Proceedings of the Steklov Institute of Mathematics, Vol. 218, 1997, pp. 53-68.

Translated from Trudy Matematicheskogo Instituta imeni V. A. Steklova, Vol. 218, 1997, pp. 58-73.
Original Russian Text Copyright © 1997 by Bernik, Borbat.

English Translation Copyright © by MAUK Hayxa/Interperiodica Publishing (Russia).

Simultaneous Approximation of Zero

by Values of Integral Polynomials
V.I. Bernik and V.N. Borbat

Received February, 1997

The direction of studies formulated in the title was indicated by the works of Sprindzhuk [6, 7]
in which he posed the basic problem of this direction, solved particular cases of the problem, and
pointed out some applications. The conjectures by V.G. Sprindzhuk were proved in 1980 [3].
Later various generalizations and applications were obtained [4, 9], but the method itself does not
allow one in principle to pass from a power function on the right-hand side of the inequality to
a logarithmic one; this does not allow one in principle to obtain many refined characteristics of
classical sets appearing in the theory of transcendental numbers.

In this paper, we obtain a two-dimensional analog of the theorem in [3]; this analog can be
considered as a proof of a two-dimensional generalization of the conjecture by Baker [8], which was
proved in [1].

Suppose that P(z) = a,z" +a, 12" "' +---+ a1z +ap is a polynomial with integer coefficients,
H = H(P) = maxg<i<p |a;| is the height of P(z), the function ¥(z) monotonically decreases for
z>0,and Y 5 ¥(H) < 00.

Theorem. The system of inequalities
{ [P(w1)] < H™1 0" (H) M

|P(ws)| < HT*2W"(H),

where wy +wg = n—2, v1+ve = 1, has only a finite number of solutions in polynomials P(x) € Z[z]
for almost all (wy,wy) € R2.

We introduce some notation and give several lemmas, which are necessary for further arguments.
Denote by c¢(n) positive functions depending only on n. We shall realize operations over ¢(n) by
the formal rules

c(n) + c(n) = c(n), c(n)e(n) = e(n),

the sense of these rules consists in the fact that the sum and the product are again a certain function
depending on n. Since in the theorem one speaks on the finiteness or infiniteness of the number of
solutions to the system of inequalities (1), we shall assume that H > H, where Hy is a sufficiently
large positive integer. Further, we shall assume that w; and we both are transcendental numbers
since the measure of (w1, ws) € R? for which at least one of the numbers w; and wy is algebraic is
equal to zero.
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54 BERNIK, BORBAT

Lemma 1. Let Pi(x),...,P(z) € Rix| be polynomials and let P(z) = Pi(z)P2(x)--- Pi(x).
Then
(W) H(PH(E,) - H(Py) < H(P) < cx(n) H(P)H(P,) -+ H(R).

Lemma 1 is proved, for example, in [7].

Lemma 2. Let G C R? be some bounded domain and let B C G be a measurable set in the
plane, uB > c1(n)uG, where uB and pG are the Lebesque measures of the sets B and G in R?.
Let further the inequality

|P(w1)P(we)| < H™

with deg P(x) < n hold for (wi,ws) € B. Then the inequality
|P(n) P(wn)] < ea(n)H®

holds for all (w1,w2) € G.

Lemma 2 is an analog of Lemma 10 in [2] and is proved with the help of the Lagrange interpo-
lation formula.

Denote by P, (H) the class of irreducible polynomials with the condition a,(P) = H. Suppose
that P, = Uy, Po(H). Let P(z) € P,(H) and let s, s, ..., 35, be roots of this polynomial. We
shall assume that the roots s, 19, . .., 57, are ordered in such a way that Re sc; <Re s <--- <Re s,.
In the case of the equality Re s = Re 3¢, we shall previously write the root whose modulus of the
imaginary part is less than that of the other ones, and in the case where the moduli of the imaginary
parts are equal, we put previously the root whose imaginary part is positive. Choose any two roots
211 and 301. We order all other roots with respect to each of these roots in the following way:

|2e11 — st12] < se11 — s3] < -0 < oenn — s, |2621 — st90] < |3001 — 2003 < -+ <221 — 210
Introduce the following notation:
|%11—%1i|:H_Mi, 1=2,...,n, |%21—%25|:H_®S, s=2,...,n.

