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Abstract

Classical theorems of metric theory of Diophantine approximation
state that some Diophantine inequalities have infinitely many solutions
only on sets with Lebesgue measure equal to zero. In this paper we
estimate the rate of convergence to zero of measures of sets with a
given measure of transcendentality as the right sides of the inequalities
tend to zero.

1 Introduction and results

Irrational (transcendental) numbers are defined as numbers which are not
rational (resp. algebraic). Therefore it is natural to classify them on the
basis of their approximation by rational (resp. algebraic) numbers. How-
ever, a slightly different approach is widely used. It is based on the rate
of approximation of zero by values of integral polynomials in the given ir-
rational (transcendental) point. Such approach was introduced by Mahler
(see [1, 2]).

In studying the described classification the following sets are essential.
Let I = [a, b) be a given interval and

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

be a polynomial with integral coefficients of degree degP = n and height
H = H(P ) = max16j6n |aj | .
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For a real w > n we consider inequality

|P (x)| < H−w (1)

and denote Ln(w) = {x ∈ I : (1) has infinitely many solutions in P (x) ∈
Z[x],degP 6 n}.

Similarly, for a monotonically decreasing function ψ(x) : R+ → R+ we
consider inequality

|P (x)| < H−n+1ψ(H) (2)

and denote Ln(ψ) = {x ∈ I : (2) has infinitely many solutions in P (x) ∈
Z[x],degP 6 n}.

Of course, (1) is just a particular case of (2) (one may simply take ψ(x) =
x−w+n−1), but historically the set Ln(w) was introduced earlier and it is
convenient to study.

By µA we will denote the Lebesgue measure of a set A ⊂ R.
From Minkowski’s theorem on linear forms (see, for example, [3]) one

easily derives that Ln(n) = I. In 1932 Mahler showed that µLn(w) = 0 as
soon as w > 4n and conjectured the same result for any w > n. This hypoth-
esis was proved in 1964 by Sprindžuk ([4]). Soon a more general result was
achieved by A. Baker ([5]). In that work he also conjectured that µLn(ψ) =
0 as soon as

∑∞
H=1 ψ(H) converges. In 1989 Bernik proved Baker’s hypoth-

esis ([6]), and in 1999 Beresnevich ([7]) showed that µLn(ψ) = |I| for a
divergent series

∑∞
H=1 ψ(H). The works [6] and [7] give a full analogue of

Khinchin’s metric theorem on the approximation of real numbers by rational
numbers for polynomials of a given degree.

Bugeaud extended the above mentioned results to algebraic integers.
He also remarked that from [6] and [7] one cannot estimate the rate of
convergence of measures of sets like Ln(ψ) to zero as the upper bound for
H tends to infinity. In the present paper we show how such sets can be
effectively investigated.

The statement of the problem we study here was motivated by the fol-
lowing result of Götze ([8]). Let d ∈ N, D ∈ Rd×d be a nondegenerate matrix
of a positively defined quadratic form and I be a given interval. For a vector
x = (x1, x2, . . . , xd) ∈ Rd we consider its norm |x|∞ = max16j6d |xj | . For
a large enough real r and small enough positive real τ we denote by LI(τ)
the set of t ∈ I such that the system of inequalities{

|m− tDn|∞ < τr−1,
|n|∞ < τr

has a solution in vectors m,n ∈ Zd, (m,n) 6= 0. Then there is a constant
c(d) depending only on d such that we have the following estimation:

Theorem 1
µLI(τ) < c(d)τ2|I|.
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This theorem plays an important role in work [8] and provides a basis
for some ultimate results on the number of integral points in ellipsoids.

Now we state our main result.
Fix n ∈ N and an interval I ⊂ R. By c1, c2, . . . we denote constants

depending only on n or on I and n. We also use Vinogradov’s symbols:
f � g denotes that f 6 c1g, and f � g denotes g � f � g. All constants
we use can be calculated effectively.

Further, take an interval J ⊂ I and real positive values Q and τ 6 1. Let
B′

n,I(Q, τ, J) denote the set of all x ∈ J such that the system of inequalities{
|P (x)| 6 τQ−n,
H = H(P ) 6 τQ

(3)

has a solution in nonzero polynomials P (x) ∈ Z[x],degP 6 n}.
( By H(P ) we will throughout denote the height of the polynomial

P (x) = anx
n + · · ·+ a1x+ a0, H(P ) = max16i6n |ai|.)

Then we have the following

Theorem 2 If Q > Q00(n, I), Q−c1(n) 6 τ 6 1 and |J | > Q−c2(n), then

µB′
n,I(Q, τ, J) 6 c(n, I)τn+1|J |. (4)

Note that for τ > 1 the theorem is obviously true.

2 Notations and lemmas

Let Zn[x] denote the set of all integral polynomials P (x) with deg(P ) =
n. For a real x and a polynomial P (x) ∈ Zn[x], P (x) = an(x − α1)(x −
α2) · · · (x − αn), we will write x � αi if the root αi is the closest to x (or
one of the closest if there are several).

In the following three lemmas we consider a polynomial P (x) ∈ Zn[x],
P (x) = an(x−α1)(x−α2) . . . (x−αn), and assume its roots to be ordered such
that |α1−α2| 6 |α1−α3| 6 . . . 6 |α1−αn|.We also denote Aj = Πn

i=j |α1−αi|
for j = 2, n and An+1 = 1.

Lemma 1 If x � α1 and P ′(α1) 6= 0, then for all j = 1, n

|x− α1| 6 (2n−j |P (x)|Πj
i=2|α1 − αi|

|P ′(α1)|
)1/j = (2n−j |P (x)|

|an|Aj+1
)1/j .

