- 26. Gittleman, J.L. Magnetic properties of granular nickel films / J.L. Gittleman, Y. Goldstein, S. Bozovski // Phys. Rev. B. 1972. Vol. 5. 3609–3620.
- 27. Extraordinary Hall effect and giant magnetoresistance in the granular Co-Ag system / P. Xiong [et al.] // Phys. Rev. Lett. 1992. Vol. 69. P. 3220 3223.
- 28. Pakhomov, A.B. Observation of giant Hall effect in granular magnetic films / A.B. Pakhomov, X. Yan, Y. Xu // J. Appl. Phys. 1996. Vol. 79. P. 6140 6142.
- 29. Effect of annealing on the giant Hall effect / X.N. Jing [et al.] // Phys. Rev. B. 1996. Vol. 53. P. 14032–14035.
- 30. Больных, И.К. Температурное и магнетополевое смещение длинноволнового края фотоэлектрических эффектов в HgCr₂Se₄ / И.К. Больных, Г.Н. Север // ФТТ. 1995. Т.37, № 2. 570–573.

НАНОСТРУКТУРИРОВАНИЕ ПОВЕРХНОСТИ ДИОКСИДА ТИТАНА ЛЛЯ ГЕТЕРОФАЗНЫХ ФОТОКАТАЛИТИЧЕСКИ АКТИВНЫХ ПОКРЫТИЙ

М. А. Евсейчик¹, С. Е. Максимов², Л. С. Хорошко^{1,2}

Наноструктурированные поверхности диоксида титана получены химическим и термическим окислением титановой фольги. Формирование фазы TiO_2 подтверждено результатами рентгеновского дифрационного анализа. Показана возможность формирования гетероструктуры TiO_2/g - C_3N_4 термическим испарением прекурсора меламина с различной толщиной слоя графитоподобного нитрида углерода, причем наноструктурирование поверхности титановой фольги способствует формированию более толстых покрытий. Обсуждается перспектива использования гетероструктур TiO_2/g - C_3N_4 для экологического катализа.

Ключевые слова: диоксид титана; графитоподобный нитрид углерода; наноструктурированная поверхность; полупроводниковые гетероструктуры.

NANOSTRUCTURING OF THE TITANIUM DIOXIDE SURFACE FOR HETEROPHASE PHOTOCATALYTIC ACTIVE COATINGS

M. A. Yauseichyk¹, S. E. Maksimov², L. S. Khoroshko^{1,2}

1) Belarusian State University, Nezavisimosti av. 4, 220030 Minsk, Belarus, 2) Belarusian State University Informatics and Radioelectronics, P. Browka Str. 4, 220013 Minsk, Belarus

Corresponding author: M. A. Yauseichyk (m.yauseichyk@gmail.com)

Nanostructured titanium dioxide surfaces were obtained by chemical and thermal oxidation of titanium foil. The formation of the TiO₂ phase was confirmed by the results of X-ray diffraction analysis. The possibility of forming a TiO₂/g-C₃N₄ heterostructure by thermal evaporation of melamine precursor with different thicknesses of a graphite-like carbon nitride layer is shown, and nanostructuring of the titanium foil surface promotes the

¹⁾ Белорусский государственный университет, пр. Независимости, 4, 220030 Минск, Беларусь, e-mail: m.yauseichyk@gmail.com

²⁾ Белорусский государственный университет информатики и радиоэлектроники, ул. П. Бровки, 6, 220013 Минск, Беларусь, e-mail: khoroshko@bsu.by

formation of thicker coatings. The prospect of using TiO₂/g-C₃N₄ heterostructures for ecological catalysis is discussed.

Key words: titanium dioxide; graphite-like carbon nitride; nanostructured surface; semi-conductor heterostructures

ВВЕДЕНИЕ

Загрязнение окружающей среды и быстрое истощение запасов ископаемого топлива, вызванное активным ростом промышленного производства, стали серьезными проблемами для человечества. Эти проблемы привели многих исследователей к необходимости создания экологически чистых материалов, которые могут разлагать загрязняющие вещества и производить «зеленую» энергию. Материалы на основе диоксида титана (ТіО₂) являются одним из широко используемых полупроводниковых материалов для экологических и энергетических приложений благодаря их уникальным химическим, оптическим и электрическим свойствам. Также диоксид титана известен своими фотокаталитическими и антибактериальными свойствами при активации УФ-излучением и находит множество применений в различных областях, таких как фотокатализ, газоанализ, антибактериальные и защитные покрытия, просветляющие покрытия, диэлектрические пленки и др [1-3]. Основным недостатком TiO₂ является слабая чувствительность к излучению видимого диапазона, сенсибилизация к которому может быть достигнута путем формирования гетероструктур с материалами, имеющими меньшую ширину запрещенной зоны. Одним из перспективных материалов для такого применения является графитоподобный нитрид углерода $g-C_3N_4$ который наряду c фотокаталитической, проявляет антибактериальную активность [4]. Слои g-C₃N₄ могут быть получены на различных подложках методом термического осаждения азотсодержащих органических веществ меламина, тиомочевины, мочевины, цианамида и дицианамида [5, 6].

