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ON APPROXIMATION OF P-ADIC NUMBERS BY P-ADIC
ALGEBRAIC NUMBERS

V.V. BERESNEVICH, V.I. BERNIK, AND E.I. KOVALEVSKAYA

1. Introduction

Throughout p > 2 is a fixed prime number, Qp is the field of p-adic numbers, |ω|p
is the p-adic valuation of ω ∈ Qp, µ(S) is the Haar measure of a measurable set S ⊂ Qp,

Ap,n is the set of algebraic numbers of degree n lying in Qp, Ap is the set of all algebraic

numbers, Q∗p is the extension of Qp containing Ap. There is a natural extension of p-adic

valuation from Qp to Q∗p [Cas86, Lut55]. This valuation will also be denoted by | · |p. The

disc in Qp of radius r centered at α is the set of solutions of the inequality |x− α|p < r.

Throughout, R>a = {x ∈ R : x > a}, R+ = R>0 and Ψ : N→ R+ is monotonic.

Given a polynomial P (x) = anxn + an−1x
n−1 + . . . + a1x + a0 ∈ Z[x] with an 6= 0,

deg P = n is the degree of P , H(P ) = max06i6n |ai| is the usual height of P . Also H(α)

will stand for the usual height of α ∈ Ap, i.e. the height of the minimal polynomial for

α. The notation X ¿ Y will mean X = O(Y ) and the one of X ³ Y will stand for

X ¿ Y ¿ X.

In 1989 V. Bernik [Ber89] proved A. Baker’s conjecture by showing that for almost

all x ∈ R the inequality |P (x)| < H(P )−n+1Ψ(H(P )) has only finitely many solutions in

P ∈ Z[x] with deg P 6 n whenever and the sum
∞∑

h=1

Ψ(h) (1)

converges. In 1999 V. Beresnevich [Ber99] showed that in the case of divergence of (1)

this inequality has infinitely many solutions.

We refer the reader to [BBKM02, BD99, Ber02, BKM01, Spr79] for further develop-

ment of the metric theory of Diophantine approximation. In this paper we establish a

complete analogue of the aforementioned results for the p-adic case.

Theorem 1. Let Ψ : R+ → R+ be monotonically decreasing and Mn(Ψ) be the set of

ω ∈ Qp such that the inequality

|P (ω)|p < H(P )−nΨ(H(P )) (2)

has infinitely many solutions in polynomials P ∈ Z[x], deg P 6 n. Then µ(Mn(Ψ)) = 0

whenever the sum (1) converges and Mn(Ψ) has full Haar measure whenever the sum (1)

diverges.
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The following is a p-adic analogue of Theorem 2 in [Ber99].

Theorem 2. Let Ψ : R+ → R+ be monotonically decreasing and Ap,n(Ψ) be the set of

ω ∈ Qp such that the inequality

|ω − α|p < H(α)−nΨ(H(α)) (3)

has infinitely many solutions in α ∈ Ap,n. Then µ(Ap,n(Ψ)) = 0 whenever the sum (1)

converges and Ap,n(Ψ) has full Haar measure whenever the sum (1) diverges.

2. Reduction of Theorem 1

We are now going to show that the convergence part of Theorem 1 follows from the

following two theorems. Also we show that the divergence part of Theorem 1 follows from

Theorem 2.

Proposition 1. Let δ, ξ ∈ R+, ξ < 1/2, Q ∈ R>1 and K0 be a finite disc in Qp. Given

a disc K ⊂ K0, let E1(δ,Q,K, ξ) be the set of ω ∈ K such that there is a non-zero

polynomial P ∈ Z[x], deg P 6 n, H(P ) 6 Q satisfying the system of inequalities
{
|P (ω)|p < δQ−n−1,

|P ′(αω,P )|p > H(P )−ξ,
(4)

where αω,P ∈ Ap is the root of P nearest to ω (if there are more than one root nearest to ω

then we choose any of them). Then there is a positive constant c1 such that for any finite

disc K ⊂ K0 there is a sufficiently large number Q0 such that µ(E1(δ,Q, K, ξ)) 6 c1δµ(K)

for all Q > Q0 and all δ > 0.

Proposition 2. Let ξ, C ∈ R+, K0 be a finite disc in Qp and let E2(ξ, C,K0) be the set

of ω ∈ Qp such that there are infinitely many polynomials P ∈ Z[x], deg P 6 n satisfying

the system of inequalities {
|P (ω)|p < CH(P )−n−1,

|P ′(αω,P )|p < H(P )−ξ.
(5)

Then µ(E2(ξ, C, K0)) = 0.

Proof of the convergence part of Theorem 1 modulo Propositions 1 and 2. Let the sum

(1) converges. Then it is readily verified that
∞∑

t=1

2tΨ(2t) < ∞ (6)

and

Ψ(h) = o(h−1) (7)

as h → ∞. For the proofs of (6) see Lemma 5 in [Ber99]. The arguments for (7) can be

found in the proof of Lemma 4 in [Ber99].

Fix any positive ξ < 1/2. By (7), H(P )−nΨ(H(P )) < H(P )−n−1 for all but finitely

many P . Then, by Proposition 2, to complete the proof of the convergence part of

Theorem 1 it remains to show that for any finite disc K in Qp the set E1(ξ, Ψ) consisting
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of ω ∈ Qp such that there are infinitely many polynomials P ∈ Z[x], deg P 6 n satisfying

the system of inequalities
{
|P (ω)|p < H(P )−nΨ(H(P )),

|P ′(αω,P )|p > H(P )−ξ
(8)

has zero measure.

The system (8) implies
{
|P (ω)|p < (2t)−n−12tΨ(2t),

|P ′(αω,P )|p > H(P )−ξ,
(9)

where t = t(P ) with 2t 6 H(P ) < 2t+1, which means that ω ∈ E1(2
n+12tΨ(2t), 2t+1, K, ξ).

The system (9) holds for infinitely many t whenever (8) holds for infinitely many P .

Therefore,

E1(ξ, Ψ) ⊂ lim sup
t→∞

E1(2
n+12tΨ(2t), 2t+1, K, ξ).