Lemma 2 For j = 1, n

|P (j)(α1)| 6
(n− 1)!j
(n− j)!

|an|Aj+1.

Moreover,
|P ′(α1)| = |an|A2.
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These lemmas can be proved by obvious calculations.

Lemma 3 For an irreducible P (x) holds

1 6 2
n(n−1)

2 |an|n−1Πn
i=2Ai.

The proof of this lemma is based on estimating the discriminant of the
polynomial.

Lemma 4 For any n ∈ N, n > 1 and real δ > 0 there is an effectively
calculated bound H0(δ, n) such that for any H > H0 and positive real µ, τ, η
the following holds. If P1(x), P2(x) ∈ Z[x], max(deg(P1),deg(P2)) 6 n are
coprime, max(H(P1),H(P2)) 6 Hµ and there is an interval I ⊂ R with
|I| = H−η, such that for all x ∈ I max(P1(x), P2(x)) < H−τ , then

τ + µ+ 2 max{τ + µ− η, 0} < 2nµ+ δ.

The proof can be found in [10].
This lemma is a quantitative expression of the natural fact that no two

coprime integral polynomials of bounded degree and height can be too small
on a large enough interval.

We will rewrite the system (3) in a slightly different form:{
|P (x)| 6 τn+1Q−n

1 = Q
−λ(n+1)−n
1 ,

H(P ) 6 Q1,
(5)

where Q1 = τQ and τ = Q−λ
1 , and consider the set Bn,I(Q1, τ, J) or

Bn,I(Q1, λ, J) instead of B′
n,I(Q, τ, J). Then the conditions of the theorem

change to the following: Q1 > Q00(n, I), 0 6 λ 6 c1
1−c1

= λ0 (we certainly

have c1 < 1 since τQ > 1) and |J | > (τQ−1)c2 = Q
−c2(1+λ)
1 , and we are to

prove that
µBn,I(Q1, λ, J) 6 c(n, I)Q−λ(n+1)

1 |J |. (6)

To simplify the notation, we will write Q instead of Q1.

3 From the general case to a particular

We will prove the theorem by induction. Case n = 1 is trivial, and case
n = 2 can be found in [9]. So now we assume n > 2.

1. For the set Bn−1,I(Q,λn+1
n , J) induction hypothesis is applicable, pro-

vided that Q00(n, I) > Q00(n − 1, I), λ0(n) 6 λ0(n − 1) n
n+1 , c2(n) 6

c2(n− 1). So we get

µBn−1,I(Q,λ
n+ 1
n

, J) 6 c(n−1, I)Q−λ n+1
n

n|J | = c(n−1, I)Q−λ(n+1)|J |,
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and we may consider in (5) only polynomials with deg(P ) = n and
then simply add c(n− 1, I) to c(n, I).

2. We first consider solutions of (5) with H(P ) 6 Q
7/8
n+1 . (One naturally

assumes Q00(n, I) large enough, so that Q
7/8
n+1 > 1.) Lemma 1 for j = n

gives

|x− α1| 6 (
|P (x)|
|an|

)1/n 6 |P (x)|1/n 6 Q−λ(1+1/n)−1.

For two good polynomials (of such small height) P1(x) = anx
n + · · ·+

a1x + a01 and P2(x) = anx
n + · · · + a1x + a02 at points x1 and x2

respectively we have

|a01 − a02| 6 |P1(x1)|+ |P2(x2)|+ Σn
j=1|aj ||xj

1 − xj
2| �

� Q−λ(n+1)−n +Q
7/8
n+1 |J | � Q

7/8
n+1 |J |,

so there are at most (2Q
7/8
n+1 + 1)n ∗ c(n, I)Q

7/8
n+1 |J | � Q

7/8n
n+1 |J | good

polynomials. Thus in this case for the investigated measure we get the
estimate

6 c′(n, I)Q
7/8n
n+1 |J | ∗Q−λ(1+1/n)−1 = c′(n, I)Q

7/8n
n+1

−λ(1+1/n)−1|J | 6

6 c′(n, I)Q−λ(n+1)|J |.

So we may consider only solutions with

H(P ) > Q
7/8
n+1 .

Now suppose we have proved the estimate for polynomials with

2−
1
nQ 6 H(P ) 6 Q

and constants Q∗
00(n, I), λ

∗
0(n), c∗2(n). Take Q00(n, I) = Q∗

00(n, I)
n+1
7/8 ,

λ0(n) = 7/8
2(n+1)λ

∗
0(n), c2(n) = 7/8

n+1c
∗
2(n) and apply the result for

Bn,I(Qk = 2−
k
nQ, τk = k

−2
n+1 τ, J) with 2−

1
nQk 6 H(P ) 6 Qk, where

of course Qk > Q
7/8
n+1 , i.e.

k < n(1− 7/8
n+ 1

) log2Q.

It can be done since we have Qk > Q
7/8
n+1 > Q00(n, I)

7/8
n+1 = Q∗

00(n, I),
τk = k

−2
n+1 τ > (n(1− 7/8

n+1) log2Q)
−2

n+1Q−λ0(n) > [we takeQ00(n, I) large

enough, so that n(1 − 7/8
n+1) log2Q 6 Q

λ0(n)(n+1)
2 ] > Q−λ0(n)−λ0(n) =
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Q
−λ∗0(n)7/8

n+1 > Q
−λ∗0(n)
k , |J | > Q−c2(1+λ) = Q

−c∗2(1+λ)7/8

n+1 > Q
−c∗2(1+λ)
k .

