КОНЕЧНО-ЭЛЕМЕНТНОЕ РЕШЕНИЕ ТРЕХМЕРНОЙ ЗАДАЧИ МАГНИТОСТАТИКИ НА СЕТКЕ, НЕ СОГЛАСОВАННОЙ С ГЕОМЕТРИЕЙ ОБЛАСТИ

Д. А. Ильина

Белорусский государственный университет, г. Минск; dariailyina123@gmail.com; науч. рук. – О. А. Лаврова, канд. физ.-мат. наук, доц.

В статье рассматривается метод конечных элементов CutFEM для решения трехмерной задачи магнитостатики в двухфазной области с использованием сетки, не согласованной с поверхностью раздела двух сред внутри расчетной области. Анализируются точность и порядок сходимости численного решения, построенного с помощью линейных и квадратичных конечных элементов на тетраэдрах.

Ключевые слова: метод конечных элементов; метод Нитше; несогласованная сетка; точность решения; порядок сходимости.

введение

Используя классический метод конечных элементов для численного решения эллиптической задачи с разрывом на гладкой внутренней границе раздела, разрывность данных обычно учитывают путем согласования сетки с границей раздела. Однако, использование такой сетки может быть затруднительно в случае более сложных задач, при которых граница раздела перемещается. Тогда полезно использовать одну и ту же сетку в расчетной области для разных положений границы раздела.

Будем рассматривать метод CutFEM [1]. В расчетной области строится тетраэдральная фоновая сетка, не зависящая от положения границы раздела. Фоновая сетка используется для построения решения с использованием кусочно-полиномиальных конечных элементов. Граница раздела задается с помощью функции уровня. CutFEM рассматривается в сочетании с вариантом метода Нитше, который учитывает в аппроксимации через границу раздела разрывы, внутренние по отношению к конечным элементам.

ПОСТАНОВКА ЗАДАЧИ

Полагаем, что область Ω_1 с магнитной проницаемостью $\alpha_1 = const > 0$ имеет форму шара с радиусом *R* и центром в начале координат. Поверхность шара Γ будем задавать множеством уровня: { $(x, y, z): \sqrt{x^2 + y^2 + z^2} - R = 0$ }. Область Ω_2 вне шара аппроксимируется кубической областью $(-5R,5R)^3$ с магнитной проницаемостью $\alpha_2 = const > 0$. Так, $\Omega := \Omega_1 \cup \Omega_2 \cup \Gamma$, $\Gamma = \overline{\Omega}_1 \cap \overline{\Omega}_2$, а функция магнитной проницаемости α :

$$\alpha = \begin{cases} \alpha_1, & (x, y, z) \in \Omega_1, \\ \alpha_2, & (x, y, z) \in \Omega_2. \end{cases}$$

Для каждой достаточно регулярной функции *и* в $\Omega_1 \cup \Omega_2$ определим скачок *и* на Γ как $[u] = u_1 |_{\Gamma} - u_2 |_{\Gamma}$, где $u_i = u |_{\Omega_i}$. Обратно, для u_i , определенного на Ω_i , отождествляется пара $\{u_1, u_2\}$ с функцией *и*, которая равна u_i на Ω_i .

Рассмотрим стационарную задачу магнитостатики с разрывной проницаемостью на Г и неоднородным условием Дирихле на внешней границе:

$$\begin{cases} -\nabla \cdot (\alpha \nabla u) = f & \mathbf{B} & \Omega_1 \cup \Omega_2, \\ u = u_D & \mathrm{Ha} & \partial \Omega, \\ [u] = 0 & \mathrm{Ha} & \Gamma, \\ [\alpha \nabla_{\mathbf{n}} u] = 0 & \mathrm{Ha} & \Gamma, \end{cases}$$
(1)

где $\nabla_{\mathbf{n}} u = \mathbf{n} \cdot \nabla u$, \mathbf{n} – вектор единичной внешней нормали к Ω_1 . В удалении от Ω_1 магнитное поле полагается вертикально-направленным вдоль оси Oz с постоянной интенсивностью H_0 . Можно сформулировать условие Дирихле как $u = H_0 z$ на $\partial \Omega$.

С помощью замены переменной $\hat{u} = u - u_D$ (далее просто *u*) можно привести задачу (1) к следующей задаче с однородным условием Дирихле и неоднородным условием на границе раздела:

$$\begin{cases} -\nabla \cdot (\alpha \nabla u) = f & \mathbf{B} & \Omega_1 \cup \Omega_2, \\ u = 0 & \text{Ha} & \partial \Omega, \\ [u] = 0 & \text{Ha} & \Gamma, \\ [\alpha \nabla_{\mathbf{n}} u] = g & \text{Ha} & \Gamma, \end{cases}$$

где $g = (\alpha_2 - \alpha_1)H_0 n_z$. Полагаем, что $f \in L_2(\Omega)$, $g = H^{1/2}(\Gamma)$.

