в областях максимума величины градиента напряженности электрического поля, которые находятся вблизи углов их геометрии, а частиц размером 520 нм – в областях минимума, расположенных в зазорах между соседними штырями. При этом для реализации стабильного во времени пространственного разделения смесей на их основе потребовалось подавить деструктивный электротермический эффект за счет снижения на 36 % площади поверхности электродов и использования водных сред с удельной проводимостью менее 10^{-2} См/м. Таким образом, предложенное в данной работе ДЭФ устройство может выступить в качестве надежного инструмента для управления/разделения более сложных веществ, например биоорганических макрообъектов.

БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ

- 1. Dielectrophoresis: Theory, methodology and biological applications / R.R. Pethig. John Wiley & Sons, 2017. 448 p.
- Dielectrophoresis: Developments and applications from 2010 to 2020 / B. Sarno [et al.] // Electrophoresis. 2021. Vol. 42, № 5. P. 539–564.
- 3. The role of electrohydrodynamic forces in the dielectrophoretic manipulation and separation of particles / A. Ramos [et al.] // J. Electrostat. –1999. Vol. 47, № 1–2. P. 71–81.
- 4. Manufacturing techniques for microfabrication and nanotechnology / M.J. Madou. CRC press, 2011. 670 p.

ВЛИЯНИЕ ДОБАВОК МЕДИ НА СОСТАВ, СТРУКТУРУ И ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА ТОНКОПЛЕНОЧНЫХ ПОКРЫТИЙ TIAICUN И TIAICUCN

В. А. Зайков¹, С. В. Константинов², Ф. Ф. Комаров², И. А. Романов¹, И. В. Чижов²

¹⁾ Белорусский государственный университет, ул. Курчатова, 5, 220064, Минск, Беларусь, e-mail: zaikov@bsu.by

²⁾ НИУ «Институт прикладных физических проблем им. А.Н. Севченко» БГУ, Курчатова, 7, 220045, Минск, Беларусь, e-mail: mymail3000@tut.by

Методом реактивного магнетронного распыления получены тонкопленочные покрытия многокомпонентных нитридов и карбонитридов TiAlCuN и TiAlCuCN различного стехиометрического состава с добавками меди. С помощью сканирующей электронной микроскопии и энергодисперсионного рентгеновского анализа изучены влияние режимов осаждения на состав и структуру покрытий. Обнаружено, что во всех исследованных режимах осаждения покрытий добавки меди приводят к уменьшению среднего размера зерна по сравнению с тонкими пленками TiAlN и TiAlCN. Установлено, что добавки меди уменьшают удельное сопротивление тонкопленочных покрытий TiAlCuN и TiAlCuCN, причем этот эффект более заметен для покрытий нестехиометрического состава, обогащенных металлическими Ti и Al компонентами.

Ключевые слова: магнетронное распыление; тонкие пленки; сканирующая электронная микроскопия; энергодисперсионная рентгеновская спектроскопия; удельное сопротивление.

INFLUENCE OF COPPER ADDITIVES ON THE COMPOSITION, STRUCTURE AND ELECTRICAL PROPERTIES OF THE TIAICUN AND TIAICUCN THIN-FILM

V. A. Zaikov¹, S. V. Konstantinov², F. F. Komarov², I. A. Romanov¹, I. V. Chizhov²

Belarusian State University, Kurchatova str. 5, 220064 Minsk, Belarus, Corresponding author: V. A. Zaikov (zaikov@bsu.by)

Reactive magnetron sputtering was used to obtain thin-film coatings of multicomponent nitrides and carbonitrides TiAlCuN and TiAlCuCN of various stoichiometric compositions with copper additives. Using scanning electron microscopy and energy-dispersive X-ray analysis, the effect of deposition modes on the composition and structure of coatings was studied. It has been found that under various deposition conditions, copper additions lead to a decrease in the average grain size in comparison with thin films of TiAlN and TiAlCN. It has been determined that copper additions reduce the resistivity of TiAlCuN and TiAl-CuCN thin film coatings, and this effect is more noticeable for non-stoichiometric coatings enriched in metallic Ti and Al components.

Key words: magnetron sputtering; thin films; scanning electron microscopy; energy dispersive X-ray spectroscopy; resistivity.

введение

Нитриды и карбонитриды переходных металлов типа TiAlN и TiAlCN представляют широкий интерес благодаря их термической стабильности, химической инертности, высокой твердости и износостойкости [1], а также сравнительно высокой проводимости [2]. Эти покрытия показали себя многообещающе во многих приложениях, таких как хранение энергии, защита от электромагнитных помех, прозрачные электроды, датчики, катализаторы [3, 4].

