cu_2ZnSnS_4 является одним из наиболее перспективных благодаря высокому значению коэффициента оптического поглощения вблизи края поглощения ($10^4~{\rm cm}^{-1}$), оптимальной ширине запрещенной зоны $1,45~{\rm pB}$, а также нетоксичности и широкому распространению в природе входящих в состав элементов [1].

При синтезе полупроводниковых пленок недорогим методом спрейпиролиза их состав можно достаточно просто контролировать, изменяя состав используемого раствора прекурсора, а легирование Ag является эффективным способом изменения плотности носителей Cu_2ZnSnS_4 и подавления вредных антиструктурных дефектов, таких как Zn_{Cu} [2].

В данной работе исследовались структурные свойства пленок Cu_2ZnSnS_4 , полученных методом спрей-пиролиза, легированных Ag с концентрациями 0%, 1.2%, 1.9%, 2.9% и отожженных при температурах $(T_{отж})$ 425°C, 475°C, 525°C.

МЕТОДИКА И ХАРАКТЕРИСТИКИ ЭКСПЕРИМЕНТА


Осаждение Ag-содержащих пленок Cu_2ZnSnS_4 на покрытые молибденом подложки SLG проводилось методом спрей-пиролиза при температуре $270-280^{\circ}C$ в атмосфере CO_2 , что исключает реакции окисления компонентов кестерита и молибдена во время пиролиза. Для улучшения кристаллического качества пленок отжиг проводился в атмосфере S при температурах $425^{\circ}C$, $475^{\circ}C$ и $525^{\circ}C$ в течение 30 мин.

Структурные параметры пленок определялись с помощью дифрактометра Ultima IV (Rigaku) в геометрии скользящего падения рентгеновского излучения (1°) с источником излучения СиКа ($\lambda=0,154178$ нм). Морфология поверхности исследовалась с помощью растрового электронного микроскопа S-806 (Hitachi), элементный состав определялся с помощью приставки CAMECA SX 100. Параметры шероховатости поверхности определялись с использованием сканирующего зондового микроскопа Solver Nano (NT-MDT) в полуконтактном режиме с радиусом острия зонда \sim 10 нм и резонансной частотой 227 кГц.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

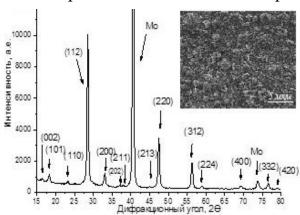
Сначала были рассмотрены пленки Cu_2ZnSnS_4 без легирования Ag, подвергшиеся отжигу при различных температурах.

По результатам рентгенодифракционного анализа (РДА) были найдены плоскости ориентирования зерен: наиболее интенсивные линии соответствуют плоскостям (112), (220) и (312). Пленки кристаллизуются в кестеритовой фазе Cu_2ZnSnS_4 (рис.1) и не имеют пустот, трещин и отверстий (рис.1, вставка) [3].

Рис. 1. Дифрактограмма и РЭМ-снимок (вставка) пленок Cu_2ZnSnS_4 без легирования при $T_{oтж} = 525$ °C.

По данным рентгеноспектрального микроанализа (PCMA), растровой электронной микроскопии (PЭM) и сканирующей зондовой микроскопии (C3M), а также РДА были найдены такие величины, как отношение содержания металлов к халькогену, область когерентного рассеяния L, межплоскостное расстояние d, параметры кристаллической решетки a, c, средние размеры зерен, среднеквадратичная арифметическая высота S_y и асимметрия R_{sk} пленок. Результаты представлены в таблице 1.

Соотношение металлов к халькогену приближается к стехиометрии по мере возрастания $T_{\text{отж}}$. С ростом $T_{\text{отж}}$ увеличивается область когерентного рассеяния, что говорит об улучшении качества образцов. Существенных


изменений межплоскостного расстояния, параметров решетки и среднего размера зерен, а также четкой зависимости шероховатости и топографии поверхности от параметров отжига не наблюдается.