By Proposition 1, µ(E1(2
n+12tΨ(2t), 2t+1, K, ξ)) ¿ 2tΨ(2t). Taking into account (6), the

Borel-Cantelli lemma completes the proof. ¤

Next, we are going to show that the divergence part of Theorem 1 is a consequence

of Theorem 2.

Proof of the divergence part of Theorem 1 modulo Theorem 2. Fix any finite disc K in

Qp. Then there is a positive constant C > 0 such that |ω|p 6 C for all ω ∈ K. Let

Ψ : R+ → R+ be a given monotonic function such that the sum (1) diverges. Then the

function Ψ̃(h) = |n!|pC1−nΨ(h) is also monotonic and the sum
∑∞

h=1 Ψ̃(h) diverges. By

Theorem 2, for almost every ω ∈ K there are infinitely many α ∈ Ap,n satisfying

|ω − α|p < H(α)−nΨ̃(H(α)). (10)

As Ψ decreases, the right hand side of (10) is bounded by a constant. Then we can assume

that |ω−α|p 6 C for the solutions of (10). Then |α|p = |α−ω+ω|p 6 max{|α−ω|p, |ω|p} 6
C.

Let Pα denote the minimal polynomial for α. Since P
(i)
α is a polynomial with integer

coefficients of degree n− i, we have |P (i)
α (α)|p 6 max06j6n−i |α|jp 6 Cn−i. Then

|Pα(ω)|p = |ω − α|p
∣∣∣∣∣

n∑
i=1

i!−1P (i)
α (α)(ω − α)i−1

∣∣∣∣∣
p

6

6 |ω − α|p · max
16i6n

∣∣i!−1P (i)
α (α)(ω − α)i−1

∣∣
p

6

6 |ω − α|p · |n!|−1
p Cn−iCi−1 = |n!|−1

p Cn−1|ω − α|p.
Therefore (10) implies

|Pα(ω)|p < H(α)−nΨ̃(H(α))|n!|−1
p Cn−1 = H(α)−nΨ(H(α)) = H(Pα)−nΨ(H(Pα)). (11)

Inequality (10) has infinitely many solutions for almost all ω ∈ K and so has (11). As ω

is almost every point of K, the proof is completed. ¤
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3. Reduction of Theorem 2

Proof of the convergence part of Theorem 2. Given an α ∈ Ap,n, let χ(α) be the set of

ω ∈ Qp satisfying (3). The measure of χ(α) is ¿ H(α)−nΨ(H(α)). Then

∑

α∈Ap,n

µ(χ(α)) =
∞∑

h=1

∑

α∈Ap,n, H(α)=h

µ(χ(α)) ¿

¿
∞∑

h=1

∑

α∈Ap,n, H(α)=h

h−nΨ(h) ¿
∞∑

h=1

Ψ(h) < ∞.

Here we used the fact that the quantity of algebraic numbers of height h is ¿ hn. The

Borel-Cantelli lemma completes the proof. ¤
The proof of the divergence part of Theorem 2 will rely on the regular systems

method of [Ber99]. In this paper we give a generalization of the method for the p-adic

case.

Definition 1. Let a disc K0 in Qp, a countable set of p-adic numbers Γ and a function

N : Γ → R+ be given. The pare (Γ, N) is called a regular system of points in K0 if there

is a constant C > 0 such that for any disc K ⊂ K0 for any sufficiently large number T

there exists a collection

γ1, . . . , γt ∈ Γ ∩K

satisfying the following conditions

N(γi) 6 T (1 6 i 6 t),

|γi − γj|p > T−1 (1 6 i < j 6 t),

t > CTµ(K).

Proposition 3. Let (Γ, N) be a regular system of points in K0 ⊂ Qp, Ψ̃ : R+ → R+

be monotonically decreasing function such that
∑∞

h=1 Ψ̃(h) = ∞. Then ΓΨ̃ has full Haar

measure in K0, where ΓΨ̃ consists of ω ∈ K0 such that the inequality

|x− γ|p < Ψ̃(N(γ)) (12)

has infinitely many solutions γ ∈ Γ.

This theorem is proved in [BK03]. The proof is also straitforward the ideas of the

proof of Theorem 2 in [Ber99].

Proposition 4. The pare (Γ, N) of Γ = Ap,n and N(α) = H(α)n+1 is a regular system

of points in any finite disc K0 ⊂ Qp.

Proof of the divergence part of Theorem 2 modulo Propositions 3 and 4. Let Ψ : R+ →
R+ be a monotonic function and the sum (1) diverges. Fix any finite disc K0 ⊂ Qp.

Let (Γ, N) be a regular system defined in Proposition 3 and let Ψ be a monoto-

nic function such that the sum (1) diverges. Define a function Ψ̃ by setting Ψ̃(x) =

x−n/(n+1)Ψ(x1/(n+1)). Using the monotonicy of Ψ, we obtain
∞∑

h=1

Ψ̃(h) =
∞∑

t=1

∑

(t−1)n+1<h6tn+1

Ψ̃(h) >
∞∑

t=1

∑

(t−1)n+1<h6tn+1

t−nΨ(t) =
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=
∞∑

t=1

(
tn+1 − (t− 1)n+1

)
t−nΨ(t) ³

∞∑

h=1

Ψ(h) = ∞.

In is obvious that Ψ̃ is monotonic. Then, by Proposition 2, for almost all ω ∈ K0 the

inequality

|x− α|p < Ψ̃(N(α)) = H(α)−nΨ(H(α)) (13)

has infinitely many solutions in α ∈ Ap,n. The proof is completed. ¤

4. Proof of Proposition 1

Fix any finite K ⊂ K0 in Qp. Let χ(P ) be the set of ω ∈ K satisfying (4) and

let Pn(Q,K) be the set of non-zero polynomials P with integer coefficients, deg P 6 n,

H(P ) 6 Q and with χ(P ) 6= ∅. We will use the following

Lemma 1. Let αω,P is the nearest root of a polynomial P to ω ∈ Qp. Then

|ω − αω,P |p 6 |P (ω)|p|P ′(αω,P )|−1
p .

For the proof see [Spr69, p. 78].