Целью данной работы является подготовка наноструктурированной поверхности диоксида титана для последующего формирования фотокаталитически активных материалов на основе гетероструктур TiO_2/g - C_3N_4 .

МАТЕРИАЛЫ И МЕТОДЫ

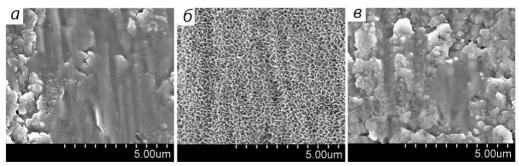
Исходным материалом для формирования структурированного TiO_2 являлась титановая фольга BT1-0 (ГОСТ 19807-91). Для получения наноструктурированной поверхности были выбраны химическое и термическое окисление, как наиболее подходящие для поточной реализации и обладающие достаточной воспроизводимостью. Для очистки поверхности фольги от загрязнений подложки обезжиривали в мыльносодовом растворе, затем промывали в проточной дистиллированной воде и погружали на 10 мин в 10% раствор концентрированной HNO $_3$ для удаления химических и органических загрязнений.

Химическое окисление подложек проводили обработкой в кипящем 30 % растворе перекиси водорода (H_2O_2) в течение 10 мин, либо в концентрированном гидроксиде натрия (NaOH) при комнатной температуре в течение 20 мин. После химического окисления подложки промывали проточной дистиллированной водой. Термическое окисление проводили в муфельной печи на воздухе при температуре 550 °C в течение 30 мин, после чего подложки постепенно охлаждали до комнатной температуры в печи. На подложках с TiO_2 далее термическим испарением меламина в загермети-

зированном тигле при 550 °C формировали пленки графитоподобного нитрида углерода.

Структуру и фазовый состав пленок исследовали методом растровой электронной микроскопии (РЭМ) и рентгеновского дифракционного анализа (РДА).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ


По результатам РДА основной фазой для оксидного слоя всех исследованных образцов после химического и/или термического окисления является искомый ${\rm TiO_2}$ (таблица 1), определение полиморфной модификации требует проведения дополнительных исследований ввиду малых толщин формируемых оксидных пленок.

Tаблица 1 Результаты РДА для образцов фольги после отжига (a), химического окисления в растворе H_2O_2 и отжига (δ), после химического окисления в растворе NaOH и отжига (s)

а			б			в		
	I,							
2θ, нм	отн.ед.	Фаза*	2θ, нм	I, отн.ед.	Фаза*	2θ, нм	I, отн.ед.	Фаза*
44,56	1294	TiO ₂	44,65	1103	TiO ₂	44,65	1103	TiO ₂
46,69	414	TiO ₂	46,84	423	TiO ₂	46,78	375	TiO ₂
62,14	426	TiO ₂	62,23	431	TiO ₂	62,11	409	TiO ₂

^{*}полиморфная модификация требует уточнения

На рис. 1 представлены РЭМ-снимки поверхности образцов после химического и термического окисления. Поверхность после отжига без химического окисления содержит рельефные участки окисления по исходным дефектам фольги. Для образца после окисления в растворе H_2O_2 , и отжига наблюдается наиболее структурированная поверхность с формированием игольчатых фрагментов. Окисление перед отжигом в NaOH также приводит к формированию островковых фрагментов на месте дефектов проката при отжиге, однако они становятся более рельефными, а структура поверхности — менее однородной по сравнению с термическим окислением без предварительной химической обработки.

РЭМ-изображения поверхности фольги со слоем диоксида титана, полученного (a) после отжига, (б) после химического окисления в растворе H_2O_2 и отжига, (в) после химического окисления в растворе NaOH и отжига

Осажденные на поверхность с наноструктурированным TiO₂ пленки графитоподобного нитрида углерода имеют большую толщину, чем осажденные на поверхность той же фольги без предварительной обработки (контрольный образец). При увеличении степени неоднородности рельефа поверхности, толщина получаемой пленки также возрастает, в табл. 2 показаны значения толщины пленок g- C_3N_4 в зависимости от используемой подложки. По сравнению с пленкой на необработанной фольге, толщина покрытия возрастает более чем в три раза для образца после химического окисления в пероксиде водорода и отжига (маркировка δ). При этом, даже предварительное только термическое окисление титана способствует увеличению толщины покрытия g- C_3N_4 более чем на 60%.