We get

µBn,I(Qk, τk, J) 6 c(n, I)τn+1
k |J | = c(n, I)k−2τn+1|J |.

Now note that

τn+1
k Q−n

k = 2kk−2τn+1Q−n > τn+1Q−n,

so Bn,I(Q, τ, J) ⊆ Bn,I(Q
7/8
n+1 , τ, J) ∪ (∪

[n(1− 7/8
n+1

) log2 Q]

k=1 Bn,I(Qk, τk, J))

and therefore µBn,I(Q, τ, J) 6 µBn,I(Q
7/8
n+1 , τ, J) + Σ

[n(1− 7/8
n+1

) log2 Q]

k=1

µBn,I(Qk, τk, J) 6 c′(n, I)Q−λ(n+1)|J |+Σ
[n(1− 7/8

n+1
) log2 Q]

k=1 c(n, I)k−2τn+1

|J | 6 c∗(n, I)τn+1|J |, since the sum Σ∞
k=1k

−2 converges.

3. It is sufficient to prove the theorem only for the case

|an| � |H(P )|.

Let vice versa |an| � |H(P )|. Choose minimal t = t(I) ∈ Z such that
∀x ∈ I t > x + 1. For an appropriately chosen constant c3 = c3(n, I)
holds

max
t6m6t+n

|P (m)| > c3|H(P )|.

Let this maximum occur at m = m0. Then for the polynomial

P̃ (x) = P (
1
x

+m0)xn = ãnx
n + · · ·+ ã1x+ ã0

we have: P̃ (x) ∈ Zn[x], H(P̃ ) � Q, |ãn| = |P (m0)| > c3|H(P )| and
for x ∈ I holds |P̃ ( 1

x−m0
)| 6 |P (x)|. Now we can consider P̃ (x) on

J ′ = [ 1
b−m0

, 1
a−m0

] (where J = [a, b]) and, since for [a′, b′] ⊆ J holds

|[ 1
a′ −m0

− 1
b′ −m0

]| = b′ − a′

(m0 − a′)(m0 − b′)
� b′ − a′ = |[a′, b′]|,

apply the result for |an| � |H(P )| and then change c(n, I) appropri-
ately.

4. We consider only polynomials P (x) which are irreducible over Z[x].
Here we show how to get measure estimation for reducible polynomials
basing on the induction hypothesis.

Let P (x) = P1(x)P2(x), P1 ∈ Zn1 [x], P2 ∈ Zn2 [x], 1 6 n1 6 n2 <
n, n1 + n2 = n. Then, taking into consideration the well-known prop-
erty

H(P ) � H(P1)H(P2),
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choose k ∈ {1, 2} such that

Q
k−1
2 6 H(P1) 6 Q

k
2 = Q1.

It follows that
H(P2) � Q

2−k+1
2 = Q2.

If Q00(n, I) > Q00(n1, I)2, λ0(n) 6 λ0(n1) n1+1
2(n+1) , c2(n) 6 c2(n1)

2(1+λ0(n)) ,

then induction hypothesis is applicable to the setBn1,I(Q1, λ
2(n+1)
k(n1+1) , J),

and we get

µBn1,I(Q1, λ
2(n+ 1)
k(n1 + 1)

, J) 6 c(n1, I)Q
−λ

2(n+1)
k(n1+1)

(n1+1)

1 |J | =

= c(n1, I)Q−λ(n+1)|J |.

Similarly,

µBn2,I(Q2, λ
2(n+ 1)

(2− k + 1)(n2 + 1)
, J) 6 c(n2, I)Q−λ(n+1)|J |.

So we may consider only x with

|P1(x)P2(x)| 6 Q−λ(n+1)−n,

|P1(x)| > Q
−λ

2(n+1)
k(n1+1)

(n1+1)−n1

1 = Q−λ(n+1)− k
2
n1 ,

|P2(x)| > Q
−λ

2(n+1)
(2−k+1)(n2+1)

(n2+1)−n2

2 = Q−λ(n+1)− (2−k+1)
2

n2 .

But then we have

Q−λ(n+1)− k
2
n1 < |P1(x)| < Q

(2−k+1)
2

n2−n,

hence −λ(n + 1) − k
2n1 < (2−k+1)

2 n2 − n, n < λ(n + 1) + k
2n1 +

(2−k+1)
2 n2 = λ(n+ 1) + k

2 (n1 − n2) + (2+1)
2 n2 6 [for n1 6 n2] 6 λ(n+

1)+ 1
2(n1−n2)+

(2+1)
2 n2 = λ(n+1)+ 1

2n1+n2 6 λ0(n)(n+1)+ 1
2 +n−1,

which is contradictory for λ0(n)(n + 1) < 1
2 . So we should simply

increase our c(n, I) in the proper way.

Naturally, for P (x) = anx
n + · · ·+ a1x+ a0 we will also demand

GCD(a0, a1, . . . , an) = 1.

5. For each polynomial P (x) ∈ Zn[x],

P (x) = an(x− α1)(x− α2) . . . (x− αn),
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we may choose one of its roots (say α1) and consider only x ∈ J such
that x � α1 (naturally, we should multiply the resulting constant
c(n, I) by n). Further, assume the roots to be ordered such that

|α1 − α2| 6 |α1 − α3| 6 . . . 6 |α1 − αn|.

