ми токами можно добиться практически полной компенсации вкладов в потенциал электродов, и тогда поле имеет чисто релятивистскую природу. Для полной компенсации вклада электродов (катода и анода) необходимо выбирать длину квазиодномерных проводников настолько большой относительно длины электродов, насколько это возможно (но без нарушения баллистического режима дрейфа электронов в этих проводниках). Полученная формула имеет и практическое значение: экспериментально регистрируя релятивистский электрический потенциал, можно затем расчетным способом определить некоторые электрические параметры квазиодномерных проводников [9].

Работа выполнена при поддержке ГПНИ «Конвергенция-2025» Республики Беларусь и Белорусским республиканским фондом фундаментальных исследований (грант № Ф23РНФ-049).

БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ

- 1. Ландау, Л. Д. Теоретическая физика / Л. Д. Ландау, Е. М. Лифшиц. Т. 2: Теория поля. М.: Физматлит, 2006. 536 с.
- 2. Фейнман, Р. Фейнмановские лекции по физике / Р. Фейнман, Р. Лейтон, М. Сэндс. Вып. 6: Электродинамика. М.: УРСС, 2014. 360 с.
- Миллер, М. А. Неоднозначности обратных задач в макроэлектродинамике. Сферические и тороидальные источники электромагнитных полей / М. А. Миллер // Изв. вузов. Радиофизика. – 1986. – Т. 29, № 9. – С. 991–1007.
- Митянок, В. В. Релятивистское электростатическое поле проводника с постоянным током / В.В. Митянок, Н.А. Поклонский // ЖТФ. – 1993. – Т. 63, № 1. – С. 189–191.
- 5. Pelzer, H. Interaction between currents as a relativistic second order effect of electrostatic forces / H. Pelzer, S. Whitehead // Br. J. Appl. Phys. 1951. Vol. 2, № 11. P. 330–332.
- 6. Rosser, W.G.V. Second-order electric field due to a conduction current / W.G.V. Rosser // Am. J. Phys. 1962. Vol. 30, № 7. P. 509–511.
- 7. Baker, D.A. Second-order electric field due to a conduction current / D.A. Baker // Am. J. Phys. 1964. Vol. 32, № 2. P. 153–157.
- Хуан, С.-Б. Строгий вывод преобразования Лоренца на основе минимальных предположений / С.-Б. Хуан // УФН. – 2011. – Т. 181, № 5. – С. 553–556.
- Poklonski, N.A. Relativistic electric potential near a resting straight carbon nanotube of a finitelength with stationary current / N.A. Poklonski, I.A. Halimski, S.A. Vyrko, A.T. Vlassov, N.N. Hieu // J. Belarusian State Univ. Phys. – 2021. – № 1. – P. 20–25.

ФОРМИРОВАНИЕ НАНОРАЗМЕРНЫХ ОСТРОВКОВ НА ПОВЕРХНОСТИ МОНОКРИСТАЛЛИЧЕСКИХ СЛОЕВ Si/SiGe ПРИ ИМПУЛЬСНОМ ЛАЗЕРНОМ ОБЛУЧЕНИИ

С. Л. Прокопьев, П. И. Гайдук

Белорусский государственный университет, пр. Независимости, 4, 220030 Минск, Беларусь, e-mail: prokopyev@bsu.by

Методами просвечивающей электронной микроскопии и спектроскопии резерфордовского обратного рассеяния обнаружено, что при воздействии импульсов длительностью 15 нс лазерного излучения на длине волны 1,06 мкм с плотностью энергии 0,66–1,88 Дж/см² на монокристаллические слои Si/SiGe толщиной 500 нм, выращенные методом молекулярно-лучевой эпитаксии, происходит модификация поверхностного рельефа слоев SiGe, заключающаяся в формировании наноразмерных островков.

Ключевые слова: монокристаллические слои Si/SiGe; импульсное лазерное облучение; поверхностный рельеф; наноразмерные островки.

