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METRIC THEORY FOR DIOPHANTINE APPROXIMATIONS OF
DEPENDENT VALUES

V. Bernik, D. Bodjagin, O. Kukso.

Let x = (x1, . . . , xn) ∈ Rn. Many of the important arithmetic properties
of the vector x become apparent through solvability of the inequality

|anxn + an−1xn−1 + . . . + a1x + a0| < H−ω (1)

aj ∈ Z, a 6 j 6 n, H = max
16i6n

|ai|.

For any x and ω 6 n the inequality (1) has infinitely many solutions
in integer vectors a = (a0, a1, . . . , an), that follows from Minkowski’s linear
forms theorem. The inequality (1) doesn’t allow principal improvement. If
the right part of (1) is multiplied on small enough constant, there are such
x that this modified inequality doesn’t hold. But according to Khinchine–
Groshev theorem there aren’t many such x [1], [2].

Let Ψ(x) be monotonic decreasing function, µA is Lebesgue measure.
Ln(Ψ) is the set of x from some parallelepiped T =

∏n
i=1(αiβi) that the

inequality
|anxn + . . . + a1x + a0| < H−n+1Ψ(H) (2)

has infinitely many solutions in a ∈ Zn+1.
Then

µLn(Ψ) =

{
0,

∑∞
H=1 Ψ(H) <∞∏n

i=1(βi − αi),
∑∞

H=1 Ψ(H) =∞
(3)

In following papers there were received asymptotic for the number of solutions
of the inequality (2) for the divergence case.

The problem become essentially more difficult, if x lies on some surface G
in Rn, dim G = m, 1 6 m < n. If G = (x, x2, . . . , xn), the exponent ω = ω(x)
can be used for classification of transcendent. This was done by Mahler [3].
During last 70 years Koksma, Kubilius, Cassels, Folkman, Schmidt, Levquek,
Sprindzuk, A. Baker, R. Baker, Dodson, Kovalevskaya study solvability of
(1) for x ∈ G. G was gradually considered under weaker sufficient conditions,
when ω was very close to n and the inequality 1 had infinitely many solutions
only for the set of zero Lebesgue m–measure. Finally in [4], [5], [6] Beres-
nevich, Bernik, Kleinbock and Margulis managed to receive full analogue of
Khinchine–Groshev theorem for nondegenerate surfaces.
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However in the number of problems the dependence of left part of inequal-
ities (1) and (2) on coefficients is more complicated. If we consider the left
part of inequality (1) S(x) = P (x)+d = anx

n +an−1x
n−1 + . . .+a1x+a0 +d,

d ∈ R for G = (x, x2, . . . , xn), Minkowski’s theorem can’t be apply for con-
vex body, described by (1), isn’t centrosymmetric any more. First these
nonhomogeneous problems were considered in [7], [8]. When we study the
inequality |P (x)| < H−ω we use facts that roots of P (x) = 0 are algebraic
numbers, discriminant of P (x) and resultant of P1(x) and P2(x) are integer
numbers.

In addition two algebraic numbers can coincide or we can obtain the
lower estimate for the absolute value of their difference. All listed properties
of integer polynomials and algebraic numbers aren’t right for the polynomials
S(x) for d =

√
2, e, π. However in papers [9] countable number of integer

polynomials were divided into finite number of classes. For big values |P ′(x)|
the research of the inequality |P (x) < H−ω| can be done directly, for small
values of P ′(x) we can come to the difference of polynomials S(x), that are
with integer coefficients.

The divergence case of the problem |S(x)| < Hn−1Ψ(H) demands con-
structing of polynomials S(x) such, that |S(x)| < c(n)H−n holds. It is hardly
possible for arbitrarily point x, however for the subset B of arbitrarily inter-
val I, µB > 0, 5µI we can find n + 1 linear independent polynomials P (x),
and using them construct S(x). This construction was first proposed by
Bougeaux [10], that was based on work of Davenport and Schmidt [11].

The problem become more difficult when we change Veronese curve
x, . . . , xn on arbitrary curve. Homogeneous case of this plane problem was
first studied by Schmidt [12], analogue of the Khinchine–Groshev theorem
for this curve was proved in [13], [14].

Now we show the scheme of proof of richness of content of the set Ln(Ψ)
in terms of lower estimates of Hausdorff dimension of these sets.

Consider an interval I ⊂ R and a function λ : R ← R. Define an
inequality

|anfn(x) + an−1fn−1(x) + . . . + a1f1(x) + a0 + λ(x)| < H−w. (4)

where n > 2, f1, f2, . . . , fn ∈ Cn+1(I); a = (a0, a1, . . . , an) ∈ Zn+1 and H =
max{|a0|, |a1|, . . . , |an|}. Denote by Xn(w, λ) = Xn(w, I, f1, . . . , fn, λ) the
set of numbers x ∈ I such that the set (a0, . . . , an) of solutions 4 is infinite.

Denote by Fn the set of functions anfn(x) + . . . + a1f1(x) + a0 where
ai ∈ Z, 0 6 i 6 n. Let F (x) ∈ Fn, F (x) = anfn(x) + . . . + a1f1(x) + a0.
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A value of expression H(F ) = max{|a0|, . . . , |an|} we’ll call the height of the
function F . We’ll need another type of height H∗(F ) = max{|a1|, . . . , |an|}.