Denote
|α1 − αj | = H−µj , lj = [µjT ], j = 2, n,

where T = n(n−1)
2θ and θ is a small value (one can take for instance

θ = (n+1)λ0(n) and demand (n+1)λ0(n) < 1
16 and nc2(n)(1+λ0(n))+

(n+ 1)λ0(n) < 2 with some additional restrictments [they will appear
further], showing that λ0(n) and c2(n) are small enough if compared
with λ0(n1) and c2(n1) for all n1 < n; changing θ slightly we change
our requirements thus allowing τ or |J | to be smaller, of course forcing
the remaining parameter to be larger).

Take any j ∈ {2, . . . , n} . If |an| > c3|H(P )|, then |αj | < 1 + 1
c3
, so

Q−µj < 2(1 + 1
c3

) and for sufficiently large Q00(n, I) we get

µj > − 1
T
.

From lemma 3 follows

1 6 2
n(n−1)

2 Hn−1−Σn
j=2(j−1)µj ,

hence for sufficiently large Q00(n, I) holds

µj < n− 1 + θ.

So lj = [µjT ] takes only c4(n) values, and we can prove the theorem
for a fixed set of lj and then multiply the resulting constant by cn−1

4 .

We also denote pj = lj+···+ln
T , j = 2, n, pn+1 = 0.

Then for j = 2, n we have

H−
lj
T
−θ < H−

lj
T
− 1

T < |α1 − αj | 6 H−
lj
T (7)

and for j = 2, n+ 1

H−pj−θ < Aj 6 H−pj . (8)

(Aj were introduced in section 2.)

We also readily see that lj form a decreasing sequence and pj+1 =
pj − lj

T 6 pj − µj + 1
T 6 pj + 2 1

T , j = 2, n, so

pj+1 6 pj + 2
1
T
. (9)
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From lemma 3 for sufficiently large Q00(n, I) easily follows

Σn
j=2mj

lj
T

6 n− 1 + θ (10)

for any set of mj ∈ {0, 1, . . . , j − 1} , j = 2, n. Note also that for
j = 2, n

pj > −2(n+ 1− j)
1
T
.

4 The main case

In the previous section we showed that in order to achive the desired estimate
we have to consider the set B∗

n,I(Q,λ, J, l2, . . . , ln) of all x ∈ J such that the
system of inequalities {

|P (x)| 6 Q−λ(n+1)−n,
c5Q 6 H(P ) 6 Q,

(11)

has a solution in irreducible integral polynomials P (x) = an(x − α1)(x −
α2) . . . (x−αn) with |an| > c3|H(P )|, x � α1, |α1−α2| 6 |α1−α3| 6 . . . 6
|α1 − αn|, |α1 − αj | = H−µj , [µjT ] = lj , j = 2, n. We are to prove that

µB∗
n,I(Q,λ, J, l2, . . . , ln) 6 c∗(n, I)Q−λ(n+1)|J |. (12)

For an integral polynomials P (x) and an x ∈ J we will write x � P and
say ’x belongs to P (x) ’ if together they satisfy the above stated conditions;
for an interval J ′ ⊆ J we will write J ′ � P if there is an x ∈ J ′ such that
x � P. We will call the polynomial good if J � P.

We divide good polynomials into several groups according to their char-
acteristics l2, . . . , ln and prove the statement separately for each group.

Case 1
p2 +

l2
T

> (n+ 1)(1 + λ)− θ. (13)

In this case lemma 1 gives the sharpest estimate for j = 2 :

|x− α1| � Q
−(n+1)(1+λ)+θ+p3

2 . (14)

Now we divide our interval J into [|J |Q
(n+1)(1−λ)−θ−p3

2 ] � |J |Q
(n+1)(1−λ)−θ−p3

2

(since −(n+1)(1−λ)+θ+p3

2 6 [see (10)] 6
−(n+1)(1−λ)+θ+n−1+θ

3
2 6 −n

3 −
2(1−θ)

3 +
λ0(n)(n+1)

2 6 −c2(n)(1 + λ0(n)), and so |J |Q
(n+1)(1−λ)−θ−p3

2 > 1 ) equal parts

of length � Q
−(n+1)(1−λ)+θ+p3

2 . We prove that such a part J ′ can’t belong to
two different (and thus coprime) polynomials simultaneously.

9



Suppose the contrary: xi ∈ J ′, xi � Pi, xi � α1i , i = 1, 2, (P1, P2) =
1. Then for any x ∈ J ′ we have

|x− α1i | 6 |x− xi|+ |xi − α1i | �

� |J ′|+Q
−(n+1)(1+λ)+θ+p3

2 � Q
−(n+1)(1−λ)+θ+p3

2

(see (14)) and, applying lemma 2, we have

|P (j)
i (α1i)(x− α1i)

j | � Q1−pj+1+
j(−(n+1)(1−λ)+θ+p3)

2 .

(Here and throughout we take j = 1, n.) Denoting

fj = 1− pj+1 +
j(−(n+ 1)(1− λ) + θ + p3)

2
,

we now show that
max

16j6n
fj = f2.

For j > 3 we estimate fj − fj−1 = lj
T + −(n+1)(1−λ)+θ+p3

2 6 1
2(2 l3

T + p3 −
(n + 1)(1 − λ) + θ) 6 1

2( l2+l3
T + p3 − (n + 1)(1 − λ) + θ) 6 1

2(n − 1 + θ −
n − 1 + (n + 1)λ + θ) = θ + (n+1)λ

2 − 1 < 0 (we used (10)),while f2 −
f1 = l2

T + −(n+1)(1−λ)+θ+p3

2 = 1
2(p2 + l2

T − (n + 1)(1 − λ) + θ) > [see (13)]
> 1

2((n+ 1)(1 + λ)− θ− (n+ 1)(1− λ) + θ) = (n+ 1)λ > 0. Therefore from
the Taylor’s expansion

Pi(x) = Σn
j=1

1
j!
P

(j)
i (α1i)(x− α1i)

j

we get

|Pi(x)| � Qf2 = Q1−p3−(n+1)(1−λ)+θ+p3 = Q−n+θ+(n+1)λ.