Fix e. Set ¢; = ed™!, where d = d(n) is a sufficiently large value. Set T' = [¢; ']. Define integers I;
and s; by the inequalities

li—1 l; . S — S;
lT Sﬂi<%7 ZZ27"'7”7 - S®i<%a 2227 y 1
We shall assign an integral vector 512 =35 = (l2,...,lp,s2,...,5y) to a fixed pair of roots (511, 1)

of the polynomial P(z). All polynomials P(z) € P,(H) having one and the same vector s are
joined into the class P,(H,s). Let

i+t S+t sa
bi = T y  di = T )

S(%H) = {w1 € R: min |UJ1 — %l| = |(,<}1 — %11|},
1<i<n

S(J{Ql) = {(.UQ € R: min |UJ2 — %5| = |UJ2 — %21|}.
1<s<n
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SIMULTANEOUS APPROXIMATION OF ZERO BY VALUES OF INTEGRAL POLYNOMIALS 55

Lemma 3. The inequality
|P(wr) Plwn)| < H "7 (2)

has only a finite number of solutions in reducible integral polynomials of degree not exceeding n for
any 0 > 0 and almost all (wy,ws) € R2.

Proof. We shall consider w; € S(sr11) and we € S(3r21). Denote by S(n) the set of (wy,ws)
for which inequality (2) holds infinitely many times. Let M (H) be the set of polynomials P(z)
satisfying the condition H(P) = H. Set M; = Uyt pyeores M(H), M = J My, t > c(n)In Hy(0).
If inequality (2) for P(z) € M; holds for all (w1, ws) in a certain domain S(P), then by Lemma 1,
there exists a polynomial P (z) which divides P(x) and which satisfies the inequality

|Py(w1)Py(wo)| < c(n)H(P) ™27°  degP <n-—1, (3)

on the set S1(P), uS1(P) > c¢(n)puS(P). By Lemma 2, inequality (3) holds for all (w;,ws) € S(P),
maybe with another value of ¢(n). Consider three cases appeared.

1. If H(P) > 2t/C0+)n)  then using the metric theorem in [3], we obtain that the set
S = Upem S(P) can be covered by a system of domains whose total measure does not exceed an

arbitrary given positive number.
2. If H(P)) < 2te/Qn+1n?) anq

|Pr(wn) Pr(w2)| < 275" (4)
on the set Bi(P), uBi(P) > c¢(n)uS(P), then again applying Lemma 2, we obtain that
| PL(w1) Py (w2)] < c(n)27 /"

for (w1, ws) € S(P). Further, we have S(P) < ¢(n)2~*/™. Since the number of polynomials P (x)

with the condition H(P;) < 2t/ +1)n*) qoes not exceed c(n)2!/2"*) | we have

> | < c(n)2t=/n"),
P(z),H(P)<2ts/(2(n+1)n?)

Since the series ), 27 converges for A\ > 0, we use the Borel-Cantelli lemma in order to complete
the proof.

3. Assume that inequality (4) does not hold on the set Bi(P) with the condition puB;(P) >
¢(n)uS(P). Then the inequality |P;(w;)Pi(w2)| > 27%/™ holds on the set Bo(P) = S(P) \ By(P),
uB2(P) > ¢(n)uS(P). Set Py(x) = P(x)/Pi(z). Using Lemmas 1 and 2, we obtain from inequal-
ity (2) that

|P2(w1)P2(w2)| < c(n)HfrH»?féfs/n, c(n)2t(175)/(2(n+1)n2) < H(Pg) < ot+1

Again, we apply the metric theorem in [3].
Lemma 4. We can consider only polynomials P(z) € P, in the system of inequalities (1).

The passing to polynomials whose leading coefficient is equal to the height is realized in the
same way as in [3]. The passing to irreducible polynomials is realized by application of Lemma 3.
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56 BERNIK, BORBAT
Lemma 5. The number of the classes P, (H,3) is finite and depends only on n and ¢.

Lemma 5 is proved in [3].

Lemma 6. Let P(z) € P,(H) and let w € S(st11). Then

|1P(w)
w—oqq| <2"——— 5
| 1| < | P! (5e11)| (5)
o 1P@) Vi
_ < _ — )
@ = 2| < QISnjlgn (2 | P! (3211)| e = szl e = 2 (6)

Lemma 6 is proved in [3].

Lemma 7. Let P(z) € P,(H,35). Then
PO Geyy)| < e(m)H - PHODa - p =1 -1

Lemma 7 is proved in [3].

Lemma 8. Let 0 > 0 be a certain real number and let n > 2 be a positive integer. Let P(x) and
Q(z) be integral relatively prime polynomials of degree at most n and let max(H(P),H(Q)) < H.
If for all (wy,ws) in a certain rectangle K = Iy X Is, |Ii| = H ™, m1 > 0, |I] = H ", ne > 0, the
inequalities

max (|P(w1), Q(w1)]) < H™™, max (|P(w2), Q(w2)|) < H™™

hold, then
71+ 72 + 2+ 2(max(ry + 1 —m,0) + max(rz + 1 —1,0)) < 2n+0.

Lemma 8 is proved in [5].