Вариационная формулировка задачи имеет следующий вид: необходимо найти $u \in H_0^1(\Omega)$ такую, что $a(u,v) = (f,v)_{\Omega} + (g,v)_{\Gamma} \quad \forall v \in H_0^1(\Omega)$, где $a(u,v) = (\alpha \nabla u, \nabla v)_{\Omega}$. Будем искать дискретное решение $U = (U_1, U_2)$ в пространстве $V^h = V_1^h \times V_2^h$, где $V_i^h = \{v_i \in H^1(\Omega_i) : v_i \mid_{K_i} -$ линейная, $v_i \mid_{\partial\Omega} = 0\}$, $K_i = K \cap \Omega_i$ часть элемента K в Ω_i . Функции в V_h могут быть разрывными на границе раздела Г. Так как Г может пересекать элемент *К* произвольно, размеры частей K_i не могут быть полностью характеризованы параметрами размера сетки. Чтобы гарантировать стабильность метода, накладываются условия на комбинации числовых потоков путем выбора подходящих весов, зависящих от геометрии [1]. Введем понятие среднего числового потока $\{\alpha \nabla_{\mathbf{n}} v\} := (\alpha_1 \kappa_1 \nabla_{\mathbf{n}} v_1 + \alpha_2 \kappa_2 \nabla_{\mathbf{n}} v_2)|_{\Gamma}$, где $\kappa_i |_K = |K_i|/|K|$, |K| := meas K.

Метод определяется вариационной задачей нахождения $U \in V^h$ такой, что $a_h(U,v) = L(v), \forall v \in V^h$, где

$$a_{h}(U,v) \coloneqq \sum_{i=1}^{2} (\alpha_{i} \nabla U_{i}, \nabla v_{i})_{\Omega_{i}} - ([U], \{\alpha \nabla_{\mathbf{n}} v\})_{\Gamma} - (\{\alpha \nabla_{\mathbf{n}} U\}, [v])_{\Gamma} + (\lambda h^{-1}[U], [v])_{\Gamma},$$
$$L(v) \coloneqq \sum_{i=1}^{2} (f, v_{i})_{\Omega_{i}} + (\kappa_{2}g, v_{1})_{\Gamma} + (\kappa_{1}g, v_{2})_{\Gamma},$$

 λ – параметр стабилизации.

Для задачи (1) с условием $u = H_0 z$ на бесконечности известно точное решение, см. [2, с. 94]

$$u_{exact}(x, y, z) = \begin{cases} \frac{3\alpha_2}{\alpha_1 + 2\alpha_2} H_0 z, & (x, y, z) \in \Omega_1, \\ H_0 z + R^3 \frac{\alpha_2 - \alpha_1}{\alpha_1 + 2\alpha_2} \frac{H_0 z}{(x^2 + y^2 + z^2)^{3/2}}, & (x, y, z) \in \Omega_2. \end{cases}$$

ЧИСЛЕННЫЕ РЕЗУЛЬТАТЫ

Для расчетов полагаем $H_0 = 1$, радиус шара R = 1, $\alpha_1 = 10$, $\alpha_2 = 1$, параметр дискретизации сетки h = 1, параметр стабилизации $\lambda = 20(\alpha_1 + \alpha_2)$. Решение строится с помощью конечно-элементного пакета Netgen/NGsolve и библиотеки расширения ngsxfem.

При условии Дирихле $u = H_0 z$ на внешней границе $\partial \Omega$ получаем, что не наблюдается уменьшения ошибки при измельчении сетки и метод не сходится к точному решению задачи (см. рис. 1). Для дальнейших вычислений условие Дирихле на внешней границе полагается равным $u = H_0 z (1 + R^3 (\alpha_2 - \alpha_1) / ((\alpha_1 + 2\alpha_2)(x^2 + y^2 + z^2)^{3/2}))$ на $\partial \Omega$. Построив численные решения с помощью линейного CutFEM для данного условия и значений параметра дискретизации h, h/2 и h/4 и рассчитав для них ошибки в норме пространства L_2 получаем, что при измельчении сетки ошибка уменьшается (см. рис. 1).

Рассчитаем экспериментальный порядок сходимости $r_{i,i+1} = \log_2(\|e_i\|_{0,\Omega} / \|e_{i+1}\|_{0,\Omega})$, где e_i – ошибка для конечно-элементного решения, построенного на сетке с параметром дискретизации h, а e_{i+1} – с параметром h/2.

Таблица

Параметр дискретизации	Ошибка линейного CutFEM	Порядок сходимости линейного CutFEM	Ошибка квадратичного CutFEM	Порядок сходимости квадратичного CutFEM
1,0	0,29275		0,52072	
0,5	0,11060	1,40434	0,07981	2,70591
0,25	0,03314	1,73867		

Экспериментальный порядок сходимости CutFEM

Экспериментальный порядок сходимости в норме L_2 стремится к двум в случае кусочно-линейной аппроксимации неизвестного решения, к трем для кусочно-квадратичной аппроксимации (см. табл.) и совпадает с порядком сходимости, доказанным теоретически [3, с. 46, лемма 3.22].

Библиографические ссылки

- 1. *Burman E.* CutFEM: Discretizing geometry and partial differential equations / E. Burman [et al.] // Int. J. Numer. Meth. Engng. 2015. Vol. 104. P. 472–501. DOI: 10.1002/nme.4823.
- 2. *Розенцвейг Р.* Феррогидродинамика / Р. Розенцвейг; пер. В.В.Кирюшиной; под ред. В.В. Гогосова. Москва : Мир, 1989. 358 с.
- 3. *Lehrenfeld C.* Extended finite element methods for interface problems: lecture notes / C. Lehrenfeld; TU Wien. Vienna, 2015. 90 p.