Now for P1(x) and P2(x) on J ′ we can apply lemma 4 with δ = 4 1
T , µ =

1, η = (n+1)(1−λ)−θ−p3

2 , τ = n − θ − (n + 1)λ : 3n − 3θ − 3(n + 1)λ + 3 −
(n + 1)(1 − λ) + θ + p3 < 2n + δ =⇒ −2θ − 2(n + 1)λ + 2 + p3 < δ =⇒
1 < θ + (n + 1)λ0(n) + (n − 2) 1

T + δ
2 = θ + (n + 1)λ0(n) + n 1

T , which is a
contradiction.

So all x on J ′ with the required approximation properties lie near one
and the same α1 (more precisely, see (14)), so in this case we get the measure
estimate

[|J |Q
(n+1)(1−λ)−θ−p3

2 ]∗Q
−(n+1)(1+λ)+θ+p3

2 � |J |Q
(n+1)(1−λ)−θ−p3−(n+1)(1+λ)+θ+p3

2 =

= Q−λ(n+1)|J |.

In all other cases lemma 1 gives the sharpest estimate for j = 1 :

|x− α1| � Q−(n+1)(1+λ)+θ+p2 . (15)
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Case 2
p2 +

l2
T
< (n+ 1)(1 + λ)− θ, (16)

2p2 > n− 1 + 2θ. (17)

We handle this case similarly to the previous one. We divide J into
[|J |Qn+1−θ−p2 ] parts of length � Q−(n+1)+θ+p2 , preliminary checking that
|J | > Q−(n+1)+θ+p2 (summing p2 + p3 6 n − 1 + θ [see (10)] and (16),

we get 3p2 < 2n + (n + 1)λ, so Q−(n+1)+θ+p2 < Q
−n+(n+1)λ0(n)

3
−1+θ <

Q−c2(n)(1+λ0(n)) 6 |J |). Assuming like above the existence of an interval
J ′ belonging to two different polynomials P1(x) and P2(x), for any x ∈ J ′

we get
|x− α1i | 6 |x− xi|+ |xi − α1i | � Q−(n+1)+θ+p2

(see (15)), and

|P (j)
i (α1i)(x− α1i)

j | � Q1−pj+1+j(−(n+1)+θ+p2).

Let
fj = 1− pj+1 + j(−(n+ 1) + θ + p2).

For j > 3 we estimate fj−fj−1 = lj
T −(n+1)+θ+p2 6 n−1+θ−(n+1)+θ =

2(θ−1) < 0. So fj is maximal for j = 2 or j = 1. Accordingly, we distinguish
two possibilities.

1. f2 > f1, i.e. l2
T + p2 + θ − (n+ 1) > 0.

From Taylor’s expansion we get

|Pi(x)| � Qf2 = Q1−p3+2(−(n+1)+θ+p2) = Q
l2
T

+p2−2n−1+2θ.

For P1(x) and P2(x) on J ′ we apply lemma 4 with δ = 4 1
T , µ = 1, η =

n+1−θ−p2, τ = 2n+1− ( l2
T +p2)−2θ : 6n+3−3( l2

T +p2)−6θ+3−
2n−2+2θ+2p2 < 2n+δ =⇒ 2n+4 < 3 l2

T +p2 +4θ+δ = 2( l2
T +p2)−

p3 +4θ+ δ <[from (16)]< 2((n+1)(1+λ)− θ)+ 2(n− 2) 1
T +4θ+ δ 6

2((n+ 1)(1 + λ0(n)) + θ) + 2n 1
T =⇒ 1 < θ+ (n+ 1)λ0(n) +n 1

T , which
is a contradiction.

2. f2 6 f1, i.e. l2
T + p2 + θ − (n+ 1) 6 0.

From Taylor’s expansion

|Pi(x)| � Qf1 = Q1−p2−(n+1)+θ+p2 = Q−n+θ.

Lemma 4 is applicable here with δ = θ
2 , µ = 1, η = n+1−θ−p2, τ =

n−θ : 3n−3θ+3−2n−2+2θ+2p2 < 2n+δ =⇒ 2p2 +1 < n+θ+δ =
n+ 3θ

2 , which contradicts (17).
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So here we also get the measure estimate

[|J |Qn+1−θ−p2 ] ∗Q−(n+1)(1+λ)+θ+p2 = Q−λ(n+1)|J |.

Case 3
2p2 6 n− 1 + 2θ, (18)

p2 +
l2
T

> 2− θ. (19)

This case covers the widest range of values of p2 and l2
T , and it is the

most difficult to handle.
Like above, we divide J into [|J |Q

l2
T ] parts of length � Q− l2

T .

( l2
T >

p2+
l2
T

n > 2−θ
n > c2(n)(1 + λ0(n)), so |J | � Q− l2

T .)
Denote

µ = n+ 1− θ − (
l2
T

+ p2).

From (18) follows p2+ l2
T = 2p2−p3 6 2p2+2(n−2) 1

T 6 n−1+2θ+2(n−2) 1
T ,

hence

µ > n+ 1− θ − n+ 1− 2θ − 2(n− 2)
1
T

= 2− 3θ − 2(n− 2)
1
T
> 1.