FORMATION OF NANOSIZED ISLANDS ON THE SURFACE OF SINGLE CRYSTALLINE SIGE LAYERS UNDER PULSED LASER IRRADIATION

S. L. Prakopyeu, P. I. Gaiduk

Belarusian State University, Nezavisimosti av. 4, 220030 Minsk, Belarus Corresponding author: S. L. Prakopyeu (prokopyev@bsu.by)

Using transmission electron microscopy and Rutherford backscattering spectroscopy, the modification of surface relief and the formation of nanosized islands in 500 nm thick Si/SiGe single crystalline layers was found after pulsed laser irradiation (15 ns pulse duration at a wavelength of $1.06 \,\mu\text{m}$) and an energy density of $0.66-1.88 \,\text{J/cm}^2$.

Key words: single crystalline Si/SiGe layers; pulsed laser annealing; surface relief; nanosized islands.

введение

Слои SiGe находят широкое применение в микроэлектронной промышленности для изготовления на их основе ряда приборов дискретной и интегральной электроники [1, 2]. С другой стороны отметим, что изучение эффектов в твердых телах, связанных с воздействием на них импульсного излучения представляет большой интерес [3]. В настоящее время с этим связана актуальность исследований и поиска полупроводниковых структур для применения в перспективных приборах наноэлектроники [4]. В данной работе представлены результаты структурно-фазовых исследований воздействия наносекундного лазерного излучения на монокристаллические слои SiGe.

МАТЕРИАЛЫ И МЕТОДЫ

Исходными подложками для формирования структур Si/SiGe служили пластины кремния ориентации (001). Методом молекулярно-лучевой эпитаксии на пластинах кремния выращивался буферный слой SiGe переменного состава, а затем – слой Si_{0.85}Ge_{0.15} толщиной 500 нм. Импульсная лазерная обработка структур Si/SiGe/Si_{0.85}Ge_{0.15} проводилась с использованием Nd:YAG лазера на длине волны 1,06 мкм с плотностью энергии 0,66–1,88 Дж/см². Длительность лазерных импульсов составляла 15 нс. Структурно-фазовые исследования проводились методами просвечивающей электронной микроскопии (ПЭМ) и электронной дифракции (ПЭД) на микроскопе ЭМ-125 и методом спектроскопии резерфордовского обратного рассеяния (POP) с использованием ионов He⁺ с энергией 1.5 МэВ.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 приведены светлопольные и темнопольные ПЭМ-изображения в планарной геометрии структур Si/SiGe/Si_{0,85}Ge_{0,15}, облученных лазерными импульсами длительностью $\tau = 15$ нс с плотностью энергии W = 0,66-1,88 Дж/см². Сравнение ПЭМ изображений позволяет установить, что морфология поверхности сильно зависит от плотности энергии лазерного излучения. Так, после обработки структур Si/SiGe/Si_{0,85}Ge_{0,15} лазерными импульсами с $W \le 0,66 \text{ Дж/см}^2$ обнаружены только незначительные изменения морфологии поверхности по сравнению с исходными образцами. ПЭМ-изображение характеризуется достаточно однородным контрастом, что свидетельствует об однородности структуры исследуемого образца. Высокая однородность поверхности исследуемой структуры подтверждается контрастом на темнопольном ПЭМ-изображении, представленном на вставке в рис. 1, *а*. Сравнительный анализ светлопольного и темнопольного ПЭМ-изображений, приведенных на рис. 1, *а*, позволяет установить, что при воздействии лазерными импульсами с плотностью энергии $W \le 0,66 \text{ Дж/см}^2$ на поверхности структуры Si/SiGe/Si_{0,85}Ge_{0,15} образуется незначительное количество морфологических изменений.

