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Abstract: We find a connection between the distribution of rational points close to a smooth 
manifold and the lower bound for the Hausdorff dimension. We get also the new bound. 
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Introduction 
The method of trigonometric sums allows to get the asymptotic formulas for count­
ing the number of rational points close to a smooth manifold only up to the certain 
level of closeness. We show how rational points are distributed outside this level 
by Khinchine's Transference Principle and by the construction of a regular system 
according to A.Baker and W.M.Schmidt [1]. 

Let a = (a\,... , a*) be a point in Rk and let || y \\ be the distance from y € JR 
to the nearest integer. We consider the system of inequalities 

m a x ( | | a i g | | , . . . , | | a ^ | | ) < ^ (1) 

where q £ N, v is a real fixed number, v > 0. Let v(a) be the least upper bound of 
those v > 0 for which the system of inequalities (1) has infinitely many solutions in 
integers q > 0. In this case, Dirichlet's "pigeonhole principle" gives the inequality 
v(a) > k~l. 

Now we replace the point a in (1) by the point belonging to the manifold M = 
(xu... , x m , / i , . . . , / n ) C .Rm+n where 1 < n < m, fj = fj(x) = fj(xu... , x m ) 
(1 < J < n ) are real three times continuously differentiable functions defined on the 
domain I c i m . Then the system of inequalities (1) can be written in the form 

max (Wxiq\l\\fj(x)qW)<q~\ (2) 

It is clear that the system (2) has infinitely many solutions in integers q > 0 for 
all x £ X if v < (m + n ) " 1 . In 1972, V.Sprindzuk [2 ,pp. 82-92, 95-99] showed 
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that the system of inequalities (2) has only a finite number of solutions q for almost 
all x e X ("almost all" in the sense of Lebesgue measure on M) if 1 < n < m, 
v > (m-r-n)"1 and the functions fj(x) (1 < j < n) satisfy the following conditions: 

1) the determinant 
det(d2fj/dxidxk)jik=ii... ,n 

is different from zero almost everywhere in X, 
2) every linear combination 

v(xk) = Cid2fi/dxidxk + • • • + cnd
2fn/dxidxk 

with integer coefficients, regarded as a function of one variable xk (1 < k < n) with 
the other variables fixed, is such that every interval on which it is defined can be 
divided into a bounded number (independent of C\,..., cn) of subintervals on which 
<p(xk) is monotonic. 

This is one of the general result in Diophantine approximation on manifolds. 
For any v > (m + n)~l let M(v) be a set of those x € X for which the system 
(2) has infinitely many solutions q. Then Sprindzuk's theorem asserts for Lebesgue 
measure: mes M(v) =- 0. If we wish to know more precise metric characteristic of 
M(v) then we have to deal with the Hausdorff dimension of M(v). The lower and 
the upper estimates for the Hausdorff dimension dimM(v) were found in [3]: 

< dimM(t;) < -) ~, (3) 
(m + n)(l + v) " ~ (m + n)(l 4- v) 

if m > n2 — n + 1 and the functions / i , . . . , fn satisfy the conditions 1)~2) by the 
method of trigonomertic sums. 

The upper estimate in (3) reflects the essence of the phenomenon since the set 
M(v) can be empty if the index v is large. For example, it is the case under 
fj — yjl - Xj3 (1 < j < n). It takes place when the rational approximations in (2) 
are realized only by the points belonging to the manifold M. Meanwhile it is clear 
that there are no rational points with the same denominator q > 2 on the curves 

yj~ Vl~xJ3 ( ! < • / < " ) • 
The lower estimate in (3) is obtained on a basis of the uniform distribution of 

the sequence {qf}={qfi(ax/qi... , a m / q ) , . . . , g / n ( a i / o , . . . , a m / # )} , (q = 1,2, . . . ) 
in [0, l ) n . It is proved in [3, Lemma 1]. Namely, let q be a fixed natural number 
and let K be an n-dimensional cube in [0, l ) n , K = YTjz=il0ji7j) where 7j — /3j = £ 
(1 < j < n) and 

^_l / (n2 + 1 ) + e r ^ < i / (m + n) 

with e > 0 (e is arbitrary ). Suppose 

n 

N(q) = # { G = ( a 1 , . . . , a m ) € Z m , a G ̂  = I J f e ^ , ^ ) : 
j=i 

{q/} € JC mod 1, when 0 < a{ < q(l < i < m ) } } 
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and m> n2 — n + I. Then 

N(q) = 2nCqm + ccl/nqm~l/n+£l (4) 

where c is some positive absolute constant and e\ = e(n + 1/n). It follows from 
(4) that N(q) > 1 if f > c ig" 1 / ( n 2 + 1 ) + f f with the suitable constant ci > 0. Hence, 
there exists a rational points a/q = ( a i / g , . . . ,am/q) in I\\ Given integer q > 0 we 
define integer £ as 2* < a < 2*+1. Just as in [3] we can prove that there exists a 
rational point a/q\ with the following properties: (i) a/qi G K where jj - l3j > 2£ 
(1 < 3 < ™) and the denominator q\ satisfies the inequality 2l < qx < 2*+1; (ii) 
\qf(a/qi)}e K mod 1. 

The better regular system than the one in [3] can be constructed if every cube 
K has the large number of those rational points. In that case, we can make more 
precise lower bound than in (3): 

dim M(v) > (m - nv)/(v + 1). (5) 

Thus, in this paper we find a connection between the distribution of rational points 
close to M and the lower bound for the Hausdorff dimension of the set M(v). We 
prove the following 

Theorem. For m > n2 — n + 1 and the functions / i ( x ) , . . . , fn(x) satisfying the 
above formulated conditions l)-2) we have (5). 