Lemma 9. Let B(0,wq,ws,v1,v2) be the set of real vectors @ = (w1, ws) for which the system
of inequalities (1) has an infinite number of solutions in polynomials P(x) € P, with the condition
|2¢;—3¢j| > 0 for any i and j and an arbitrary but fized 6 > 0. Then we have puB(d, wi,ws,v1,v2) =0
for any 6 > 0.

The proof of Lemma 9 is slightly different from that of Lemma 10 in [3].

Lemma 10. Let Bo(wq,ws,v1,v9) be the set of W for which the system of inequalities (1) has
an infinite number of solutions in polynomials P(x) € Py. Then puB(0,wy,ws,v1,v2) = 0.

Lemma 10 is proved analogously to Lemma 11 in [3]. As in [3], it is proved that any set of @
for which the system of inequalities (1) holds infinitely many times in polynomials P(z) € P,, with
condition |s1(P) — 321 (P)| < § for any > 0 has zero measure. Therefore, in what follows, we
can assume that |s11(P) — 321 (P)| > 6 for a certain arbitrary but fixed § > 0.

Denote by L(wi,ws,v1,v2) the set of (w1, ws) for which the system of inequalities (1) has an
infinite number of solutions in polynomials P(z) € Z[x].

We divide the proof of the theorem into nine cases.
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SIMULTANEOUS APPROXIMATION OF ZERO BY VALUES OF INTEGRAL POLYNOMIALS 57

Proposition 1. If

LT ' +p <wy+op+1, (7)
soT 4 q1 <wo4vy +1, (8)

n—1+4ne; < lgT_1 +p1 + SQT_1 + q1,

then puL(wi,ws,v1,v2) = 0.

Proof. We use the inequality U(H) < H ! which can easily be obtained. Then system (1)
takes the form

|P(wy)| < H™W1—%

{ )

|P(ws)| < H-w2=v2,

Define P,(5) = U2t<H<2t+1 P,(H,3). Since a,, = H and the inequality |s5| < 1+ H/|a,| is known,
we have |s;| < 2. Then it follows from inequality (2) for j = n that all (wy,ws) € R? for which
the system of inequalities (9) holds are in the interior of the square [—3;3] x [—3;3]. Divide
this square into equal rectangles K with sides H ™ and H ", gy = wy +v1 +1 — p1 — £1/2,
Ny = wy + vy + 1 — g1 —e1/2. We shall say that the polynomial P(z) belongs to the rectangle K
if there exists (w1,w2) € K such that |P(wy)| < H """, |P(we)| < H "27"2. Assume that at
most one polynomial P(x) € P;(5) belongs to each rectangle K. Then we obtain from relation (5)
that the measure of the set of w; € S(3r11) for which the first inequality of system (9) holds does
not exceed ¢(n)2~Hwitvi+1-p1) “and the measure of the set of wy € S(361) for which the second

inequality of system (9) holds does not exceed ¢(n)2~Hw2+v2+1-a1)  Therefore, the measure of the
set of (wy,wa), w1 € S(s111), wa € S(s21) for which the system of inequalities (9) holds does not

exceed ¢(n)2-HUn+1-P1=01) " The number of polynomials does not exceed the number of rectangles
K. Hence the measure of the set of (w;,ws) for which the system of inequalities (9) holds for at
least one polynomial P(z) € P.(5) is estimated from above by

C(n)Q—t(—n—l-i-pl Tatwitoitl-pi—e1/24watvatl—qi—e1/2) c(n)27 1,

Since the series Y ;°; 27! converges, the proof of the theorem in this case follows from the Borel-
Cantelli lemma.

Assume now that there exist rectangles K such that they contain two or more polynomials
P(z) € P.(3). Let P(z),Q(z) € K; then there exist points (w11, ws1) and (w12, ws2) belonging to
K such that

max(|P(w11)|, |Q(w12)|) < H W7o max(|P(w21), |Q(w22)|) < H W22, (10)

Suppose that 3c11(P), 391 (P), 511(Q), and 301 (Q) are the nearest to wii, war, wie, and way roots
of the polynomials P(z) and Q(xz), respectively. We obtain from relations (6) and (10) that

maX(|w11 — 11(P)], |wiz — %II(Q)D < e(n)H w14
max (|wa1 — 521 (P)|, jwaz — 301 (Q)]) < c(n)H w2~ 1Ha,
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58 BERNIK, BORBAT

Therefore,
e (P) = 51 (Q)] < 11 (P) — win| + wn1 — wia] + |wi2 — 51 (Q)]
< e(n)(H™Wr—01= P L M) < o(n) H™M, (11)
5021 (P) = 301(Q)] < 3021 (P) — war| + lwa1 — waa| + w2z — 301 (Q)]
< cln) (H 272140 4 H ) < o(n)H ™, (12)