Рисунок 1. Светлопольные и темнопольные ПЭМизображения, а также картина ПЭД структуры Si/SiGe/Si_{0,85}Ge_{0,15} после обработки лазерными импульсами длительностью $\tau = 15$ нс с плотностью энергии W: (*a*) W₁ = 0,66 Дж/см²; (*б*) W₂ = 0,95 Дж/см²; (*в*) W₃ = 1,88 Дж/см². Вставки в рис. 1, *a*, *б* – соответствующие темнопольные ПЭМизображения, вставка в рис. 1, *в* – соответствующая картина ПЭ

Типичный пример таких локальных изменений морфологии виден на рисунке 1, а (отмечено стрелками). Облучение структуры Si/SiGe/Si_{0 85}Ge_{0 15} лазерными импульсами с большей плотностью энергии приводит к резкому изменению ПЭМ-контраста. Так, при плотности энергии 0,95 Дж/см² появляется островковая структура, представленная на рис. 1, б, которая наблюдается и в темном поле (вставка рис. 1, б). Островки имеют вид "холмов" с основанием округлой формы. Основания ряда островков близки к окружности. Размер островков по основанию варьируется от 0,3 до 0,5 мкм в зависимости от его формы. Так, минимальный размер (около 0,3 мкм) наблюдается у островков с формой основания близкой к окружности. Плотность островков составля $e_{\rm T} \sim 4 \cdot 10^7 \, {\rm cm}^{-2}$

Можно предположить, что формирование островков происходит

вследствие релаксации напряжений в слое Si_{0,85}Ge_{0,15} при его кристаллизации из расплава после лазерной обработки. При этом в области островков релаксация напряжений максимальна. Увеличение плотности энергии лазерного излучения до 1,88 Дж/см² сопровождается значительным изменением контраста на ПЭМизображениях. Как следует из анализа светлопольных ПЭМ-изображений различных участков образца на рис. 1, *в*, островки практически исчезают, и образуется сильно неоднородная по структуре поверхность. Очевидно, что в этом случае происходит модифицирование структуры мощными лазерными импульсами. Релаксация напряжений в поверхностном SiGe слое в данном случае происходит, по-видимому, путем образования большого количества дефектов дислокационного типа (дислокационной сетки). На рис. 1, *в* видно, что облучение структуры лазерными импульсами с $W = 1,88 \text{ Дж/см}^2$ приводит к трансформации островков, что, вероятно, также играет существенную роль в формировании сильно неоднородного рельефа поверхности, возникающего вследствие теплового удара. Картина ПЭД (вставка в рис. 1, *в*), как и в случае структуры, не подверженной лазерному отжигу, содержит рефлексы от монокристаллической фазы, поэтому можно с большой долей уверенности утверждать, что фазовый состав слоев Si_{0,85}Ge_{0,15} при лазерной обработке с плотностью энергии до $W = 1,88 \text{ Дж/см}^2$ сохраняется неизменным по меньшей мере, в приповерхностной области.

Композиционный состав слоев по глубине структуры Si/SiGe/Si_{0,85}Ge_{0,15} исследовался методом POP. На рис. 2 приведены спектры POP в случайном режиме и в режиме каналирования для структуры Si/SiGe/Si_{0,85}Ge_{0,15} до и после обработки лазерным излучением.

Результаты обработки спектров POP, полученных от структур Si/SiGe/Si_{0,85}Ge_{0,15} в режиме каналирования (спектры 1–4), свидетельствуют о том, что увеличение плотности энергии лазерного излучения приводит к увеличению выхода обратнорассеянных ионов во всем диапазоне энергий ионов.

Это может быть связано со смещением атомов из узлов кристаллической решетки, т.е. с увеличением количества дефектов в структуре. Вместе с тем, отмечается заметное увеличение выхода обратнорассеянных ионов от структур Si/SiGe/Si_{0.85}Ge_{0.15}, подверженных лазерному облучению с максимальной плотностью энергии (спектр 4, $W_3 = 1,88 \, \text{Дж/см}^2$) по сравнению, как с остальными режимами лазерной обработки, так и без нее (спектры 1-3). Сравнение данных ПЭМ, представленных на рис. 1, в, и РОР, представленных на

I и 1 – после выращивания, II и 2-4 – после обработки лазерными импульсами длительностью $\tau = 15$ нс с плотностью энергии: 2 – W₁ = 0,66 Дж/см², 3 - W₂ = 0,95 Дж/см²; II и 4 – W₃ = 1,88 Дж/см²

рис. 2 (спектр 4), позволяет сделать вывод, что максимальная плотность энергии лазерного излучения ($W_3 = 1,88 \text{ Дж/см}^2$) приводит к наиболее интенсивному формированию дефектов в слое Si_{0.85}Ge_{0.15}.