From (19) follows
µ 6 n+ 1− θ − 2 + θ = n− 1.

First consider only subintervals belonging to not more than Qµ polyno-
mials. Then the investigated measure is majorized using (15) by the value

[|J |Q
l2
T ] ∗Qµ ∗Q−(n+1)(1+λ)+θ+p2 � Q

l2
T

+µ−(n+1)(1+λ)+θ+p2 |J | =

= Q−λ(n+1)|J |.

Now we show that the measure of subintervals belonging to more than
Qµ polynomials is small.

If such a subinterval J ′ � P , i.e. there is an x0 ∈ J ′ with x0 � P, then
for any x ∈ J ′ we have

|x− α1| 6 |x− x0|+ |x0 − α1| �

� Q− l2
T +Q−(n+1)(1+λ)+θ+p2 � Q− l2

T ,

since p2 + l2
T 6 n − 1 + 2θ + 2(n − 2) 1

T 6 n + 1 − θ 6 (n + 1)(1 + λ) − θ.
Further,

|P (j)(α1)(x− α1)j | � Q1−pj+1−j
l2
T � Q1−p2− l2

T , j = 1, n,

so
|P (x)| � Q1−p2− l2

T . (20)
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Denote dg = n− [µ− θ]. From the estimations for µ one easily derives

2 6 dg 6 n− 1. (21)

Divide the segment [−Q,Q] into [2Q
{µ−θ}

dg ] � 2Q
{µ−θ}

dg equal segments Ti of

length � Q
1− {µ−θ}

dg . Note that

Q
1− {µ−θ}

dg > Q1− 1
2 = Q

1
2 ,

so for sufficiently large Q00(n, I) the number of integral points on Ti is

� Q
1− {µ−θ}

dg . We say that polynomials P1(x) and P2(x) belong to the same
class if their [µ−θ] highest coefficients are equal, n− [µ−θ] next coefficients
belong to the same set of segments Ti, and the lowest coefficient is arbitrary.
Each of the Qµ polynomials our J ′ belongs to gets into one of the

(2Q+ 1)[µ−θ](2Q
{µ−θ}

dg )n−[µ−θ] � Qµ−θ

classes, hence, according to Dirichlet principle, there are at least Qµ/Qµ−θ =
Qθ polynomials Pi(x) in one of the classes. Consider polynomials

Si(x) = Pi(x)− P1(x), i = 2, [Qθ].

For such polynomials we have

deg(Si) 6 dg,

H(Si) � Q
1− {µ−θ}

dg = Q0 (22)

and, from (20), throughout on J ′

|Si(x)| � Q1−p2− l2
T . (23)

Now we consider three possibilities.

1. If at least two polynomials Si(x) (say, S2(x) and S3(x)) are relatively
prime, we can apply lemma 4 with n = dg, δ = 4 1

T , µ = 1− {µ−θ}
dg , η =

l2
T , τ = p2 + l2

T −1 : 3p2 +3 l2
T −3+3−3{µ−θ}

dg −2 l2
T < 2dg(1− {µ−θ}

dg )+

δ =⇒ 3p2+ l2
T −3{µ−θ}

dg < 2dg−2{µ−θ}+δ = 2(n−[µ−θ]−{µ−θ})+δ =
2(n−µ+θ)+δ = 2(n−(n+1−θ−( l2

T +p2))+θ)+δ = 2(−1+θ+ l2
T +p2+

θ)+δ =⇒ p3 = p2− l2
T < −2+2θ+2θ+3{µ−θ}

dg +δ < −1
2 +2θ+2θ+δ,

but p3 > −2(n− 2) 1
T , which is a contradiction.
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2. Now let one of the polynomials Si(x) (say, S2(x)) be reducible over
Z[x], i.e. S2(x) = P1(x)P2(x), P1 ∈ Zn1 [x], P2 ∈ Zn2 [x], 1 6 n1 6
n2 < dg, n1 + n2 6 dg. Choose k ∈ {1, 2} such that

Q
k−1
2

0 6 H(P1) 6 Q
k
2
0 = Q1.

It follows that
H(P2) � Q

3−k
2

0 = Q2.

If Q00(n, I) > Q00(n1, I)4, λ0(n) 6 λ0(n1) n1+1
4(n+1) , c2(n) 6 c2(n1)

4(1+λ0(n)) ,
then induction hypothesis is applicable to the set

Bn1,I(Q1, λ
2(n+ 1)

k(n1 + 1)(1− {µ− θ}/dg)
, J),

and we get

µBn1,I(Q1, λ
2(n+ 1)

k(n1 + 1)(1− {µ− θ}/dg)
, J) 6

6 c(n1, I)Q
−λ

2(n+1)
k(n1+1)(1−{µ−θ}/dg)

(n1+1)

1 |J | =

= c(n1, I)Q−λ(n+1)|J |.

Similarly,

µBn2,I(Q2, λ
2(n+ 1)

(3− k)(n2 + 1)(1− {µ− θ}/dg)
, J) 6

6 c(n2, I)Q−λ(n+1)|J |.

So we may consider only x with

|P1(x)P2(x)| 6 Q1−p2− l2
T ,

|P1(x)| > Q
−λ

2(n+1)
k(n1+1)(1−{µ−θ}/dg)

(n1+1)−n1

1 =

= Q−λ(n+1)− k
2
n1(1−{µ−θ}/dg),

|P2(x)| > Q−λ(n+1)− (3−k)
2

n2(1−{µ−θ}/dg).