Let us estimate the difference |s¢11 (P) —1,(Q)|, ¢ = 2,...,n, taking into account that inequality (7)
implies [,7~' — ¢ < 1. We have

|511(P) — 504(Q)| < [3e11(P) — 2e11(Q)] + 2611 (Q) — 2a1:(Q)]

c(n)(H™™M + HWT7 ey <oy gt =

[ bi1(P) = 14(@Q)] < ey, (13)

Analogously, taking into account that inequality (8) implies s;7~! — €] < 12, we obtain
321 (P) — 50i(Q)| < e(n)H=*T "+t =2 . . (14)

We have from relations (12) and (14) that

n

_H1 |21 (P) = 52:(Q)| < e(n)H -+ (n=en, (15)
Similarly, we estimate
f[l |212(P) = 20i(Q)] < ¢(n) f[l(lm(P) —sm1(P)| + a1 (P) = 5e11(Q)| + [511(Q) — 51i(Q)])
7 < c(n)H BT~ —priner (16)
f[ |5022(P) — 524(Q)] < e(m)H 2T ~nne, (17)

Since the polynomials P(x) and Q(x) are from P,(s), they have no common roots and the modulus
of their resultant is |[R(P, Q)| > 1. We have from relations (13), (15)—(17) that

L<IR(PQ) <e(m2*™ [ Pa(P) - (Q)l

1<i,j<n

< C(n)2t(2nfﬂ1*7727211172!11fl2T—1,szT—1+(4n72)51) < C(n)27t51‘

The obtained inequality for large ¢ leads one to a contradiction, and this indicates that the rectangles
K to which at most one polynomial belongs do not exist.
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SIMULTANEOUS APPROXIMATION OF ZERO BY VALUES OF INTEGRAL POLYNOMIALS 59

Proposition 2. If inequalities (7) and (8) hold and if
3= 5 SLT ' +pi+5T ™ +q<n—1+dne, (18)

then
ML(WI, w2, 01, /1)2) =0.

Proof. Again, we pass from the system of inequalities (1) to the system of inequalities (9). We
set
k=n+1-0LT""—p —sT ' —q. (19)

Assume that
{k} >e. (20)

Then we obtain from relations (18)—(20) that n — [k] > 3. Taking into account relations (8), (9),
and (18), we can assume that at least one of the following two inequalities holds:

LT 4+ p <wy 4014+ 1—2(n+1)e, (21)

9T 'y <wg +ve+1— 2(n +1)e;. (22)

Divide the square [—3, 3] x [—3, 3] into equal rectangles with sides H~?! and H~?2. If inequality (21)
holds, and this is not the case for inequality (22), then we set oy = [T ' +2(n +1)ey, 09 = 59T 1;
otherwise we set o1 = IoT~!, 09 = 55T~ + 2(n + 1)e1. If both inequalities (21) and (22) hold,
then we set o1 = [oT ' + (n + 1)e1, 02 = 597 ' 4+ (n + 1)e;. For example, suppose that both
inequalities (21) and (22) hold. Other cases are considered analogously. Denote by N(K) the
number of polynomials belonging to K. If N(K) < ¢(n)H”, v = k — 1 — 0, 1¢, then the total
measure of the set of (wi,ws) € [—3,3] x [-3, 3] for which the system of inequalities (9) holds for
at least one P(x) € P,(H,3) is estimated from above by

c(n)H—wl—vl—l-l—pl—wz—vg—1+q1+l2T*1+52T*1+(2n+2)51+k—1—0.15 < C(n)H—1—0.15+(2n+2)51

< c(n)H™17#,

Since the series > %, H 17°! converges, in order to complete the proof of Proposition 2 in this
case, it is sufficient to apply the Borel-Cantelli lemma.

It remains to assume that there exist rectangles K such that N(K) > ¢(n)H -1 H{k}-01c We
fix one of such rectangles K and enumerate Pj(z), ..., Py, (x) belonging to K. Two such polynomials

Pi(z) = Ha" +a{) a" 4 + oo + aff),
. _ _ 1<i<j<m,
P](I) = H:L-n_i_aq(l]zlxn—l +"'+agj)$+aéj),

are united in one class if
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60 BERNIK, BORBAT

Let us apply the Dirichlet box principle. Since the number of different classes does not exceed

c(n)H¥=1 among ¢(n)HY polynomials, there are at least ¢(n)H{¥}=0-1¢ polynomials belonging to

one and the same class. We enumerate these polynomials Py(z),..., P(z), | = H¥}1-01 and form

new polynomials

tl(x) :Pl((L‘)—P()((L‘), ey tl(x) :PZ(IL‘)—PO(:E).