Given a polynomial P ∈ Pn(Q,K), let ZP be the set of roots of P . It is clear that

#ZP 6 n. Given an α ∈ ZP , let χ(P, α) be the subset of χ(P ) consisting of ω with

|α− ω|p = min {|α′ − ω|p : α′ ∈ ZP}.
By Lemma 1, for any P ∈ Pn(Q,K) and any α ∈ ZP one has

µ(χ(P, α)) ¿ δQ−n−1|P ′(α)|−1
p . (14)

Given a P ∈ Pn(Q,K) and an α ∈ ZP , define the disc

χ(P, α) =

{
ω ∈ K : |ω − α|p 6

(
4Q|P ′(α)|p

)−1
}

. (15)

It is readily verified that if χ(P, α) 6= ∅ then µ(χ(P, α)) À
(
4Q|P ′(α)|p

)−1

. Using (14)

we get

µ(χ(P, α)) ¿ δQ−n−1µ(χ(P, α)) (16)

with the implicit constant depending on p only.

Fix any P ∈ Pn(Q,K) and an α ∈ ZP such that χ(P, α) 6= ∅. Let ω ∈ χ(P, α). Then

P (ω) = P ′(α)(ω − α) + (ω − α)2

(
n∑

i=2

P (i)(α)(ω − α)i−2

)
. (17)

By the inequalities |P ′(α)|p > H(P )−ξ and H(P ) 6 Q, we have |P ′(α)|−1
p 6 Qξ.

Then by (15), |ω − α|p 6 Q−1+ξ. Next, as ω ∈ K and K is finite, it is readily verified

that |P (i)(α)|p ¿ 1, where the constant in this inequality depends on K. Then
∣∣∣∣∣(ω − α)2

(
n∑

i=2

P (i)(α)(ω − α)i−2

)∣∣∣∣∣
p

¿ Q−2+2ξ. (18)
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By (15), we have |P ′(α)(ω − α)|p 6 (4Q)−1. Using this inequality, (18) and ξ < 1/2, we

conclude that

|P (ω)|p 6 (4Q)−1, ω ∈ χ(P, α) (19)

if Q is sufficiently large.

Assume that P1, P2 ∈ Pn(Q,K) satisfy P1 − P2 ∈ Z 6=0 and assume that there is an

ω ∈ χ(P1) ∩ χ(P2). Then ω ∈ χ(P1, α) ∩ χ(P2, β) for some α ∈ ZP1 and β ∈ ZP2 . Then,

(19), |P1(ω)−P2(ω)|p < (4Q)−1. On the other P1(ω)−P2(ω) is an integer not greater than

2Q in absolute value. Therefore, |P1(ω)−P2(ω)|p > (2Q)−1 that leads to a contradiction.

Hence there is no such an ω and χ(P1) ∩ χ(P2) = ∅. Therefore
∑

P∈Pn(Q,K,an,...,a1)

µ(χ(P )) 6 µ(K), (20)

where Pn(Q,K, an, . . . , a1) is the subset of Pn(Q, K) consisting of P with fixed coefficients

an, . . . , a1.

By (16) and (20),
∑

P∈Pn(Q,K,an,...,a1) µ(χ(P )) ¿ δQ−nµ(K). Summing this over all

(an, . . . , a1) ∈ Zn with coordinates at most Q in absolute value gives
∑

P∈Pn(Q,K)

µ(χ(P )) ¿ δµ(K). (21)

It is obvious that

E1(δ,Q, K, ξ) =
⋃

P∈Pn(Q,K)

χ(P ). (22)

As the Haar measure is subadditive (21) and (22) imply the statement of Proposition 1.

5. Reduction to irreducible primitive leading polynomials in Proposition 2

The following lemma shows us that there is no loss of generality in neglecting redu-

cible polynomials while proving Proposition 2.

Lemma 2 (Lemma 7 in [BDY99]). Let δ ∈ R+ and E(δ) be the set of ω ∈ Qp such that

the inequality

|P (ω)|p < H(P )−n−δ

has infinitely many solutions in reducible polynomials P ∈ Z[x], deg P 6 n. Then

µ(E(δ)) = 0.

Also, by Sprindz̆uk’s theorem [Spr69] there is no loss of generality in assuming that

deg P = n. From now on, P will denote the set of irreducible polynomials P ∈ Z[x] with

deg P = n.

Next, a polynomial P ∈ Z[x] is called primitive if the gcd (greatest common divisor)

of its coefficients is 1. To perform the reduction to primitive polynomials we fix an ω such

that the system (5) has infinitely many solutions in polynomials P ∈ P and show that

either ω belongs to a set of measure zero or (5) holds for infinitely many primitive P ∈ P.
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Define aP = gcd(an, . . . , a1, a0) ∈ N. Given a P ∈ P, there is a uniquely defined

primitive polynomial P1 (i.e. aP1 = 1) with P = aP P1. Then H(P ) = aP H(P1). Let

P ∈ P be a solution of (5). By (5), P1 satisfies the inequalities
{
|aP |p|P1(ω)|p = |P (ω)|p ¿ H(P )−n−1 = (aP H(P1))

−n−1,

|aP |p|P ′
1(αω,P )|p = |P ′(αω,P )|p < H(P )−ξ = (aP H(P1))

−ξ.
(23)

As |aP |−1
p 6 aP , (23) implies

|P1(ω)|p ¿ H(P1)
−n−1a−n

P , |P ′
1(αω,P )|p < H(P1)

−ξa1−ξ
P . (24)

If (24) takes place only for a finite number of different polynomials P1 ∈ P, then there

exists one of them such that (5) has infinitely many solutions in polynomials P with the

same P1. It follows that ω is a root of P1 and thus belongs to a set of measure zero.

Further we assume that there are infinitely many P1 satisfying (24).

If ξ > 1 then the reduction to primitive polynomials is obvious as aP ∈ N. Let ξ < 1.

Then, if (5) holds for infinitely many polynomials P ∈ P such that aP > H(P1)
ξ′ , where

ξ′ = ξ/(2− 2ξ), then the first inequality in (24) implies that |P1(ω)|p ¿ H(P1)
−n−1a−n

P 6
H(P1)

−n−1−nξ′ holds for infinitely many polynomials P1 ∈ P. By Sprindz̆uk’s theorem

[Spr69], the set of those ω has zero measure.