В литературе [5] отмечается, что добавки меди в покрытия TiAlN препятствуют миграции границ зерен, следовательно, уменьшают как размер кристаллов, так и размер зерен, кроме того нанокомпозитные покрытия nc- TiAlCuN/Cu, состоящие из столбчатых зерен с внедренными в границы очень мелкими кристаллами металла, могут достигать сверхвысокой твердости при низком удельном сопротивлении [3].

В настоящей работе с помощью методов сканирующей электронной микроскопии, энергодисперсионной рентгеновской спектроскопии и электрофизическими методами изучены свойства тонкопленочных покрытий TiAlCuN и TiAlCuCN.

МАТЕРИАЛЫ И МЕТОДЫ

Тонкопленочные покрытия TiAlCuN и TiAlCuCN получали с помощью композитных мишеней TiAlCu, компонентный состав которых в атомных долях приведен в табл. 1. Мишени, изготовлены в ГНУ «Институт порошковой металлургии» НАН Беларуси методом взрывного прессования.

Покрытия осаждали на подложки: кремния Si(100), кремния с термически выращенным окислом, нержавеющей стали 12X18H10T, титана марки BT1-0, ситалла марки CT-50–1. Перед осаждением проводилась ионная очистка поверхности подложек с помощью ионного источника «Радикал». Тонкопленочные покрытия TiAlCuN и TiAlCuCN получали методом реактивного магнетронного распыления. Количество углерода в составе покрытий TiAlCuCN контролировалось соотношением парциальных давлений реактивных газов N_2/C_2H_2 . Контроль и управление натеканием газов: аргона, азота и ацетилена осуществлялся с помощью модульного комплекса управления расходом газов (МКУРГ) [6]. Прибор МКУРГ позволяет поддерживать постоянное соотношение потоков распыленных атомов материала мишени и потока реактивного газа на подложку при постоянных рабочем давлении, токе и напряжении источника питания. Такой способ управления и контроля процессом реактивного магнетронного осаждения обеспечивает воспроизводимость процесса формирования покрытий по составу и толщине. Основным параметром, определяющим состав, структуру и физические свойства наносимых нами покрытий является степень реактивности **и** определяется из спектроскопических характеристик разряда по формуле [7]:

$$\alpha = \frac{\left(I_0 - I\right)}{\left(I_0 - I^*\right)},\tag{1}$$

где I_0 – интенсивность атомной линии металла мишени (в нашем случае титана, $\lambda = 506,5$ нм) при распылении в чистом аргоне; I – текущая величина интенсивности линии титана при нанесении покрытия заданной стехиометрии; I^* – интенсивность линии металла для полностью «отравленной» мишени - поверхность мишени полностью покрыта нитридом или карбонитридом.

Таблица 1

Состав композитных мишеней TiAlCu

N⁰	Состав мишени						
мишени	Ті, ат. долей	Al, ат. долей	Ti / Al	Си, ат. долей			
1	46,0	46,0	1,0	8,0			
2	69,0	23,0	3,0	8,0			

Основные внешние задаваемые параметры режима реактивного магнетронного осаждения представлены в табл. 2, где *I* - ток разряда, *U* - напряжение разряда, P_0 - суммарное давление газов, $P_{\rm N2} / P_{\rm C2H2}$ - отношение парциальных давлений азота и ацетилена, T_s – температура подложки. Процессы осаждения проводили при двух значениях степени реактивности α : $\alpha = 0,605$ (покрытия состава близкого к стехиометрическому) и $\alpha = 0,474$ (покрытия нестехиометрического состава, обогащенного металлическими Ті и Al компонентами).

Номера режима: 1N1, 2N1 соответствуют осаждению нитридных покрытий TiAlCuN состава, близкого к стехиометрическому; 1N2, 2N2 состава, обогащенного металлическими Ti и Al компонентами. Следующие номера режима: 1CN1, 2CN1 соответствуют осаждению карбонитридных покрытий TiAlCuCN близких к стехиометрическому составу, а 1CN2, 2CN2 составу, обогащенному металлическими Ti и Al компонентами. Для улучшения адгезионных качеств покрытий после ионной очистки проводилось осаждение подслоя TiAlCu в течении 1,0 мин.