All polynomials t;(x) are different from each other, have the degree at most n — [k] and height
not more than 2H. Expand any polynomial P(z) belonging to K into the Taylor series in the
neighborhood of the root 11 (P):

P(wy) = P'(5e11) (w1 — 2a11) + %P"(%H)(wl —s)i 4+ %PW(%H)(W1 — )" (23)

Since P(z) € K, there exists a point (wp1,wp2) € K such that |P(wp1)| < H """ and |P(we2)| <
H~"27"2. We obtain from inequality (5)

lwor — 2e11] < c(n)Hﬂ‘”*”l*le.
If (w1, we) € K, then |w; — wp1| < H ?'. Hence we have
|wi — se11| < e(n)HRT =t Der (24)
Using Lemma 7 and inequality (24), we obtain
P! (e )(wi = 2en1)| < e(m)H' P2

|PD (e11) (w1 — sa11)'] < e(n) HI Pt (n=de il =it e

25
<ec(n)H P RTT 20 g 29)
[P (511 (wi — s011)"] < e(n) BT nt e < o) giopr=bT™ =20,
It follows from relations (23) and (25) that
|P(w1)] < c(n)H'~Pr=lT =261, (26)

Expanding the polynomial P(z), which belongs to K, into the Taylor series in a neighborhood
of the root se1(P), we obtain in a similar way that

|P(ws)| < c(n)H'~a=s2T =261 (27)

Since inequalities (26) and (27) hold for any P(z) € P,(H,3) belonging to K, for any polynomial
ti(x), 1 <i <, the following inequalities hold:

Iti(w1)| < e(n)H'Pr—bT™ ~2e1 Iti(ws)| < e(n)H' 05T 261 (28)

Consider the following three possibilities that appear:
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SIMULTANEOUS APPROXIMATION OF ZERO BY VALUES OF INTEGRAL POLYNOMIALS 61

(a) All ¢;(z) = a;t(x), a; € Z. Then there is a polynomial R(z) among all polynomials ¢;(z)
whose height does not exceed c(n)H'~ k11012 We obtain from relations (28) that

IR(w1)| < c(n)H(R)1-P1 LT —2e1)/(1-{k}+0.1¢)
|R(ws)| < c(n)H(R)1-a1— 5277 =260/ (1 {k}+0.1¢)
Since, under condition (20), we have

p1+ LTV g+ 50T —244eg .
1 —{k}+0.1¢

n_[k]_la

in this case, in order to complete the proof, it is sufficient to apply the metric theorem in [3].
(b) There are reducible polynomials among ¢;(z). We apply here Lemma 3 since

pr+LT g+ 5T 1 —244e; >n—[k] - 2.

(c) There are at least two polynomials among the polynomials ¢;(z) which have no common
roots. Then we apply Lemma 8. Here, under condition (20), we have

m=pi4+bT ' —14+2, m=q +sT ' —1+2,
n = l2T_1 + (TL + 1)61, N2 = 821—'_1 + (TL + 1)51.
We obtain
pL+qr— (4n —8)ey < =2+ 2{k} + 1,T™ ' 4 5,77 + 6. (29)

Since p; > LT~ and q; > soT 7!, for § < 2 — 2{k} — (4n — 8)ey, inequality (29) leads one to a
contradiction. The case 0 < {k} < e requires some modifications, which are connected with the
choice of the parameters. It is clear that under the validity of relations (7), (8), and (18), at least
one of the inequalities

LT ' 4 p <w +v; +0.2, s9T ™+ q1 < wy 4 vy +0.2. (30)

holds. For example, suppose that the first of inequalities (30) holds, then we set 6; = Io7 ! 4 0.8,

8y = 597!, v =k — 1.8 — £; and realize similar arguments.

Proposition 3. If relations (7) and (8) hold and if

(9
e<bT  4+pr+sT  +q <3— 5 (31)

then puL(wi,ws,v1,v2) = 0.

Proof. Let us unite the polynomials P(z) = Hz" + a, 12"~ ! + --- + a1z + ao from the set
P,(H,3) into one class P,(H,3,a) if they have one and the same vector @ = (ay_1,...,a3). Let
o1(P) be the set of real numbers w; satisfying the inequality

w1 — 51| < 2"H 0" (H)|P' (5e11)|
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62 BERNIK, BORBAT
o2(P) be the set of real numbers wy satisfying the inequality
|wp — 1| < 2"H U (H)|P' (5e1)| ',
71(P) be the set of real numbers w; satisfying the inequality
|lwi — se11| < 2VH P! (5e11)| 7,
72(P) be the set of real numbers ws satisfying the inequality
|wy — 21| < 2VH | P! (5691)| 7",

where a1 and a9 are chosen in the following way:

15} 15}
LT ' 4p < 1—|—a1—€1, soT ' 4qy < 1+a2—€1, atas =1, ap <wi+v, o < wytuvs.