If (5) holds for infinitely many polynomials P ∈ P such that aP < H(P1)
ξ′ then (24)

implies that the system of inequalities

|P1(ω)|p ¿ H(P1)
−n−1, |P ′(αω,P )|p < H(P1)

−ξ+(1−ξ)ξ′ < H(P1)
−ξ/2

holds for infinitely many polynomials P1. Thus, we get the required statement with a

smaller ξ.

A polynomial P ∈ Z[x] with the leading coefficient an will be called leading if

an = H(P ) and |an|p > p−n. (25)

Let Pn(H) be the set of irreducible primitive leading polynomials P ∈ Z[x] of degree

n with the height H(P ) = H. Also define

Pn =
∞⋃

H=1

Pn(H). (26)

Reduction to leading polynomials is completed with the help of

Lemma 3. Let Ω be the set of points ω ∈ Qp for which (5) has infinitely many solutions

in irreducible primitive polynomials P ∈ Z[x], deg P = n. Let Ω0 be the set of points

ω ∈ Qp for which (5) has infinitely many solutions in polynomials P ∈ Pn, where Pn

is defined in (26). If Ω has positive measure then so has Ω0 with probably a different

constant C in (5).

Proof of this lemma is very much the same as the one of Lemma 10 in [Spr69] and

we leave it as an exercise.

Every polynomial P ∈ Pn has exactly n roots, which can be ordered in any way:

αP,1, . . . , αP,n. The set E2(ξ, C,K0) can be expressed as a union of subsets E2,k(ξ, C, K0)

with 1 6 k 6 n, where E2,k(ξ, C, K0) is defined to consist of ω ∈ K0 such that (5)

holds infinitely often with αω,P = αP,k. To prove Proposition 2 it suffices to show that
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E2,k(ξ, C,K0) has zero measure for every k. The consideration of these sets will not

depend on k. Therefore we can assume that k = 1 and omit this index in the notation

of E2,k(ξ, C, K0). Also whenever there is no risk of confusion we will write α1, . . . , αn for

αP,1, . . . , αP,n.

6. Auxiliary statements and classes of polynomials

Lemma 4. Let α1, . . . , αn be the roots of P ∈ Pn. Then max
16i6n

|αi|p < pn.

For the proof see [Spr69, p. 85].

For the roots α1, . . . , αn of P we define the sets

S(αi) = {ω ∈ Qp : |ω − αi|p = min
16j6n

|ω − αj|p} (1 ≤ i ≤ n).

Let P ∈ Pn. As α1 is fixed, we reorder the other roots of P so that |α1 − α2|p 6
|α1 − α3|p 6 . . . 6 |α1 − αn|p. We can assume that there exists a root αm of P for which

|α1 − αm|p 6 1 (see [Spr69, p. 99]). Then we have

|α1 − α2|p 6 |α1 − α3|p 6 . . . 6 |α1 − αm|p 6 1 6 . . . 6 |α1 − αn|p. (27)

Let ε > 0 be sufficiently small, d > 0 be a large fixed number and let ε1 = ε/d,

T = [ε−1
1 ] + 1. We define real numbers ρj and integers lj by the relations

|α1 − αj|p = H−ρj , (lj − 1)/T 6 ρj < lj/T (2 6 j 6 m). (28)

It follows from (27) and (28) that ρ2 > ρ3 > . . . > ρm > 0 and l2 > l3 > . . . > lm > 1.

We assume that ρj = 0 and lj = 0 if m < j 6 n.

Now for every polynomial P ∈ Pn(H) we define a vector l = (l2, . . . , ln) having non-

negative components. In [Spr69, p. 99–100] it is shown that the number of such vectors is

finite and depends on n, p and T only. All polynomials P ∈ Pn(H) corresponding to the

same vector l are grouped together into a class Pn(H, l). We define

Pn(l) =
∞⋃

H=1

Pn(H, l). (29)

Let K0 = {ω ∈ Qp : |ω|p < pn} be the disc of radius pn centered at 0. Define

rj = rj(P ) = (lj+1 + . . . + ln)/T (1 6 j 6 n− 1).

Lemma 5. Let ω ∈ S(α1) and P ∈ Pn(H). Then

H−r1 ¿ |P ′(α1)|p ¿ H−r1+(m−1)ε1 ,

|P (j)(α1)|p ¿ H−rj+(m−j)ε1 for 2 6 j 6 m,

|P (j)(α1)|p ¿ 1 for m < j 6 n.

Proof. From (25) we have p−n < |H|p 6 1. Then, on differentiating the identity P (ω) =

H(ω − α1) · · · (ω − αn) j times (1 6 j 6 n) and using (27), (28) we get the statement of

the lemma. ¤
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Lemma 6. Let δ ∈ R+, σ ∈ R+, n > 2 be a natural number and H = H(δ, n) be a

sufficiently large real number. Further let P , Q in Z[x] be two relatively prime polynomials

of degree at most n with max(H(P ), H(Q)) 6 H. Let K(α, p−t) be a disc of radius p−t

centered at α where t is defined by the inequalities p−t 6 H−σ < p−t+1. If there exists a

number τ > 0 such that for all ω ∈ K(α, p−t) one has

max(|P (ω)|p, |Q(ω)|p) < H−τ

then τ + 2 max(τ − σ, 0) < 2n + δ.

For the proof see Lemma 5 in [BDY99].

7. Proof of Proposition 2

As in the previous section K0 = {ω ∈ Qp : |ω|p < pn}.
Let A(l, ξ) be the set of points ω ∈ K0 for which

{
|P (ω)|p < CH(P )−n−1,

|P ′(α1)|p < H(P )−ξ
(30)

has infinitely many solutions in polynomials P ∈ Pn(l), where Pn(l) is defined in (29). It

follows from the previous discussion that to prove Proposition 2 it suffices to show that

A(l, ξ) has zero measure for all possible vectors l.

The following investigation essentially depends on the value of r1 + l2/T . According

to Lemma 5 we have |P ′(α1)|p À H−r1 . It follows from this and the second inequality of

(30) that H−r1 6 cH−ξ, i.e.

r1 > ξ − ln c/ ln H > ξ/2 for H > H0. (31)

Further we assume that r1 satisfies (31). Further we set ε to be ξ/2.