But then we have

Q−λ(n+1)− k
2
n1(1−{µ−θ}/dg) <

< |P1(x)| <

< Q1−p2− l2
T

+λ(n+1)+
(3−k)

2
n2(1−{µ−θ}/dg),
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hence −λ(n + 1) − k
2n1(1 − {µ − θ}/dg) < 1 − p2 − l2

T + λ(n + 1) +
(3−k)

2 n2(1−{µ−θ}/dg) =⇒ p2 + l2
T < 1+2λ(n+1)+ (3−k)

2 n2(1−{µ−
θ}/dg) + k

2n1(1 − {µ − θ}/dg) 6[see similar arguments for reducible
polynomials in section 3]6 1+2λ(n+1)+(1−{µ−θ}/dg)(dg−1+ 1

2) =
1+2λ(n+1)+dg−{µ−θ}− 1

2+ {µ−θ}
2dg < 1

2+2λ0(n)(n+1)+n−µ+θ+ 1
4 =

−1
4 + θ + l2

T + p2 + θ + 2λ0(n)(n+ 1) =⇒ 1
4 < θ + θ + 2λ0(n)(n+ 1),

which is contradictory.

3. The only possibility left is that all polynomials Si(x) are of the form
kiS1(x), where S1(x) ∈ Zdg[x] and ki ∈ Z. Among these Qθ pairwise
distinct integers there must be one with |ki| � Qθ. Then S1(x) pos-
sesses very strong approximating properties on J ′ (see (22),(23)):

H(S1) � Q
1− {µ−θ}

dg
−θ = Q0,

|S1(x)| � Q1−p2− l2
T
−θ = Q

1−p2−
l2
T
−θ

1−{µ−θ}/dg−θ

0 .

IfQ00(n, I) > Q00(dg, I)
1

1/2+θ , θ 6 λ0(dg)
3/2−θdg
(dg−1) , c2(n) 6 c2(dg)(1/2−θ)

1+λ0(n) ,
then our induction hypothesis is applicable to the set

Bdg,I(Q0,
θ(dg − 1)

(dg + 1)(1− {µ− θ}/dg − θ)
, J),

and we get

µBdg,I(Q0,
θ(dg − 1)

(dg + 1)(1− {µ− θ}/dg − θ)
, J) 6

6 c(dg, I)Q
− θ(dg−1)

1−{µ−θ}/dg−θ

0 |J | = c(dg, I)Q−θ(dg−1)|J | 6

6 c(dg, I)Q−λ(n+1)|J |

when λ0(n) 6 θ
1+n .

So we see that all such J ′ can be covered by a set of measure� Q−λ(n+1)|J |.

Case 4
p2 +

l2
T
< 2− θ, (24)

p2 > 1− θ − c2(n)(1 + λ). (25)

Let P be the set of all good polynomials satisfying (24) and (25). For a
P ∈ P denote

σ(P ) =
{
x ∈ R : |x− α1| < c6Q

−(n+1)(1+λ)+θ+p2

}
, (26)
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σ′(P ) =
{
x ∈ R : |x− α1| < c6Q

−2+θ+p2

}
, (27)

where c6 is the constant implied in (15). We are interested (due to (15)) in
the measure of ∪P∈Pσ(P ).

For a vector v = (an, . . . , a2) ∈ (Z ∩ [−Q,Q])n−1 let P(v) be the set of
all polynomials P ∈ P with the first n − 1 coefficients equal to an, . . . , a2.
We call a polynomial P ∈ P(v) nonessential if there is a P̃ ∈ P(v) such
that µσ′(P )∩σ′(P̃ ) > 1

2 µσ
′(P ) and essential otherwise. Let P1(v) (P2(v))

be the set of all essential (resp. nonessential) polynomials P ∈ P(v); fur-
ther, P1 = ∪v∈(Z∩[−Q,Q])n−1P1(v) and P2 = ∪v∈(Z∩[−Q,Q])n−1P2(v). We will
consider ∪P∈P1σ(P ) and ∪P∈P2σ(P ) separately.

1. Firstly, we consider essential polynomials. For an interval J = [a, b]
we ’stretch’ it to the interval

J ′ = [a− 2c6(b− a), b+ 2c6(b− a)].

From (24) follows p2 6
p2+

l2
T

1+1/(n−1) <
(2−θ)(n−1)

n < 2 − θ − c2(n)(1 +
λ0(n)), hence Q−2+θ+p2 < |J |. Since for good P (x) σ(P ) and therefore
σ′(P ) intersect J, we conclude that σ′(P ) ⊆ J ′. One easily sees that
no point of J ′ belongs to more than two intervals σ′(Pi) for essential
Pi-s. So

ΣP∈P1(v) µσ
′(P ) 6 2|J ′| = 2(4c6 + 1)|J |.

Now

µ∪P∈P1σ(P ) 6 ΣP∈P1 µσ(P ) = Σv∈(Z∩[−Q,Q])n−1ΣP∈P1(v) µσ(P ) =

= Q1−n−λ(n+1)Σv∈(Z∩[−Q,Q])n−1ΣP∈P1(v) µσ
′(P ) 6

6 Q1−n−λ(n+1)(2Q+ 1)n−12(4c6 + 1)|J | � Q−λ(n+1)|J |,

which is exactly what we wanted.

2. For a polynomial P ∈ P2(v) there must be a P̃ ∈ P(v) such that

µσ′(P ) ∩ σ′(P̃ ) >
1
2
µσ′(P ).