Морфология и микроструктура исследуемых покрытий на кремниевых подложках изучались методом сканирующей электронной микроскопии (СЭМ) с помощью электронного микроскопа Hitachi S-4800 (Япония). Толщину покрытий измеряли с использованием СЭМ микрофотографий сколов образцов. Скорость осаждения рас-

считывалась на основе полученных из СЭМ значений толщины и времени осаждения. Микроскоп оснащен датчиком рентгеновского излучения (энергодисперсионным спектрометром), позволяющим определять элементный состав исследуемых покрытий методом энергодисперсионной рентгеновской спектроскопии (ЭДРС). Ошибка измерения атомной концентрации основных элементов составляла не более 2 ат. %.

Поверхностное сопротивление покрытий TiAlCuN и TiAlCuCN измеряли четырехзондовым методом на приборе ИУС-3 на ситалловых подложках марки CT-50-1.

Таблица 2

α	0,605				0,474			
Тип покрытия	TiA	lCuN	TiAl	CuCN	TiAl	CuN	TiAlC	CuCN
Ток разряда I, А	1,0		1,0		1,0		1,0	
Напряжение U, В	370 - 400		390 - 440		380 - 410		390 - 440	
Давление P_0 , Па	$7,0.10^{-2}$		$7,0.10^{-2}$		$7,0.10^{-2}$		7,0.10-2	
$P_{\rm N2}$ / $P_{\rm C2H2}$	-		1 / 1		-		1 / 1	
$U_{\rm cm},{ m B}$	-200		-200		-200		-200	
$T_s, °C$	370		380		370		380	
Мишень	1	2	1	2	1	2	1	2
Номер режима	1N1	2N1	1CN1	2N1	1N2	2N2	1CN2	2CN2

Параметры режима реактивного магнетронного осаждения покрытий TiAlCuN и TiAlCuCN

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Микроструктура поверхности покрытий TiAlCuN на кремнии, сформированных в режимах с различными значениями степени реактивности α показана на рисунке. Видно, что для образцов 1N1 и 2N1 (рисунок а и в), полученных при значении степени реактивности $\alpha = 0,605$ (покрытия состава близкого к стехиометрическому), характерна плотная столбчатая микроструктур. При этом средний размер столбцов не превышает 80 нм. Покрытия TiAlCuN (образцы 1N2 и 2N2), полученные при меньшем значении степени реактивности $\alpha = 0,474$ (превышение концентрации металла (Ti + Al) над реактивной компонентой (N + C), имеют структуру или более мелкокристаллическую (рисунок б), или субнанокристаллическую (рисунок г).

Микроструктура поперечных сечений исследуемых покрытий TiAlCuN показывает, что поверхность всех образцов является гладкой и однородной. Аналогичные результаты получены и для поверхности карбонитридов TiAlCuCN. При этом средний размер столбцов не превышает 60 нм. Образцы 1CN2 и 2CN2, полученные при меньшем значении степени реактивности $\alpha = 0,474$ имеют субнанокристаллическую структуру. Сравнение результатов настоящей работы с результатами работы [8], полученными нами для покрытий TiAlN и TiAlCN показывает, что добавки меди приводят к уменьшению среднего размера зерна.

Элементный состав исследуемых покрытий, полученный методом ЭДРС, и соотношение отдельных элементов, представлен в табл. 3. Кроме перечисленных в табл. 3 элементов, в покрытиях дополнительно присутствуют следующие элементы: кремний 0,2 - 1,0 ат. долей, аргон 0,4 - 1,5 ат. долей и кислород 1,5 - 3,0 ат. долей. В табл. 3 также приведены соотношения между элементами, например, Ti/Al, N/C и (Ti+Al)/(N+C). Соотношение металлов Ti/Al зависит от состава мишени. Отношение

(Ti+Al)/(N+C) определяет стехиометрию элементного состава покрытия. Для состава покрытия близкого к стехиометрическому это отношение равно единице. Как следует из табл. 3 (8-й столбец) скорость осаждения покрытия больше для режимов с меньшим значением степени реактивности а.