Lemma 7. If r1 + l2/T > n then the set of points ω ∈ K0 for which the inequality

|P (ω)|p < H(P )−n−ε

holds for infinitely many polynomials P ∈ Pn(l) has zero measure.

For the proof see Proposition 3 in [Spr69, p. 111].

The proof of Proposition 2 is divided into 3 cases, each corresponding to one of the

propositions of this section (see below).

Let χ(P ) = {ω ∈ K0 ∩ S(αP,1) : |P (ω)|p < H−n−1}. Thus, we investigate the set of

ω that belong to infinitely many χ(P ).

Proposition 5. If n− 1 + 2nε1 < r1 + l2/T then µ(A(l, ξ)) = 0.

Proof. Let r1 + l2/T > n. Using Lemma 7 with ε < 1 we get µ(A(l, ξ)) = 0.

Let n− 1 + 2nε1 < r1 + l2/T 6 n and t be a sufficiently large fixed natural number.

We define the set

Mt(l) =
⋃

2t6H<2t+1

Pn(H, l).

We divide the set K0 into the discs of radius 2−tσ, where σ = n + 1− r1 − ε1.
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First, we consider the polynomials P ∈ Mt(l) such that there is one of the introduced

discs, say K, such that χ(P ) ∩ K 6= ∅ and χ(Q) ∩ K = ∅ for Q ∈ Mt(l) r {P}. The

number of the discs and respectively the number of the polynomials is at most pn2tσ.

From Lemmas 1 and 5 we get

µ(χ(P )) ¿ |P (ω)|p|P ′(α1)|−1
p ¿ 2−t(n+1−r1)

and thus summing the measures of χ(P ) for the polynomials P of this class leads to
∑

P

µ(χ(P )) ¿ 2t(n+1−r1−ε1−n−1+r1) = 2−tε1 .

The latest gives the convergent series and, by the Borel-Cantelli lemma, completes the

proof in this case.

Now we consider the other type of polynomials. Let P and Q be different polynomials

of Mt(l) such that χ(P ) and χ(Q) intersect the same disc D introduced above. Then there

exist the points ω1 and ω2 belonging to D such that

max(|P (ω1)|p, |Q(ω2)|p) ¿ 2−t(n+1). (32)

Let αP,1 and αQ,1 be the nearest roots of P and Q to ω1 and ω2 respectively. By (32),

Lemmas 1 and 5 we get

max(|ω1 − αP,1|p, |ω2 − αQ,1|p) ¿ 2−t(n+1−r1).

Hence, according to the definition of the σ we have

|αP,1 − αQ,1|p 6 max(|αP,1 − ω1|p, |ω1 − ω2|p, |αQ,1 − ω2|p) ¿
¿ max(2−t(n+1−r1), 2−tσ) = 2−tσ.

Now we estimate |αP,1 − αQ,i|p (2 6 i 6 m). Since r1 + l2/T 6 n it follows that

|αP,1 − αQ,i|p 6 max(|αP,1 − αQ,1|p, |αQ,1 − αQ,i|p) ¿ max(2−tσ, 2−tρi) 6

6 max(2−tσ, 2−t(li−1)/T ) 6 2−t(li/T−ε1).

Hence
m∏

i=1

|αP,1 − αQ,i|p ¿ 2−t(σ+(l2+...+lm)/T−(m−1)ε1) = 2−t(σ+r1−(m−1)ε1).

Similarly we obtain
m∏

i=1

|αP,2 − αQ,i|p 6
m∏

i=1

max (|αP,2 − αP,1|p, |αP,1 − αQ,1|p, |αQ,1 − αQ,i|p) 6

6 max(2−tρ2 , 2−tσ)
m∏

i=2

max(2−tρ2 , 2−tσ, 2−tρi) ¿

¿ 2−t(l2/T−ε1)

m∏
i=2

2−t(li/T−ε1) = 2−t(l2/T−ε1+(l2+...+lm)/T−(m−1)ε1) = 2−t(l2/T+r1−mε1).

Let R(P, Q) be the resultant of P and Q, i.e.

|R(P,Q)|p = |H|2n
p

∏
16i,j6n

|αP,i − αQ,j|p.
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By the previous estimates for i = 1, 2 and the trivial estimates |αP,i − αQ,j|p ¿ pn for

3 6 i 6 n we get

|R(P,Q)|p ¿ 2−t(σ+r1−(m−1)ε1+l2/T+r1−mε1) 6 2−t(σ+2r1+l2/T−(2n−1)ε1) < 2−t(2n+δ′)

where δ′ > 0. On the other hand we have |R(P, Q)|p À 2−2nt as P and Q have not

common roots. The last inequalities lead to a contradiction. ¤

Proposition 6. If

2− ε/2 < r1 + l2/T 6 n− 1 + 2nε1 (33)

then µ(A(l, ξ)) = 0.

Proof. Let

θ = n + 1− r1 − l2/T. (34)

Let [θ] and {θ} be the integral and the fractional parts of θ respectively.

At first we consider the case {θ} > ε. We define

β = [θ]− 1 + 0, 2{θ} − 0, 1ε, (35)

σ1 = l2/T + 0, 8{θ}+ (m + 1)ε1, (36)

d = [θ]− 1. (37)

Fix any sufficiently large integer H and divide the set K0 into the discs of radius H−σ1 .

The number of these discs is estimated by ¿ Hσ1 . We shall say that the disc D contains

the polynomial P ∈ Pn(H, l) and write P ≺ D if there exists a point ω0 ∈ D such that

|P (ω0)|p < H−n−1.

Let B1(H) be the collection of discs D such that #{P ∈ Pn(H, l) : P ≺ D} 6 Hβ.

By Lemmas 1 and 5, (35) and (36) we have
∑

P∈B1(H)

µ(χ(P )) ¿ HβHσ1H−n−1+r1 = Hθ−1+r1+l2/T−0,1ε+(m+1)ε1−n−1.

From (34) we get ∑
P

µ(χ(P )) ¿
∑
H

H−1−ε/20 < ∞.

By Borel-Cantelli lemma the set of those ω, which belong to χ(P ) for infinitely many

P ∈ ⋃
H B1(H), has zero measure.