Denote by Fn(Q) and F∗
n(Q) the sets of functions F ∈ Fn such that

H(F ) 6 Q and H∗(F ) 6 Q respectively.
Denote by Λn(ε) the set of x ∈ I such that the system of inequalities{

|F (x)| < H−n

|f ′(x)| < H1−ε (5)

has infinitely many solutions f ∈ Fn.
Now we’ll formulate the following theorem.

Theorem 1 Let f1(x) = x, f2(x), . . . , fn(x) ∈ Cn(I) and λ(x) ∈ C2(I) be
functions. Let there exist x0 ∈ I such that w(f ′1(x0), . . . , f

′
n(x0)) 6= 0. More-

over let there exist the constant K and the neighborhood J of the x0 such that
∀x ∈ J, max{λ(x), λ′(x), λ′′(x)} < K. Then for any w > n

dim{Xn(w, λ)} >
n + 1

w + 1
.

REGULAR SYSTEMS OF POINTS

We will widely use the notion of the regular system.
Definition 1 A countable set A ⊂ I with a function N A ← R+ is called
regular system if ∃K = K(A, N, I) > 0 such as for all finite interval J ⊂
I ∃ T0 = T0(A, N, J) > 0 | ∀T > T0 there exists a set (α1, α2, . . . , αt ∈ A ∩ J
with the following properties.

1. N(αi) 6 T 1 6 i 6 t;

2. |αi − αj| > T−1 1 6 i < j 6 t;

3. t > K|J |T ,

where |J | means Lebesgue measure of |J |.

Let Aλ = {α ∈ I | ∃ F ∈ Fn, F (α) + λ(α) = 0}. For all α ∈ Aλ we’ll
denote by the height of α he value H(α) = min{H(F ) | F ∈ Fn, F (α) +
λ(α) = 0}.
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Theorem 2 Let the functions f1, f2, . . . , fn have the same properties as in
theorem 1. Then there exists a neighborhood of x0 such that the set Aλ with
the function N(α) = Hn+1(α) is a regular system on that neighborhood.

Select a neighborhood I∗ of x0 such that ∀x ∈ I∗, |w(f ′1(x), . . . , f ′n(x))| >
|w(f ′1(x0), . . . , f

′
n(x0))|/2 and max{λ(x), λ′(x), λ′′(x)} < K. Further we’ll

call this interval I. Such interval exists because the Vronscian is continuous
function.

The functions f
(j)
i ; 0 6 j 6 n + 1, 1 6 i 6 n are continuous. Therefore

without loss of generality we may consider that for all x ∈ I we have

|f (j)
i (x)| 6 C, (6)

for some constant C. Also without loss of generality we can define f1(x) ≡ x.

Lemma 1 Let Φ(Q, δ) be a set of x ∈ I such that

|F (x)| < δQ−n (7)

for some nonzero function F ∈ F∗
n(Q). Then ∃Q1 | ∀Q > Q1,∀δ =

n−13−n2−5, |Φ(Q, δ)| < |I|/2.

The proof of this lemma can be found in [15][corollary of the proposition
2.]. The proof of that proposition needs another one property to be true.
There should be ε ∈ (0, 1) such that |Λn(ε)| = 0. But it is followed from
[5] that if the Vronscian is not equal to 0 for all x ∈ I than this property is
satisfied automatically.

Proof of the theorem 2 uses ideas of Y. Bugeaud [10].

BAKER–SCHMIDT’S LEMMA AND PROOF
OF THE MAIN THEOREM

Let (A, N) be a regular system. Denote by (A, N,w) the set of real
numbers ξ such that the inequality

|ξ − α| < N(α)−w

has infinitely many solutions α ∈ A.
Lemma 2 Let 0 < w−1 6 1. Then the Hausdorff dimension for the set
(A, N,w) is at least w−1.
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This lemma is a particular case of Baker-Schmidt lemma [16][chapter 1,
Bakers lemma 5].

The proof of the main theorem.
Using theorem 2 we obtain that Aλ with a function H(α)n+1 is a regular

system. Let α ∈ Aλ i.e. there exists F ∈ Fn such that F (α) + λ(α) = 0.
Note that for such function |F ′(α)| 6 nCH(F ) = vH(F ).

Consider an interval J = (α − (2v)−1H(F )−n−1, α + (2v)−1H(F )−n−1).
For all x ∈ J ∩ I we have

F ′(x) + λ′(x) = F ′(α) + λ′(α) + (F ′′(x1) + λ′′(x1))(x− α).

Therefore we get |F ′(x) + λ(x)| 6 vH(F ) + K + (C + K)(2v)−1H−w−1(F ) 6
2vH(F ). Last inequality may not be true for a finite number of functions F
when H(F ) is small enough.

By Lagrange’s formulae we obtain

F (x) + λ(x) = F (α) + λ(α) + (F ′(x2) + λ′(x2))(x− α)

Using previously obtained inequality we get |F (x) + λ(x)| 6 H(F )−w.

Denote by X̃n(w) a set ξ ∈ I such that th inequality

|α− ξ| 6 (2v)−1H(α)−w−1 (8)

has infinitely many solutions α ∈ Aλ. Using proved proposition X̃n(w) ⊂
Xn(w). Changing slightly (8) we get

|α− ξ| < (2v)−1N(α)−
w+1
n+1 .

By lemma 2 we finally obtain that dim{X̃n(w)} > n+1
w+1

. And thus

dim{Xn(w)} > dim{X̃n(w)} > n+1
w+1

. It finishes the proof.
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