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Regular Systems, Ubiquity and Diophantine
Approximation

V.V. Beresnevich, V.I. Bernik & M.M. Dodson

1 Introduction

Approximation of real and complex numbers by rationals and algebraic num-
bers appeared first in papers by Dirichlet, Liouville and Hermite on Diophan-
tine approximation and the theory of transcendental numbers. During the first
three decades of the 20th century, E. Borel and A. Khintchine introduced the
so-called metric (or measure theoretic) approach in which one considers ap-
proximation to any number which does not belong to an exceptional null set
(i.e., a set of measure zero). Neglecting such exceptional sets can lead to strik-
ingly simple and general theorems, such as Khintchine’s theorem (see below).
The exceptional sets can be analysed more deeply by using Hausdorff dimen-
sion, which can distinguish between different null sets.

This article gives an account of results, methods and ideas connected with
Lebesgue measure and Hausdorff dimension of such exceptional sets. We will
be concerned mainly with the lower bound of the Hausdorff dimension. Al-
though determining the correct lower bound for the Hausdorff dimension of a
set is often (though by no means always) harder than determining the correct
upper bound, recent developments indicate that for many problems, the correct
lower bound can be established using information associated with the upper
bound. There are some exceptions to this principle. For example, convergence
in the Khintchine–Groshev type theorem (for terminology see Bernik & Dod-
son 1999) for the parabola is related to the upper bound which was proved in
Bernik (1979). Nevertheless the divergence case is still unsettled.

For the most part, lower bounds are proved using methods which involve a
knowledge of the distribution of some special sets. These sets are very close
(or equal) to the solution sets for the Diophantine inequalities under consid-
eration. Originally these methods were developed for sets consisting of points
with a distribution described in terms of regular systems. Ubiquitous systems,
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a multidimensional and more geometrical generalization of regular systems,
were introduced in order to investigate more complicated Diophantine approx-
imation, such as on manifolds. Regular and ubiquitous systems have proved
to be very effective techniques for obtaining lower bounds for the Hausdorff
dimension but in rather different directions.

The development of these ideas has resulted in extensive generalisations of
two classical theorems: one due to A.I. Khintchine (see Cassels 1957, Chapter
VII, or Khintchine 1924) and the other to V. Jarnı́k (1929) and A.S. Besicovich
(1934). Some notation is needed at this point. As usual |A| and dim A will
denote, respectively, the Lebesgue measure and the Hausdorff dimension of
the set A. Throughout this article, unless otherwise stated, the function ψ :
N → R+ (N is the set of positive integers) will be monotonically decreasing.
A number x will be called ψ-approximable if the inequality

|qx − p| < ψ(q) (1)

holds for infinitely many (p, q) ∈ Z × N. This definition will be carried over
to more general and sometimes different situations.

The set of ψ-approximable numbers will be denoted by K1(ψ). Note that
K1(ψ) can be expressed as a general kind of ‘lim-sup’ set:

K1(ψ) =
∞⋂

N=1

∞⋃
q=N

⋃
p∈Z

(
p

q
− ψ(q)

q
,

p

q
+ ψ(q)

q

)
. (2)

The first result shows how the size of K1 in terms of Lebesgue measure de-
pends on the convergence properties of ψ .

Theorem 1 (Khintchine) Let qψ(q) be monotonically decreasing. Then, for
any finite interval I ⊂ R,

|K1(ψ) ∩ I | =
{

0, if
∑∞

q=1 ψ(q) < ∞,

|I |, if
∑∞

q=1 ψ(q) = ∞.
(3)

The second gives the Hausdorff dimension of the exceptional set K1
v of very

well approximable points corresponding to ψ(q) = q−v , where v > 1, in (1).

Theorem 2 (Jarnı́k–Besicovitch) For any v � 1,

dimK1
v = 2

v + 1
. (4)

The convergence case of Khintchine’s theorem and the correct upper bound
for the Hausdorff dimension in the Jarnı́k–Besicovitch theorem are quite
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straightforward. Indeed, there are natural covers of the sets K1(ψ) and K1
v aris-

ing from (2) of intervals defined by (1). Applying the Borel–Cantelli Lemma
and the Hausdorff–Cantelli Lemma (the Hausdorff dimension analogue of the
former, see Bernik & Dodson 1999, p. 67) to these covers gives the desired
results. It is worth repeating that the main difficulty lies in the complementary
cases of these theorems.

Regular systems and ubiquitous systems are introduced separately and then
some applications are discussed.

2 Regular systems

Mahler (1932) gave a classification of real and complex numbers and raised
a problem about the approximation type of almost all real numbers. For each
n ∈ N and v ∈ R, let M

(n)
v denote the set of x ∈ R such that there are infinitely

many integer polynomials P of degree at most n satisfying the inequality

|P(x)| < H(P)−v, (5)

where H(P) is the height of P (essentially, M
(1)
v is K1

v). Mahler conjectured
that for any v > n, the set M

(n)
v is of measure zero. This was solved in

V.G. Sprindžuk (1964).