Regular systems. 
The concept of the Hausdorff dimension was used in Diophantine Approximation 
by V.Jarnik and A.Besicovitch in 1929. But the intensive application of it in the 
theory began after 1970 when A.Baker and W.M.Schmidt suggested the method of 
obtaining lower bounds for the dimension by the construction of regular systems [1 
and 4]. 

Definition. We shall call a countable set V of real numbers together with a positive-
valued function N defined on V a regular system (F, IV) if for every interval J there 
is a positive number L(J) such that, for all T > L(J), there are elements 7 i , . . . ,7t 
of T such that, for each j , k with l<j,k<t(j^ k),v e have 

7j € J, . N{jj) < T, | 7 j - 7* |> T~\ t>c2\J\T% 

where C2 = c2(r,jV) > 0; here | J | denotes the length of J. 

For any regular system ( r , jV) and any positive function h(x) defined for x > 0 
we denote by (V, jV; h) the set of all real numbers y for which there exist infinitely 
many 7 of T such that | y — 7 |< h(N(j)). 

Further, for any real set 5 and any positive function g(x) defined for x > 0 we 
shall write S -< g if, for every A > 0, S > 0, S is covered by some countable set 
Is(X,g) of intervals Ii, I2,... with \ Ij \< A and 

CO 

£s(l/;!)<*. 
The following lemma allows to obtain the lower bound for the Hausdorff dimension 
of the set of real numbers having the given type of approximation by elements of 
regular system. 
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Lemma. Let h(x),g(x) be positive functions defined for x > 0 such that h(x) de­
creases and h(x) < l / (2x) for large x, g(x) and x/g(x)both increase and tend to 
zero with x, and - ^ (^M^)) ~> co as x —> oo. Then, for any regular system (T, IV) 
we /lave (F, IV; h) -A g- In /ac£, for any regular systems (Ti,Ni) (i = 1, 2 , . . . ) we 
have 

oo 

f)(TuNi;h)£g. 
i~l 

Proof. It is Lemma 1 in [1]. 

Take h(x) = IT"0", g(x) = xp where 0 < p,< a"1 < 1. In view of the Lemma we 
have 

Proposition. Let (F,IV) be a regular system and ( r , IV, a) be £/ie se£ a/ a/l real 
numbers x for which there exist infinitely many 7 G T with | x — 7 |< N(-y)~~a. 
T/iendim(r,IV,cr) > a " 1 . 

Proof of the estimate (5). Given a fixed integer t, suppose that rational points 
ar/qr = (air/qri..., amr/qr) (r = 1 ,2 , . . . , 2*) lie in one of the cube with volume 
(2£)n as much close as the following inequalities permit 

I air/qr - ais/qs \> (q^s)"1 > 2~2t (1 < i < m). 

For every i (1 < i < m) the number of those points is equal to 2t. Hence, they 
belong to a cube # 1 with volume | Kx |: 2~mt < | Kx |< c 2 2~ m t . In this case, 
a series consisting of the p-covering of the set M(v) is majorized by the following 
series 

00 

y^c32~ f cp (v+ i )"H(m~n t ; ) . 
i = l 

Therefore we obtain 
dim M(v) < (m - nv)/(v -f 1). (6) 

Now let w(f) be the least upper bound of those w' > 0 for which the inequality 

I aixi + • • • ^amXm +am+1fi(x) + ••• + a m + n / m + n ( x ) + a0 |< A""{m+n)""tx;', (7) 

where A = max(| a0 | , | ax | , . . . , | a m + n |) 7- 0 has infinitely many solutions in 
integer vectors ( a 0 , a i , . . . , a m + n ) . And let v(f) be the least upper bound of those 
v' > 0 for which the system of inequalities 

max (|| xiQ 11,11 /,(*)<, ||) < ,-(i+«')/(m+«) 
l < t < m , l < j < n 

has infinitely many integer solutions q > 0. According to Khintchine's Transference 
Principle [5] we have 

<v(f)<w(f). (8) 
(m -f n ) 2 4- (m + n — l)w(f) 
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Now if for some v : ( m - f n ) ~ ~ 1 < U < ( m - f - n - l ) ~ ~ 1 the system (2) has infinitely 
many integer solutions q then in view of (8) the inequality (7) with the index 
( — (m + n) — uj"), where 

.. .//_ (m + n)2[(m + n)v~ 1] 
(m 4- n) - (m -f n - l)[(m + n)U — 1]' 

has also infinitely many solutions in integer vectors (ar j .a i , . . . , a m + n ) . By virtue 
of the above mentioned Sprindzuk's result for the manifold M and by the Lemma 
we can construct a regular system consisting of zeros of the functions which form 
the left part of the inequality (7). Then in view of Proposition, the lower bound 
for the dimension is obtained: 

dim M(v) > m - l + (m + n + l ) / ( m + n + 1 + uj"), (10) 

where w" is defined by (9). 
A comparison of estimates (10) and (6) shows that we have a contradiction. 

Hence, our hypothesis about the behaviour of rational points close to a smooth 
manifold is not true. The points have a uniform distribution in some sense. 

Remark. For the first time the similar investigation was given in [6] for the topo­
logical product of m plane curves i.e. M = ( x i , . . . , £ m , / i ( £ i ) , . . . , / m ( ^m) ) when 
1 < n < m. 
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