 ${\it Tаблица~2}$ Режимы получения и результаты исследования гетероструктур TiO2/g-C3N4

Маркировка образца (см. рис. 1, табл. 1)	Подложка	Методы структурирования	Толщина пленки g-C ₃ N ₄
а	Ті (99,7 %) термическое окисление		496 нм
б	Ti (99,7%)	химическое окисление (H_2O_2) , термическое окисление	999 нм
в	Ti (99,7 %)	химическое окисление (NaOH), термическое окисление	622 нм
контрольный	Ti (99,7 %)	ŀ	303 нм

Получаемые гетероструктуры TiO_2/g - C_3N_4 интересны для получения эффективных фотокатализаторов, сенсибилизированных к видимой области спектра, для очистки воды от органических загрязнений. Структуры на основе графитоподобного нитрида углерода являются перспективными для формирования, в том числе, и антибактериальных покрытий [7].

ЗАКЛЮЧЕНИЕ

Показана возможность увеличения толщины пленки графитоподобного нитрида углерода, формируемой термическим испарением на подложке титана, проведением предварительного наноструктурирования поверхности титановой фольги. Так химическое окисление в пероксиде водорода или гидроксиде натрия позволяет добиться увеличения толщины покрытия в 2—3 раза, кроме того, травление в H_2O_2 , обеспечивает после термической обработки формирование развитой игольчатой поверхности диоксида титана, что также может быть интересно для формирования фотокаталитически активных материалов. Предварительное термическое окисление титановой фольги позволяет получать гетероструктуры TiO_2/g - C_3N_4 с увеличенной толщиной покрытия графитоподобного нитрида углерода. Полученные результаты могут быть использованы для получения новых перспективных материалов, применяемых для фотокаталитической очистки воды от органических и бактериальных загрязнителей, в том числе, для проточных систем.

БЛАГОДАРНОСТИ

Работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований (грант № Ф21УЗБГ-002).

БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ

- 1. Ашуркевич, А.Н. Формирование и свойства фотокаталитически толстых пленок с диоксидом титана / А.Н. Ашуркевич, И.А. Николаенко, В.Е. Борисенко // Доклады БГУИР. 2012. Т. 61, № 6. С. 50–55.
- Фотокаталитическая активность покрытий из наноструктурированного диоксида титана на алюминиевой подложке / А.В. Баглов [и др.] // Неорганические материалы. – 2017. – Т.53, № 11. – С. 1201–1205.
- 3. Preparation and Antibacterial Properties of Composite Nanostructures from Titanium and Copper Oxides // N.M. Denisov [et al.] // Inorganic Materials. 2016. Vol. 52, N 5. P. 523–528.
- Структурные и фотолюминесцентные свойства графитоподобного нитрида углерода / А.В. Баглов [и др.] // Физика и техника полупроводников. 2020. Т.54, № 2. С.176–180.
- 5. Синтез графитоподобного нитрида углерода на поверхности наночастиц Fe₃O₄ / Е.Б. Чубенко [и др.] // Неорганические материалы. 2021. Т.57, № 2. С. 144–149.
- 6. Наноструктурный композит для фотокаталического применения O-g-C₃N₄/TiO₂, полученный синтезом О-допированного нитрида углерода на поверхности наночастиц анатаза / М.Э. Бондаренко [и др.] // Наносистемы, наноматериалы, нанотехнологии. 2020. Т.18, № 2. С. 265–282.
- Оценка интегральной токсичности фотокатализаторов на основе графитоподобного нитрида углерода в люминесцентном тесте / Е. Б. Чубенко [и др.] // Кинетика и катализ. –2022. –Т. 63, №2. – С. 187–192.

МОДЕЛИРОВАНИЕ ВЛИЯНИЯ РАЗЛИЧНЫХ МЕХАНИЗМОВ РАССЕЯНИЯ НА ПОДВИЖНОСТЬ ЭЛЕКТРОНОВ В ЭЛЕМЕНТАХ ФЛЕШ-ПАМЯТИ

О. Г. Жевняк

Белорусский государственный университет, пр. Независимости, 4, 220030 Минск, Беларусь e-mail: Zhevnyakol@tut.by

В основе работы современных элементов флеш-памяти лежит перенос электронов в проводящем канале кремниевых МОП-транзисторов с плавающим затвором. Быстродействие этих элементов в режиме считывания информации определяется подвижностью электронов при их дрейфе в данном канале. В настоящей работе изучено влияние на подвижность электронов в элементах флеш-памяти двух основных механизмов рассеяния на фононах и на ионах примеси путем численного моделирования электроного переноса методом Монте-Карло Показано, что с ростом энергии электронов существенно возрастает влияние на подвижность электронов фононных механизмов рассеяния, что приводит к уменьшению величины подвижности.

Ключевые слова: флеш-память; МОП-транзистор; подвижность электронов, рассеяние на фононах.

SIMULATION OF DIFFERENT SCATTERING MECHANISM'S EFFECT ON ELECTRON MOBILITY IN FLASH-MEMORY CELLS

O. G. Zhevnyak

Belarusian State University, Nezavisimosti av. 4, 220030 Minsk, Belarus Corresponding author: O. G. Zhevnyak (Zhevnyakol@tut.by)

The operation of modern flash memory elements is based on the electron transport in conducting channel of silicon MOSFET's with a floating gate. Performance of these ele-