Let B2(H) be the collection of the discs that do not belong to B1(H) and thus

contain more than Hβ polynomials P ∈ Pn(H, l). Let D ∈ B2(H). We divide the set

{P ∈ Pn(H, l) : P ≺ D} into classes as follows. Two polynomials

P1(x) = Hxn + a
(1)
n−1x

n−1 + . . . + a
(1)
1 x + a

(1)
0 ,

P2(x) = Hxn + a
(2)
n−1x

n−1 + . . . + a
(2)
1 x + a

(2)
0

are in one class if

a
(1)
n−1 = a

(2)
n−1, . . . , a

(1)
n−d = a

(2)
n−d,

where d is defined in (37). It is clear that the number of different classes is less than

(2H +1)d and the number of polynomials under consideration is greater than Hβ. By the

pigeon-hole principle, there exists a class M which contains at least cHβ−d polynomials

where c > 0 is a constant independent of H. The classes containing less than cHβ−d

polynomials are considered in a similar way as above, with the Borel-Cantelli arguments.
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Further, we denote polynomials from M by P1(x), . . . , Ps+1(x) and consider s new

polynomials

R1(x) = P2(x)− P1(x), . . . , Rs(x) = Ps+1(x)− P1(x).

By (37), we get

deg Ri 6 n− d− 1 = n− [θ] (1 6 i 6 s). (38)

Using (34), the left-hand side of (33) and the condition {θ} > ε we obtain

n− d− 1 = n− [θ] = n− θ + {θ} = −1 + r1 + l2/T + {θ} > 1 + ε/2 > 1.

Since n− [θ] is integer then

n− [θ] > 2. (39)

Now we estimate the values |Ri(ω)|p (1 6 i 6 s) when ω ∈ D. For every polynomial Pi

there exists a point ω0i ∈ D such that |Pi(ω0i)|p < H−n−1. Let α1i be the root nearest to

ω0i. By Lemmas 1 and 5, we get |ωoi − α1i|p ¿ H−n−1+r1 and

|ω − α1i|p 6 max(|ω − ω0i|p, |ω0i − α1i|p) ¿ max(H−σ1 , H−n−1+r1)

for any ω ∈ D. It follows from (36) and the right-hand side of (33) that

σ1 6 n− 1− r1 + 2nε1 + 0, 8{θ}+ (m + 1)ε1 < n + 1− r1.

Therefore |ω − α1i|p ¿ H−σ1 . By Lemma 5, we have

|P (j)
i (α1i)(ω − α1i)

j|p ¿ H−rj+(m−j)ε1−jσ1 for 1 6 j 6 m,

|P (j)
i (α1i)(ω − α1i)

j|p ¿ H−jσ1 for m < j 6 n.

From (36), (34) and the definition of the rj (1 6 j 6 m) we get

|P ′
i (α1i)(ω − α1i)|p ¿ H−(n+1−θ)−0,8{θ}−2ε1 ,

|P (j)
i (α1i)(ω − α1i)

j|p ¿ H−(n+1−θ)−0,8{θ}−(m+1)ε1 for 2 6 j 6 n.

Using Taylor’s formula for Pi(ω) (1 6 i 6 s + 1) in the disc |ω − α1i|p ¿ H−σ1 and the

previous estimates, we obtain

|Ri(ω)|p ¿ H−(n+1−θ)−0,8{θ}−2ε1 = H−τ (1 6 i 6 s) (40)

for any ω ∈ D. There are the following three cases:

1) Suppose that for each i (1 6 i 6 s), Ri(x) = biR(x) with bi ∈ Z. Since the

Ri are all different so are the bi. Let b = max
16i6s

|bi| = |b1|, so that b > s/2. As

bH(R) 6 2H, s À Hβ−d = H0,2{θ}−0,1ε and {θ} > ε, we get

H(R) ¿ H1−0,2{θ}+0,1ε and b À H0,2{θ}−0,1ε. (41)

Using (40) and H(R1) = bH(R) we have

|R1(ω)|p = |b|p|R(ω)|p ¿ H(R1)
−τ = H(R)−τb−τ

and

|R(ω)|p ¿ H(R)−τ |b|−τ |b|−1
p 6 H(R)−τb−τ+1.

From this and (41) we find

|R(ω)|p ¿ H(R)−λ, (42)
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where

λ = τ + (τ − 1)(0, 2{θ} − 0, 1ε)(1− 0, 2{θ}+ 0, 1ε)−1.

By the definition of the τ in (40), the condition {θ} > ε, (38) and (39) we get

λ > n− [θ] + 1 > deg R + 1. It follows from (42) that

|R(ω)|p ¿ H(R)− deg R−1−δ′

for all ω ∈ D , where δ′ > 0. By Sprindz̆uk’s theorem [Spr69, p. 112], the set

of ω for which there are infinitely many polynomials R satisfying the previous

inequality has zero measure.

2) Suppose that some of polynomials Ri are reducible. By (38) we have (40) with

τ > deg Ri + δ where δ = 1− 0, 2{θ}+ ε1 > 0. Then Lemma 2 shows that the set

of ω for which there are infinitely many such polynomials has zero measure.

3) Suppose that all polynomials Ri are irreducible and that at least two are relatively

prime (otherwise use case 1). Then Lemma 6 can be used on two of polynomials,

R1 and R2, say. We have deg Ri 6 n− [θ] (i = 1, 2). It follows from (40), (34) and

(36) that

τ = n + 1− θ + 0, 8{θ}+ 2ε1 = r1 + l2/T + 0, 8{θ}+ 2ε1,

τ − σ1 = r1 − (m− 1)ε1 = (l2 + . . . + lm)/T − (m− 1)/T > T−1 > 0,

τ + 2(τ − σ1) = 3r1 + l2/T + 0, 8{θ} − 2(m− 2)ε1,

2(n− [θ]) + δ = −2 + 2r1 + 2l2/T + 2{θ}+ δ.

As r1 > l2/T then τ + 2(τ − σ1) > 2(n− [θ]) + δ if 0 < δ < ε. The last inequality

contradicts Lemma 6.

In the case of {θ} < ε we set

β = [θ]−1+ε, σ1 = l2/T +{θ}+(m+1)ε1− (1, 5+ε′)ε, ε′ = ε/(9n+2) d = [θ]−1

and apply the same arguments as above. ¤

Proposition 7. If

ε 6 r1 + l2/T 6 2− ε/2 (43)

then µ(A(l, ξ)) = 0.