 $\it Tаблица~1.$ Структура и морфология Cu₂ZnSnS4 без легирования

Т _{отж} , °С	Стехиометри- ческое соот- ношение (Cu+Zn+Sn)/S	L, HM	d, Á	a, Á	c, Á	Средняя арифметическая высота S _y , нм	Асим- метрия R _{sk}	Средние размеры зерен, мкм
20	1,59	7,4	3,117	5,400	10,798	2495	0,752	0,28
425	1,21	9,7	3,120	5,404	10,808	1926	0,911	0,31
475	1,27	10,2	3,120	5,404	10,808	2162	1,603	0,25
525	1,06	17,9	3,121	5,406	10,811	1042	0,377	0,32

Наилучшую морфологию (минимальный показатель асимметрии) и наименьшую шероховатость поверхности (показатель средней арифметической высоты), а также наибольшую область когерентного рассеяния и самое близкое к 1 соотношение металлов к халькогену имеют пленки при $T_{\text{отж}} = 525$ °C. Поэтому рассмотрим данные образцы для нахождения структурных и морфологических зависимостей синтезированных пленок от степени легирования Ag.

На рисунке 2 представлены дифрактограмма и РЭМ-снимок (рис.2, вставка) пленок Cu_2ZnSnS_4 при $T_{oтж} = 525$ °C и концентрации Ag 1.2%.

 $Puc.\ 2.\$ Дифрактограмма и PЭM-снимок (вставка) пленок Cu_2ZnSnS_4 при $T_{oth}=525^{\circ}C$ с концентрацией Ag 1.2%.

С ростом степени легирования Ag появляются новые, подтверждающие образование кестеритовой структуры Cu_2ZnSnS_4 , плоскости ориентации зерен: (002), (202), (213), (420) [3]. Интенсивности линий немного увеличиваются. Преимущественная ориентация сохраняется в плоскости (112).

Из полученных методами РСМА, РДА, РЭМ и СЗМ данных были рассчитаны структурные и морфологические параметры пленок с различными концентрациями Ag. Результаты приведены в таблице 2.

Таблица 2. Структура и морфология Cu2ZnSnS4 при температуре отжига 525°C

Леги- рова- ние, %	Стехио- метрическое соотноше- ние (Cu+Zn+Sn+ Ag)/S	L, нм	d, Á	a, Á	c, Á	Средняя арифметическая высота S_y , нм	Асиммет- рия <i>R</i> _{sk}	Средние размеры зерен, мкм
0	1,06	17,8	3,120	5,404	10,808	1042	0,377	0,32
1,2	0,96	17,8	3,125	5,413	10,825	1670	0,274	0,29
1,9	1,05	19,6	3,130	5,421	10,843	2109	0,344	0,28
2,9	1,04	16,4	3,135	5,430	10,860	2686	1,856	0,29

Возрастание степени легирования Ag не вносит значительного вклада в изменение соотношения металлов к халькогену, области когерентного рассеяния и среднего размера зерен, немного повышая показатели межплоскостного расстояния и параметров решетки. Увеличивается шероховатость поверхности. При этом топографический параметр, за исключением его величины при максимальной концентрации Ag, практически неизменен и принимает наименьшее свое значение при степени легирования, равной 1.2%.

ЗАКЛЮЧЕНИЕ

В ходе работы с помощью методов рентгеноспектрального микроанализа, рентгенодифракционного анализа, сканирующей зондовой микроскопии и растровой электронной микроскопии были изучены структура и морфология тонких пленок Cu_2ZnSnS_4 , отожженных в диапазоне от 425°C до 525°C и легированных Ag с концентрациями от 1.2% до 2.9%.

Анализ показал, что пленки кристаллизуются в кестеритовой фазе Cu_2ZnSnS_4 . Увеличение $T_{отж}$ улучшает кристалличность исследуемых образцов, делая их наиболее пригодными к использованию (уменьшается отношение металлов к халькогену к стехиометрии, увеличивается область когерентного рассеяния и улучшается топография поверхности). Рост же степени легирования Ag существенным образом не влияет на параметры структуры и морфологии соединения, что указывает на необходимость изменения количества вводимого в образцы Ag для возможности управления электронными свойствами пленок Cu_2ZnSnS_4 .

Библиографические ссылки

- 1. *С.А.Башкиров, Р.Кондротас, В.Ф.Гременок, Р.Л.Юшкенас, И.И.Тюхов.* Тонкие пленки Cu₂ZnSn(S,Se)₄ для использования в солнечных элементах третьего поколения // IS-JAEE. 2016. №15-18.
- 2. *L. Dermenji, M. Guc, G. Gurieva, etc.* Thin films of (Ag_xCu_{1-x})₂ZnSnS(Se)₄ (x=0.05–0.20) prepared by spray pyrolysis // Thin Solid Films. 2019. Volume 690.
- 3. Kapta ICSD № 01 075 4122.