При облучении структуры лазерными импульсами с плотностью энергии $W_3 = 1,88 \text{ Дж/см}^2$ может происходить незначительное изменение состава верхнего слоя Si_{0,85}Ge_{0,15} преимущественно на границе с буферным слоем SiGe, т.к. при $W_3 = 1,88 \text{ Дж/см}^2$ возможно проплавление структуры вплоть до буферного слоя. По-

добное изменение состава следует из сравнения спектров РОР в режиме каналирования (спектры 1–3 и 4) и в случайном режиме (спектры I и II) в области каналов 270–300. Следует отметить, что по результатам обработки спектров РОР, полученных в случайном режиме, установлено, что заметное изменение состава по сравнению с исходным составом (спектры I и II, область каналов 270–300) характерно только для структуры, которая подвергалась облучению лазерными импульсами с максимальной плотностью энергии.

ЗАКЛЮЧЕНИЕ

Импульсное наносекундное лазерное воздействие на монокристаллические слои Si/SiGe/Si_{0,85}Ge_{0,15} приводит к формированию наноразмерных островков на поверхности слоев Si_{0,85}Ge_{0,15}. Размер островков по основанию варьируется от 0,3 до 0,5 мкм в зависимости от его формы. Так, минимальный размер (около 0,3 мкм) наблюдается у островков с формой основания близкой к окружности. Можно предположить, что формирование островков происходит вследствие релаксации напряжений в структуре Si_{0,85}Ge_{0,15} при ее кристаллизации из расплава после лазерной обработки. При этом в области островков величина релаксации напряжений максимальна.

БИБЛИОГРАФИЧЕСКИЕ ССЫЛКИ

- 1. SiGe Heterojunction Bipolar Transistors / Ed. by P. Ashburn. New York: John Wiley & Sons, 2005. 272 p.
- Silicon-Germanium Heterojunction Bipolar Transistors for mm-Wave Systems: Technology, Modeling and Circuit Applications / Ed. by N. Rinaldi, M. Schröter. – Gistrup: River Publishers, 2018. – 378 p.
- Subsecond Annealing of Advanced Materials: Annealing by Lasers, Flash Lamps and Swift Heavy Ions / Ed. by W. Skorupa, H. Schmidt. – Berlin: Springer Science & Business Media, 2013. – 321 p.
- Semiconductor Nanotechnology: Advances in Information and Energy Processing and Storage / Ed. by S. M. Goodnick, A. Korkin, R. Nemanich. – Berlin: Springer, 2018. – 236 p.

ФИЗИЧЕСКИЕ ПРОЦЕССЫ НА ПОДЛОЖКЕ ПРИ РАЗЛИЧНЫХ УСКОРЯЮЩИХ ПОТЕНЦИАЛАХ ПРИ ОСАЖДЕНИИ НАНОПОКРЫТИЙ ЛАЗЕРНО-ПЛАЗМЕННЫМ МЕТОДОМ

М. В. Пузырёв, В. К. Гончаров, А. А. Горбацевич

Научно-исследовательское учреждение "Институт прикладных физических проблем им. А. Н. Севченко" Белорусского государственного университета, ул. Курчатова 7, 220108 Минск, Республика Беларусь, e-mail: puzyrev@bsu.by

Экспериментально изучены процессы, происходящие на поверхности подложки при осаждении нанопокрытий лазерно-плазменным методом при изменении электрического поля ускоряющего ионы. Показано, что сток заряда затруднен с подложки и осаждение нанопокрытий происходит с меньшим КПД при отсутствии электрического поля. Показано, что реализуются три режима взаимодействия ионов с поверхностью при увеличении потенциала электрического поля: травление за счет вторичной эмиссии, создание псевдодиффузионого слоя материала лазерной мишени в приповерхностной зоне и осаждение нанопокрытий.

Ключевые слова: лазерная плазма; лазерное излучение; ионные потоки; нанотехнологии.