(a) режим 1N1, (в) режим 2N1 (α = 0,605); (б) режим 1N2, (г) режим 2N2 (α = 0,474) Рисунок – СЭМ микрофотографии поверхности покрытий TiAlCuN на кремнии

Таблица 3

Компонентный состав, стехиометрические соотношения компонент, толщина, скорость осаждения, поверхностное и удельное сопротивление покрытий TiAlCuN и TiAlCuCN

1	2	3	4	5	6	7	8	9	10
Номер	(Ti + Al),	Ti/Al	(N + C),	N/C	(Ti+Al)/	h,	v,	R _□ ,	ρ, мкОм∙м
режима	ат. долей		ат. долей		(N+C)	HM	нм/с	Ом/□	
1N1	43,63	0,617	44,70	17,55	0,993	1900	0,352	38,9	73,9
2N1	43,84	2,177	44,16	11,23	0,993	1120	0,373	3,52	3,94
1CN1	41,23	0,748	47,27	1,281	0,872	1460	0,487	17,2	25,2
2CN1	50,70	2,325	40,91	1,260	1,239	1580	0,527	2,44	3,86
1N2	47,05	0,627	37,94	21,19	1,240	1290	0,500	5,28	6,81
2N2	56,17	3,280	31,40	7,719	1,789	1280	0,496	1,41	1,80
1CN2	56,17	0,853	31,40	1,520	1,789	1530	0,593	4,3	6,58
2CN2	59,09	2,937	30,08	2,450	1,964	1640	0,636	1,37	2,25

В табл. 3 (10-й столбец) приведены данные для удельного сопротивлений. Полученные значения удельного сопротивления, особенно, для покрытий осаждаемых из мишени 4, являются обещающим результатом. В работах [2, 3] показано, что удельное сопротивление пленок нитрида титана (TiN) находится в пределах от 4,75 до 0,973 мкОм·м, а для покрытий TiAlN эти величины на порядок выше. Однако в случае с мишенью 2 нами получены значения удельного сопротивления покрытий TiAlCuN и TiAlCuCN в пределах от 3,94 до 1,80 мкОм·м, что близко по величине для TiN. Известно, что термическая стабильность покрытий бинарных нитридов TiAlN выше, чем у TiN.

ЗАКЛЮЧЕНИЕ

Установлено, что уменьшение степени реактивности от значения $\alpha = 0,605$ до значения $\alpha = 0,474$ приводит к увеличению скорости осаждения покрытий на 20 %. Микроструктура поперечных сечений и поверхности исследуемых покрытий TiAlCuN и TiAlCuCN показывает, что поверхность всех образцов является гладкой и однородной. В структуре отсутствуют трещины и пустоты, оказывающие негативное влияние на механические свойства покрытий. Полученные покрытия являются однородными, плотными и не содержат видимых дефектов по всей площади поверхности. Обнаружено, что удельное сопротивление покрытий TiAlCuN и TiAlCuCN для лучших образцов находится в пределах от 3,94 до 1,80 мкОм·м.

БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ

- Thornton, J.A. Plasmas in Deposition Processes / J.A. Thornton // Handbook of deposition technologies for films and coatings, ed. R. Bunshah. New Jersey: Noyes Publ., 1982. - P. 55–156.
- Electrical and Corrosion Properties of Titanium Aluminum Nitride Thin Films Prepared by Plasma-Enhanced Atomic Layer Deposition / Eun-YoungYun [et al.] // Journal of Materials Science & Technology. – 2017. – Vol. 33, № 3. – P. 295–299.
- Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics / P. Patsalas [et al.] // Materials Science and Engineering – 2018. – Vol. 123, – P. 1–55.
- Development and characterization of TiAlN (Ag, Cu) nanocomposite coatings deposited by DC magnetron sputtering for tribological applications / D. Perea [et al.] // Surface and Coatings Technology. – 2020. – Vol. 381. – P. 125095.
- Microstructure and mechanical properties of nanomultilayered AlTiN/Cu coatings prepared by a hybrid system of AIP and PDCMS / H. Mei [et al.] // Ceramics International. 2022. In Press, Corrected Proof.
- Климович, И.М. Система контроля расхода газов для применения в технологии реактивного магнетронного распыления / И.М. Климович, В.А. Зайков, А.П. Бурмаков, Ф.Ф. Комаров // Приборы и методы измерений. – 2015. – Т. 6, No 2. С. 139-147
- Бурмаков, А.П. Система управления газовым напуском для магнетронных технологий нанесения пленочных покрытий / А.П. Бурмаков, В.Н. Кулешов, А.В. Столяров // Международный конгресс по информатике: Информационные системы и технологии. Минск: БГУ. - 2016. -С. 771–776.
- Influence of parameters of reactive magnetron sputtering on tribomechanical properties of protective nanostructured Ti–Al–N coatings / I.M. Klimovich [et al.] // J. Frict. Wear. – 2018. – V. 39, No 2. – P. 92–98.