Clearly, o1(P) C 71(P) and o3(P) C 15(P). We obtain from relation (5) that all w; € S(5¢11) and
wo € S(se11) satisfying the inequalities

Plw)| < H" W™ (H),  [Plws)| < H"U™(H),  |[Plw)| < H™,  |P(w)] < H™

belong to the sets o1(P), o2(P), 71 (P), and 12(P), respectively. Let (w1,ws) € 71 (P) X 72(P). Then
we have
|P'(%11)(w1 - %11)| < 2“H7a1,

‘_ %11 UJI . %Il)i < C(n)Hl—pi-l—(n—i)al—ial—i-i-ipl

< c(n)H ™, i=2,...,n—1,

‘— (se11) (w1 — 2e11)"| < e(n)HY =m0 < o(n)H 1,
Using expansion (23) of the polynomial P(x), for w; € 71(P), we obtain from inequalities (32)
|P(wr)| < H™ .
Analogously, for wy € m»(P), we obtain
|P(we)| < H™ 2.

The domain A(P) = 71 (P) x 7o(P) is called nonessential if there is a polynomial @(z) in the class
P(H,3s,a) such that

u(AP)NAQ) > SuA(P).

Otherwise, the domain A(P) is called essential.
If the domain A(P) is essential, then each point (w;,ws) € [—3, 3] x [-3, 3] belongs to not more
than four essential domains, and therefore,

Z pA(P) < const.
P(z)€Pn(H 5,a)
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SIMULTANEOUS APPROXIMATION OF ZERO BY VALUES OF INTEGRAL POLYNOMIALS 63
We obtain from the inequality p(o1(P) X 02(P)) < pAH""3¥(H) that
> u(o1(P) x 02(P)) < c(n)H "U(H).
P(z)eP,(H,5,a)

Since the series Y 77, W(H) converges, by the Borel-Cantelli lemma, the set of (wi,w2) which
occur in an infinite number of essential domains A(P) has zero measure.
If the domain A(P) is nonessential, then

1 1
MP)NR@I 2 5P (P NR@)] 2 5P
and on the intervals J; = 71 (P)N71(Q) and Jo = 72(P)N712(Q), the polynomial R(z) = P(z) —Q(x)
satisfies the conditions
|R(w1)| < e(n)H™*, |R(w2)| < H™2, deg R(z) < 2. (33)

If |5¢1(R) — s22(R)| > 0, where ¢ is an arbitrary, but fixed number, then the height of the polynomial
R(x) satisfies the inequalities

H(R) < c(n)|P'(sen1)l,  H(R) < c(n)|P'(321)]. (34)
We obtain from relations (31), (33), and (34) that for (wy,ws) € J; X Ja,
|R(w1)R(ws)| < e(n)H Y172 < c(n)H ¢,

Further, using Lemma 2 and the metric theorem in [3], we conclude that the set of (wi,ws)
which belong to an infinite number of nonessential domains A(P) has zero measure. In the case
|221(R) — s2(R)| < 0, we argue similarly as we did when proving Lemma 10.

Proposition 4. If relations (7) and (8) hold and if
LT ' +pi+sT ' +q <e,
then puL(wi,ws,v1,v2) = 0.

Proof. We unite polynomials P(x) = Hz" + a, 12"~ ' 4+ --- + a1z + ag from the set P,(H,3)
into one class P,(H,3, () if they have one and the same vector 5 = (an_1,...,az). Define oy (P),
o2(P) as in Proposition 3, while 71 (P) and 79(P) are defined as the sets of real numbers w; and wo
satisfying the inequalities

|UJ1 — %11| < 277171(” + 1)71|P,(%11)|71,

and
|wp = 3e1| < 27" (n + 1) 7P (3e) |

respectively. Using the Taylor series expansion (23) of the polynomial P(z) and the inequality
|P%)(w)| < i!'3"(n + 1)H for w; € [~3,3], we obtain
P! (5e11) (w1 — 2e11)| < 27" H(n + 1) 7,
%|P(i)(%11)(w1 — 1) <3"(n+ 1)H x 271 D (n 4 1) 7% 5 {H
<(n+1)"t27 L i=2,...,n,
|P(wy)| <271,
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Similarly, for wy € [—3, 3], we obtain
|P(wy)| < 2771
If the domain A(P) is essential, then we obtain
Yo pw(er(P)x0a(P) <ce(n)> > pAP)H "TPU(H) < c(n)T(H)
P(z)ePy(H,3) B P(z)eP.(H5,B)

since

#(o1(P),02(P)) < c(m)pA(PYH "2 U (H),
Then we apply the Borel-Cantelli lemma. If the domain A(P) is nonessential, then we have
[R(wi)] <27",  [R(w)| <27",  degR(z) <1 (35)

for the polynomial R(z) = P(z)—Q(z). Hence, the distance from (w1, ws) for which inequalities (35)
hold and the line w; = wy does not exceed a given positive number. In order to complete the proof,
we apply Lemma 2.