Theorem 3 (Sprindžuk) Let n ∈ N and let v > n. Then |M(n)
v | = 0.

The Hausdorff dimension of the null set M
(n)
v naturally became of inter-

est. Some upper bounds for dim M
(n)
v had been obtained before 1964 but no

lower bound was known. Baker & Schmidt (1970) introduced a very power-
ful method for obtaining lower bounds for Hausdorff dimension and used it to
establish the correct lower bound:

dim M
(n)
v � n + 1

v + 1
. (6)

Let us now explain the basic ideas of their method. Let P ∈ Z[x], deg P � n
and let α be a real root of P . By the continuity of P , the closer x is to α,
the smaller |P(x)|. Thus it is very natural to consider approximation of real
numbers by real algebraic numbers in (1) with ψ(q) = q−v .

Let A(n) denote the set of real algebraic numbers of degree at most n. Given
v ∈ R, let A

(n)
v be the set of x ∈ R such that there are infinitely many α ∈ A(n)

satisfying

|x − α| < H(α)−v−1, (7)
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where H(α) is the height of α. It is not difficult to see that if n < w < v, then

A(n)
v ⊂ M

(n)
w . (8)

Thus, since A ⊂ B implies that dim A � dim B, a lower bound for dim A
(n)
v

is also a lower bound for dim M
(n)
w . Note that the inequality dim A

(n)
v � (n +

1)/(v +1) can be easily obtained by the Hausdorff–Cantelli Lemma exactly as
in the case n = 1, which has already been discussed.

Now let us consider the rationals again. They are dense in R and also uni-
formly distributed. Moreover, in a certain sense any two different rational num-
bers are well separated. This can be described as follows. Let T be a large
positive number. Let Q T be the set of rationals with height (the modulus of
the denominator) less than or equal to T . The number of such rationals in an
interval I , card(Q T ∩ I ), is O(T 2|I |). It is easily seen that the average of
the distances between two consecutive rationals in Q T ∩ I is asymptotically
|I |/card(Q T ∩ I ) = O(T −2). Also the distance between two consecutive ra-
tionals in Q T ∩ I is at least T −2. Thus on average the points of Q T ∩ I are
separated as they are individually.

This is not the case for algebraic numbers of higher degree. However, it can
be shown that a positive proportion of points in A(n)(T ), the set of algebraic
numbers of degree at most n and height at most T , consists of well separated
points. Thus the set A(n)(T ) can be refined so that we will have a system of
points with a distribution similar to the rationals. This fact, first established by
Baker & Schmidt (1970), is described using the concept of a regular system of
points.

Definition 1 Let % be a countable set of real numbers and let N : % → R

be a positive function. The pair (%, N ) is called a regular system of points if
there exists a constant C1 = C1(%, N ) > 0 such that for any finite interval I
there exists a sufficiently large number T0 = T0(%, N , I ) > 0 such that for any
integer T � T0 there exists a collection

γ1, . . . , γt ∈ % ∩ I (9)

such that N (γi ) � T (1 � i � t), |γi − γ j | � T −1 (1 � i < j � t), and
t � C1|I |T .

Example 2 It is readily verified that the set of all rational numbers together
with the function N (p/q) = q2, where p and q are relatively prime, is a
regular system.
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As usual, {x} denotes the fractional part of the real number x and ‖x‖ =
min{|x − k|: k ∈ Z}. A number α is badly approximable if inf{n‖nα‖: n ∈
N} > 0.

Example 3 When α ∈ R is a badly approximable number, the pair (%, N ),
where % = {{αn}: n ∈ N} and N ({αn}) = n, is a regular system.

The following non-trivial example of a regular system was given by Baker
& Schmidt (1970).

Example 4 Let % = A(n) and N (γ ) = H(γ )n+1(log H(γ ))−3n(n+1) for γ ∈
%. Then (%, N ) is a regular system.

The next lemma is the key point of the Baker–Schmidt method for obtaining
lower bounds for Hausdorff dimension (see Baker & Schmidt 1970, Rynne
1992).

Lemma 1 Suppose that ψ : R → R+ is decreasing with xψ(x) � 1/2 for
large x. If (%, N ) is a regular system then

dim 	(%, N ; ψ) � s0 = sup{s : lim
x→∞ xψ(x)s = ∞},

where 	(%, N , ψ) is the set of all real numbers x for which the inequality
|x − γ | < ψ(N (γ )) holds for infinitely many γ ∈ %.

Baker & Schmidt (1970) applied this lemma to Example 4 and used inequal-
ity (8) to establish the correct lower bounds for dim A

(n)
v and dim M

(n)
v . The

correct upper bound for dim A
(n)
v can be easily obtained by Hausdorff–Cantelli

Lemma in the same way as in the case n = 1 already discussed. Determining
the correct upper bound for dim M

(n)
v is much harder and involves different

arguments based on careful and complicated analysis of the distribution of all
the algebraic numbers, not only regularly distributed ones, since any subclass
of A

(n)
v may contribute to dim M

(n)
v (Bernik 1983).