Proof. All polynomials P (ω) = Hωn + an−1ω
n−1 + ... + a1x + a0 ∈ Pn(H, l) corresponding

to the same vector a = (an−1, . . . , a2) are grouped together into a class Pn(H, l, a). Let

B(P ) = {ω ∈ K0 ∩ S(α1) : |ω − α1|p 6 H−n−1|P ′(α1)|−1
p },

B1(P ) = {ω ∈ K0 ∩ S(α1) : |ω − α1|p 6 H−2+ε′|P ′(α1)|−1
p },

where ε′ = ε/6. It is clear that B(P ) ⊂ B1(P ),

µB(P ) = c1(p)H−n−1|P ′(α1)|−1
p , µB1(P ) = c2(p)H−2+ε′|P ′(α1)|−1

p

and

µB(P ) = c3(p)H−n+1−ε′µB1(P ), (44)

where ci(p) > 0 (i = 1, 2, 3) are the constants dependent on p. Now we estimate

|P (ω)|p when P ∈ Pn(H, l, a) and ω ∈ B1(P ). It follows from the definition of B1(P ) that
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|P ′(α1)(ω − α1)|p < H−2+ε′ . By the right-hand side of (43) and the definition of the rj

(2 6 j 6 m) we have

jr1 − rj = (j − 1)r1 + r1 − rj = (j − 1)r1 + (l2 + . . . + lj)/T 6 (j − 1)(2− ε/2).

From this, Lemma 5 and the definition of B1(P ) we find

|P (j)(α1)(ω − α1)
j|p < H−rj+(m−j)ε1H−(2−ε′)j+jr1 6 H−(2−ε′)j+(j−1)(2−ε/2)+(m−j)/ε1 =

= H−2−(j−1)ε/2+(m−j)ε1+ε′j 6 H−2−δ

for 2 6 j 6 m, where δ > 0 if ε1 6 ε/(2n). By the right-hand side of (43) and the

definition of the r1 we have r1 < (2 − ε/2)(1 − 1/j). From this, Lemma 5 and the

definition of B1(P ) we find

|P (j)(α1)(ω − α1)
j|p ¿ |ω − α1|jp < H−j(2−ε′−r1) < H−2−ε/3

for m < j 6 n. By Taylor’s formula and the previous estimates we get

|P (ω)|p ¿ H−2+ε′ (45)

for any ω ∈ B1(P ). Further we use essential and inessential domains introduced by

Sprindz̆uk [Spr69]. The disc B1(P ) is called inessential if there exists a polynomial Q ∈
Pn(H, l, a) such that µ(B1(P ) ∩B1(Q)) > 1

2
µB1(P ) and essential otherwise.

Let the disc B1(P ) be inessential and D = B1(P ) ∩B1(Q). Then

µD > 1
2
µB1(P ) = c4(p)H−2+ε′|P ′(α1)|−1

p

where c4(p) > 0 is a constant dependent on p. By (45) the difference R(ω) = P (ω) −
Q(ω) = b1ω + b0, where max(|b0|, |b1|) 6 2H, satisfies

|R(ω)|p = |b1ω − b0|p ¿ H−2+ε′ (46)

for any ω ∈ B1(P ). Note that b1 6= 0 since if b1 = 0, then |b0|p ¿ H−2+ε′ . It is contradicted

to |b0|p > |b0|−1 À H−1. It follows from (46) that

|ω − b0/b1|p ¿ H−2+ε′|b1|−1
p . (47)

Let D1 = {ω ∈ K0 ∩ S(α1) : the inequality (47) holds }. Then D ⊆ D1 and µD1 =

c5(p)H−2+ε′ |b1|−1
p , where c5(p) > 0 is a constant dependent on p. We have

c4(p)H−2+ε′|P ′(α1)|−1
p 6 µD 6 µD1 ¿ H−2+ε′|b1|−1

p .

Hence

|b1|p ¿ |P ′(α1)|p. (48)

From (48) and Lemma 5 we get

|b1|p ¿ |P ′(α1)|p ¿ H−r1+(m−1)ε1 .

Since r1 > l2/T the left-hand side of (43) implies r1 > ε/2. Now we find |b1|p ¿ H−ε/3

for ε1 6 ε/(2n). It follows from (46) that |b0|p ¿ H−ε/3. Suppose that s is defined by

the inequalities ps 6 H < ps+1. We have Hε/3 ³ p[sε/3] for sufficiently large H. Hence

b1 ³ p[sε/3]b11 and b0 ³ p[sε/3]b01 where b11, b01 are integers. We have

b1ω + b0 ³ p[sε/3](b11ω + b01) with max(|b11|, |b01|) ¿ H1−ε/3. (49)
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Let R1(ω) = b11ω + b01. Then H(R1) ¿ H1−ε/3. It follows from (46) and (49) that

|b11ω + b01|p ¿ psε/3H−2+ε′ ¿ H−2+ε′+ε/3 = H(R1)
−2−ε/(6−2ε).

Using Khintchine’s theorem in Qp [Spr69, p. 94], we get that the set of ω belonging to

infinitely many discs B1(P ) has zero measure.

Let the disc B1(P ) be essential. By the property of p-adic valuation every point

ω ∈ K0 belong to no more than one essential disc. Hence∑

P∈P(H,l,a)

µB1(P ) 6 pn.

It follows from (44) that
∑
H

∑

P∈P(H,l)

µB(P ) =
∑
H

∑
a

∑

P∈P(H,l,a)

µB(P ) ¿

¿
∑
H

Hn−2
∑

P∈P(H,l,a)

H−n+1−ε′µB1(P ) ¿
∑
H

H−1−ε′ < ∞.

The Borel-Cantelli lemma completes the proof. ¤

8. Proof of Proposition 4

First of all we impose some reasonable limitation on the disc K0 that appear in the

statement of Proposition 4. To this end we notice the following two facts.