From (27) and lemma 2, for any x ∈ σ′(P ) we have

|P (j)(α1)(x− αi)1| � Q1−pj+1+j(−2+θ+p2).

Denoting
fj = 1− pj+1 + j(−2 + θ + p2),

we now show that
max

16j6n
fj = f1.
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For j > 2 we estimate fj − fj−1 = lj
T − 2 + θ+ p2 6 l2

T + p2− 2 + θ < 0
(we used (24)). Therefore

|P (x)| � Q−1+θ.

Similarly from the Taylor’s expansion

P ′(x) = Σn
j=0

1
j!
P (j+1)(α1)(x− α1)j

one gets the estimate for derivative

|P ′(x| � Q1−p2 .

But the same inequalities hold for P̃ on σ′(P̃ ). So for

S(x) = P (x)− P̃ (x) = ax+ b

on σ′(P ) ∩ σ′(P̃ ) we get:{
|S(x)| = |ax+ b| 6 c7Q

−1+θ,
|S′(x)| = |a| 6 c7Q

1−p2 .
(28)

We suppose Q large enough, so that c7Q−1+θ < 1 and thus a 6= 0. We
also suppose c7Q1−p2 > 1 : otherwise we get P2 = ∅.
Denote L = {x ∈ J : (28) has a solution in (a, b) ∈ Z2/ {(0, 0)}}. Then

µL 6 Σ[c7Q1−p2 ]
a=1 d|J |ae2c7Q

−1+θ

a
6 Σ[c7Q1−p2 ]

a=1 (|J |a+ 1)
2c7Q−1+θ

a
�

� Q1−p2 ∗Q−1+θ ∗ |J |+Q−1+θ ∗ (1 + (1− p2) lnQ) �
[for sufficiently large Q]

� Q−p2+θ|J |+Q−1+θ+θ �

[see (25)]
� Q−1+2θ+c2(n)(1+λ)|J |+Q−1+2θ �

� Q−λ(n+1)|J |,
since 2θ + λ(n+ 1) + c2(n)(1 + λ) < 1.

It is obvious that L can be represented as ∪C
i=1|ai, bi|. Now ’stretch’ it

to the set
L′ = ∪C

i=1|ai − (bi − ai), bi + (bi − ai)|.
For each P ∈ P2 we have σ′(P ) ⊆ L′, and

∪P∈P2σ(P ) ⊆ ∪P∈P2σ
′(P ) ⊆ L′,

so
µ∪P∈P2σ(P ) 6 µL′ 6 3µL � Q−λ(n+1)|J |,

which is what we wanted.
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Case 5
p2 +

l2
T
< 2− θ, (29)

p2 6 1− θ − c2(n)(1 + λ). (30)

We first show that in this case α1 ∈ R. Suppose the contrary. Then
P (x) must have a root αi = α1. For x0 � P we have according to

(7): H−
lj
T
−θ 6 |α1 − αi| 6 |α1 − x0| + |αi − x0| = 2|α1 − x0| �

Q−(n+1)(1+λ)+θ+p2 =⇒ [for sufficiently large Q00(n, I)] =⇒ (n+1)(1+
λ)−3θ 6 p2 + lj

T 6 p2 + l2
T 6 2− θ (see (29)), which is a contradiction.

Now note that due to (30)

|α1 − x0| � Q−(n+1)(1+λ)+θ+p2 � Q−n−(n+1)λ−c2(n)(1+λ),

hence
|α1 − x0| 6 |J |.

So we get α1 ∈ J ′, where J ′ is a ’stretched’ interval J :

J ′ = [a− (b− a), b+ (b− a)].

Like in case 4, we define P as the set of all good polynomials satisfying
(29) and (30). For a vector v = (an, . . . , a1) ∈ (Z∩ [−Q,Q])n let P(v)
be the set of all polynomials P ∈ P with the first n coefficients equal
to an, . . . , a1 and define

Pv = anx
n + . . .+ a1x.

We also denote

σ(P ) =
{
x ∈ R : |x− α1| 6 2n−1 |P (x)|

|P ′(α1)|

}
. (31)

Due to lemma 1 weare interested in the measure of ∪P∈Pσ(P ).

We fix v = (an, . . . , a1) ∈ (Z∩[−Q,Q])n and estimate (noting of course
that is P(v) finite)

µ∪P∈P(v)σ(P ) 6 ΣP∈P(v) µσ(P ) 6

6 2nQ−λ(n+1)−nΣP∈P(v) µ
1

|P ′(α1)|
=

= 2nQ−λ(n+1)−nΣP∈P(v) µ
1

|P ′
v(α1)|

.

Now, since we have

|P ′(α1)| > c8Q
1−p2−θ > c8Q

c2(n)(1+λ) > c8|J |−1,
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using arguments similar to those of Proposition 1 in [7], one shows
that

ΣP∈P(v) µ
1

|P ′
v(α1)|

6 |J ′|+ (2n− 2)c−1
8 |J | 6 (3 + (2n− 2)c−1

8 )|J |.

So we get

µ∪P∈Pσ(P ) = µ∪v∈(Z∩[−Q,Q])n(∪P∈P(v)σ(P )) 6

6 Σv∈(Z∩[−Q,Q])n µ∪P∈P(v)σ(P ) 6

6 Σv∈(Z∩[−Q,Q])n2nQ−λ(n+1)−n(3 + (2n− 2)c−1
8 )|J | 6

6 (2Q+ 1)n2n(3 + (2n− 2)c−1
8 )Q−λ(n+1)−n|J | �

� Q−λ(n+1)|J |,

and that finishes the proof.
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