Proposition 5. If

LT Y4 p >w 4o +1, (36)
9T ' 4+ q1 < wy + vy — 1 + 2ney, (37)
9T Vb >2—wy —vy — (n —1)eq,
then puL(wi,wa,v1,v2) = 0.
Proof. We pass from the system of inequalities (1) to the system of inequalities (9). We set
E=wy+vy+1—s5T 1 —gq.

If {k} > ¢, then we set 0y = wy +v1 +1—py, 02 = 59T}, and v = k — 1 —0.1¢; then we proceed as
in the proof of Proposition 2. If 0 < {k} < ¢, then we set oy = wy +v1 +1 —p1, 02 = s2T 1 +0.8,
v =k — 1.8 — ¢ and proceed just as in the proof of Proposition 2.

Proposition 6. If relations (36) and (37) hold and if
e<soT P g <2—w —v — (n—1)ey,

then puL(wy,wy,v1,v9) = 0.

Proof. We unite the polynomials P(z) € P,(H,3) into one class P, (H,3,a) if they have equal

coefficients of the powers 2z 1,... 23. Define the domains oy (P) and o2(P) as in Proposition 3.

Let 71(P) = 01(P) and let 72(P) be the set of real wo satisfying the inequality
|wo — 51| < 2"H 1N (H) [P (5001)]

Further, we proceed as in the proof of Proposition 3.
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Proposition 7. If relations (36) and (37) hold and if
821—'_1 +q1 <eg,

then puL(wi,ws,v1,v2) = 0.

Proof. We unite the polynomials P(z) from the set P,(H,3) into one class P,(H,3, ) if they

have one and the same vector 8 = (a,,_1,...,az). Define o1(P), o2(P), and 7,(P) as in Proposition
6. Let 72(P) be the set of real wy satisfying the inequality

jwa = se1| < 27"+ 1)TTH TV (H) | P (5e) |7

Then we proceed as in the proof of Proposition 4.

Proposition 8. If inequality (36) holds and if
SQT_1 +q1 > ws +v2+ 1, (38)

then pL(wy,wy,v1,v9) = 0.

Proof. We pass from the system of inequalities (1) to the system of inequalities (9). We can
obtain from inequalities (36) and (38) that

wy+vr+1—py—1/T

LT !> 5 , (39)
1—q—1/T
T~ > W22t 5 a2 = YT (40)

Let us show that there exist two integers m and r (2 < m <n —1, 2 <r <n — 1) for which the
following system of inequalities holds:

lﬂ’wl—i-’vl-i—l—pm—l/T > lm+1

41
T m - T (41)
Sp wy+vy+1—qg —1/T _ sp41

— > . 42
T T - T (42)

The left-hand side of inequality (41) follows from inequality (39) for m = 2. If

w1+v1+1—p2—1/T l3
2 A

then inequality (41) holds for m = 2. If

l_3>w1+v1+1—p2—1/T
T 2 ’

then, taking into account the fact that py = I3~ + p3, we arrive at the inequality

1
3[3T_1>’w1+1)1+1—p3—?
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and therefore,

Ils  wi+vi+1—p3—1/T
— > .
3
If now
’w1+’01+1—p3—1/T l4
3 - T

then we obtain that inequality (41) holds for m = 3. Otherwise, we pass to the inequality

l_4>’w1+’01+1—p4—1/T
T 4

and so on. Clearly, we arrive at m for which relation (41) holds, since |2c11 — s21| > ¢ and therefore,
for a certain m < n — 1 we have I,T ! < 2/T, ps_1 < 2(s — 2)/T for s > m. Similarly, we can
prove the existence of r for which inequality (42) holds. Assume that

|2¢11 (P) — 2011 (Q)] < (ot l=pn—1/T)/m (43)

|5091(P) — 321 (Q)] < H~(watvatloarUT/r, (44)
where P(z), Q(z) € P,(5). Then it follows from the inequalities

G

l wy+v1+1—py —1/T
T2 >

Z"'Zﬂ
T m

N|&

and from inequality (43) that

|21 (P) — 5(Q)] < [3613(P) — 311 (P)| + |5013(Q) — 2211 (Q)
< se1i(P) — 2e11(P)| + |21 (Q) — 2011 (Q)] + [3011(P) — 2011 (Q)]
< 3H—(w1+v1+1—pm—1/T)/m (45)

for any 7,7, 2 <i <m, 2 < j < m. Therefore we obtain from relation (45) that

[T baslP) - 5(Q < e r=mies o iopn i/, (6)