Remark 1. Let ω0, θ0 ∈ Qp. It is a simple matter to verify that if (Γ, N) is a regular

system in a disc K0 then (Γ̃, Ñ) is regular in θ0K0 + ω0, where Γ̃ = {δ0γ + ω0 : γ ∈ Γ},
Ñ(δ0γ + ω0) = N(γ) and θ0K0 + ω0 = {θ0ω + ω0 : ω ∈ K0}.
Remark 2. One more observation is that if c > 0 is a constant and (Γ, N) is a regular

system in a disc K0 then (Γ, cN) is also a regular system in K0.

The proofs are easy and left as exercises. Now we notice that for any disc K0 in Qp

we can choose two numbers ω0, θ0 ∈ Q such that θ0Zp + ω0 = K0. It is clear that the

map ω 7→ θ0ω + ω0 sends Ap,n to itself. Moreover, there is a constant c1 > 0 such that

for any α ∈ Zp ∩ Ap,n one has H(θ0α + ω0) 6 c1H(α). Hence, if we will succeed to prove

Proposition 4 for the disc Zp then in view of the Remarks above it will be proved for K0.

Thus without loss of generality we assume that K0 = Zp.

In the proof of Proposition 4 we will refer to the following statement known as

Hensel’s Lemma (see [BD99, p. 134]).

Lemma 8. Let P be a polynomial with coefficients in Zp, let ξ = ξ0 ∈ Zp and |P (ξ)|p <

|P ′(ξ)|2p. Then as n →∞ the sequence

ξn+1 = ξn − P (ξn)

P ′(ξn)

tends to some root α ∈ Zp of the polynomial P and

|α− ξ|p 6 |P (ξ)|p
|P ′(ξ)|2p

< 1.
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Proposition 8. Let δ > 0, Q ∈ R>1. Given a disc K ⊂ Zp, let

E(δ,Q, K) =
⋃

P∈Z[x], deg P6n, H(P )6Q

{ω ∈ K : |P (ω)|p < δQ−n−1}. (50)

Then there is a positive constant c such that for any finite disc K ⊂ Zp there is a suffi-

ciently large number Q0 such that µ(E(δ,Q,K)) 6 cδµ(K) for all Q > Q0.

Proof. The set E(δ,Q, K) can be expressed as follows

E(δ,Q, K) ⊂ E1(δ,Q,K, 1/3)
⋃

E3(Q,K)
⋃

E4(),

where E1(δ,Q, K, 1/3) is introduced in Proposition 1,

E3(Q,K) =
⋃

P∈Z[x], deg P6n, H(P )>log Q

χ(P ),

χ(P ) is the set of solutions of (5) lying in K with ξ = 1/3 and C = δ,

E4(Q,K) =
⋃

P∈Z[x], deg P6n, H(P )6log Q

{ω ∈ K : |P (ω)|p < δQ−n−1}.

By Proposition 2,

µ(E3(Q, K)) → 0 as Q →∞. (51)

By Proposition 1,

µ(E1(δ,Q, K, 1/3)) 6 c1δµ(K) for sufficiently large Q. (52)

Now to estimate µ(E4(Q,K)) we first estimate the measure of {ω ∈ K : |P (ω)|p <

δQ−n−1} for a fixed P . If αω,P is the nearest root to ω then |an(ω − αω,P )n|p < Q−n−1.

Since |an|p > Q−1, we get |ω − αω,P |p < Q−1. It follows that

µ{ω ∈ K : |P (ω)|p < δQ−n−1} ¿ Q−1.

Hence µ(µ(E4(Q,K))) ¿ (log Q)n+1Q−1 → 0 as Q → ∞. Combining this with (51) and

(52) completes the proof. ¤

Proof of Proposition 4. Fix any disc K ⊂ Zp and let Q > 0 be a sufficiently large number.

Let ω ∈ K. Consider the system




|P (ω)|p < δ2CQ−n−1, P (ω) = anωn + · · ·+ a1ω + a0,

|aj| 6 δ−1Q, j = 0, n,

|aj|p 6 δ, j = 2, n.

(53)

By Dirichlet’s principle, it easy to show that there is an absolute constant C > 0 such

that for any ω ∈ K the system (53) has a non zero solution P ∈ Z[x]. Fix such a solution

P .

If |P ′(ω)| < δ, then, by (53),

|a1|p = |P ′(ω)−∑n
k=2 kakω

k−1|p 6 max{|P ′(ω)|p, |2a2ω
1|p, . . . , |nanωn−1|p} < δ.

Also, if Q is sufficiently large, then

|a0|p = |P (ω)−∑n
k=1 akω

k|p 6 max{|P (ω)|p, |a1ω
1|p, . . . , |anωn|p} < δ.
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Therefore, the coefficients of P have a common multiple d with δ/p 6 |d|p < δ. It follows

that d−1 6 δ. Define P1 = P/d ∈ Z[x]. Obviously H(P1) 6 Q. Also, by (53),

|P1(ω)|p = |P (ω)|p|d|−1
p 6 |P (ω)|p × δ−1p < δCpQ−n−1.

This implies ω ∈ E(δCp, Q,K). By Proposition 8, µ(E(δCp,Q, K)) 6 cδCpµ(K) for

sufficiently large Q. Put δ = (2cpC)−1. Then µ(K r E(δCp, Q,K)) > 1
2
µ(K). If now we

take ω ∈ K r E(δCp, Q, K) then we get

|P ′(ω)|p > δ.

By Hensel’s lemma there is a root α ∈ Zp of P such that |ω − α|p < CQ−n−1. If Q is

sufficiently large then α ∈ K. The height of this α is 6 δ−1Q.

Let α1, . . . , αt be the maximal collection of algebraic numbers in K ∩Ap,n satisfying

H(αj) 6 δ−1Q and

|αi − αj|p > Q−n−1 (1 6 i < j 6 t).

By the maximality of this collection, |ω − αj|p < CQ−n−1 for some j. As ω is arbitrary

point of E(δCp,Q, K), we get

E(δCp, Q,K) ⊂
t⋃

j=1

{ω ∈ Zp : |ω − αj|p < CQ−n−1}.

Next,
1

2
µ(K) 6 µ(E(δCp,Q, K)) ¿ Q−n−1t,

whence t À Qn+1µ(K). Taking T = δ−n−1Qn+1 one readily verifies the definition of

regular systems. The proof is completed.
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