1<i,j<m
For i <m and j > m it follows from relation (41) that
|514(P) = 5215(Q)] < [31i(P) = 511 (P) |+ [3611 (P) = 511 (Q) | + 511 (Q) = 201 (Q)] < e(m)H™4/T. (47)
Also, we obtain the following inequality for ¢ > m, j < m, which is analogous to inequality (47):
pai(P) = 5a5(Q)] < e(n)H /T (48)

It follows from relations (47) and (48) that

[T 12iP) = 5a(Q) < c(n)H 2" (49)

max(,7)>m
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If now we use the inequalities

s >w2—|—v2+1—qr—1/T

> >...> 2"
- - - T r

S2 S3
T T

and inequalities (42) and (44), then we obtain the following results which are analogous to inequal-
ities (46) and (49):

H |52i (P) = 56( Q)| < c(n)H "(w2tvatlzar—1/T), H |302i(P) = 522(Q)| < ¢(n)H 2.

1<i,5<m max(i,j)>m

(50)
The polynomials P(x) and Q(z) belonging to P;(s) have no common roots, and thus, |R(P, Q)| > 1.
We have from inequalities (46), (49), and (50) that

1< |R(P, Q)| < c(n)2t(2n—m(w1+v1+1—pm—1/T)—2mpm)2t(—r(w2+v2+1—qr—1/T)—2rqr)

< C(n)Qt(Qn—m(wl+v1+1—1/T))2t(—r(w2+v2+1—1/T)) < c(n)2—t(2—(m+r)/T). (51)

For large ¢, inequality (51) is contradictory. Therefore there are no roots 311 (Q) and 591 (Q) of any
other polynomial Q(z) € P;(5) in the rectangle

. —(wi+v14+1—pm—1/T)/m . —(wa2+ve+1—g,—1/T)/r
|UJ1 %11(P)| < H R |UJ2 %21(P)| < H .
This means that the number of polynomials P(z) € P.(3) does not exceed

¢(n) 20 Wi FVLHL=pm =1/ T)/m+(watva-+1=g- =1/ T)/r), (52)

It follows from relation (5) that the measure of the set of (wy,ws), w1 € S(3611), wo € S(3r91) for
which the system of inequalities (9) holds does not exceed

C(n)Q—t((wl Fo1+1=pm)/m+(w2+va+1—¢r)/r) (53)

We conclude from expressions (52) and (53) that the measure of the set of (wy,ws) for which the
system of inequalities (9) holds for at least one polynomial P(z) € P;(5) does not exceed

c(n)2—t(1/(mT)+1/(rT)) < C(n)2—2t/(Tn). (54)

Since the series Y ;2 27t converges for any A > 0, Proposition 8 follows from inequality (54) and
the Borel-Cantelli lemma.

Proposition 9. If inequalities (36) hold and if
wo +vo — 14 2ne; < 32T’1+q1 <we+wvy+ 1,

then pL(wy,wq,v1,v9) = 0.

Proof. Again, we pass to the system of inequalities (9). Divide the square [—3, 3] x [—3, 3] into
equal rectangles K with sides H ", H " 1y = (w1 +v1+1=pp—1/T)/m, ny = wa+ve+1—q1 —
£1/2, where m is chosen in such a way that inequality (41) holds. Suppose that not more than one
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polynomial P(z) € P;(5) belongs to each rectangle K. Then the measure of the set of (w;,ws2),
wy € S(2211), wa € S(5e21) for which the system of inequalities (9) holds for at least one polynomial
P(z) € P,(3) is estimated from above by

C(n)Qt(—(wl Fvi+1l=—pm)/m—wr—ve—14+q1 +(wi1+v1+1—pm—1/T)/m+w2+vi—qi1—c1/2) < C(n)Q—t(l/(mT)-i-al /2) )

Since the series )2, 91/ (mT)+e1/2) converges, we apply the Borel-Cantelli lemma in order to
complete the proof. Assume now that there exist rectangles K such that they contain two or more
polynomials P(z) € P;(s). Let P(x) and Q(z) belong to K. Since P(x),Q(x) € P;(s), they have
no common roots. Then, using inequalities (15), (17), (46), and (49), we obtain

1< |R(P, Q)| < c(n)2t(2nfm(w1+v1+17pm71/T)72mpm)2t(777272q1752T_1+(2n71)51)

< c(n)2t(2n—2w1—2111—2—2/T—wz—s2T—1_q1+(2n—0.5)51—v2) < c(n)2_2t/T‘

This inequality is contradictory for large ¢. Consequently, there are no rectangles K to which more
than one polynomial belong.
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