Theorem 4 For any v > n,

dim A(n)
v = dim M

(n)
v = (n + 1)/(v + 1).

Melián & Pestana (1993) have considered the hyperbolic space analogue
of the Jarnı́k–Besicovitch theorem. To obtain the correct lower bound for the
Hausdorff dimension, they used ‘well-distributed’ systems, an extension of
regular systems to higher dimensions.
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3 Ubiquity

Ubiquitous systems were introduced in Dodson, Rynne & Vickers (1990) as
another technique for obtaining a lower bound for the Hausdorff dimension of
sets of ‘very well approximable’ points and of general ‘exceptional’ sets as-
sociated with questions of ‘small denominators’ which arise in normal forms
and stability of dynamical systems (see Arnold 1963, Bernik & Dodson 1999,
Chapter 7, and Dodson, Rynne & Vickers 1989, for more details). In one di-
mension, ubiquitous and regular systems, discussed above, are almost equiv-
alent (regular systems are more delicate in one respect but ubiquity has been
extended to include this in Rynne 1992). Regular systems lend themselves to
more refined simultaneous estimates in higher dimensions but ubiquitous sys-
tems deal with broader questions and yield a lower bound for the Hausdorff
dimension more directly in terms of the geometry. In addition, ubiquity al-
lows the approximation function q−v to be replaced naturally by ψ : N → R+,
where ψ(q) → 0 monotonically as q → ∞.

In the type of Diophantine approximation considered here, we are concerned
with the set consisting of points x in Euclidean space which are, roughly
speaking, a small distance from a member of a special class of subsets of the
space infinitely often. The set is related to a general sort of ‘lim-sup’ of a se-
quence of neighbourhoods of special sets. In the Jarnı́k–Besicovitch theorem
described above, the special class of subsets is the set of rationals Q and the
distance is less than q−v . There is no loss of generality in confining attention
to the (open or closed) unit interval or to hypercubes in higher dimensions. The
hard part of this theorem is establishing the correct lower bound for dimK1

v .
As has been pointed out, this can be obtained using regular systems, which
were introduced to establish the generalisation of the Jarnı́k–Besicovitch the-
orem to approximation by real algebraic irrationals of given degree (Baker
& Schmidt 1970). Ubiquity, however, was framed to deal with higher dimen-
sional sets, such as the systems of linear forms arising in a general form of the
Jarnı́k–Besicovitch theorem established by Bovey & Dodson (1986). For each
x = (x1, . . . , xn) ∈ Rn , we let

|x| = max{|x1|, . . . , |xn|} and ‖x‖ = max{‖x1‖, . . . , ‖xn‖}
be the height of x and the distance of x from Zn respectively. Let Km,n(ψ) be
the set of real m × n matrices (ai j ) = A, regarded as points in Rmn , such that
the system of inequalities

‖qA‖ = max
j=1,...,n

{‖q1a1 j + . . . + qmamj‖} < ψ(|q|)

holds for infinitely many q = (q1, . . . , qm) ∈ Zm . The set Km,n(ψ) is related
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to a ‘lim-sup’ set of a sequence of neighbourhoods of finite unions of subsets
of hyperplanes R(q) = {A ∈ (0, 1)mn : ‖qA‖ = 0}. For another more com-
plicated example, see Dodson, Rynne & Vickers (1994). Following Arnol’d
(1983), these sets R(q) are called resonant because of the association with the
physical phenomenon of resonance.

The definition of ubiquity was abstracted from Bovey & Dodson (1986)
which involved systems of linear forms and used geometrical ideas based on
those in Besicovitch (1934) combined with a mean and variance argument from
Cassels (1957), Chapter 7. By design, resonant sets play a fundamental role in
ubiquity which in essence ensures that they are in good supply. They can be
thought of as generalisations of rational numbers and are of a relatively simple
nature, being finite unions of points or parts of lines, curves, planes, surfaces
and so on, which are solution sets of Diophantine equations.

Definition 2 Take U to be a non-empty open subset of Rm . Let

R = {R j ⊂ U : j ∈ J } (10)

be a family of resonant sets, indexed by J , where each j ∈ J has a weight
6 j7 > 0. The resonant set R j = R(q) with 6 j7 = |q| in the above. Let the
function ρ: N → R+ converge to 0 at ∞ and let A(Q), Q = 1, 2, . . ., be a
sequence of subsets of U such that limQ→∞ |A(Q)| = |U |. Let

B(R j ; δ) = {u ∈ U : dist∞(u, R j ) < δ},
where dist∞(u, R) = inf{|u − r |: r ∈ R}, the distance from u to R in the
supremum norm. Suppose that there exists a constant d ∈ [0, m] such that
given any hypercube H ⊂ U with 1(H) = ρ(Q) and such that H/2 intersects
A(Q), then there exists a j ∈ J with 6 j7 � Q such that for all δ ∈ (0, ρ(Q)],

|H ∩ B(R j ; δ)| � δm−d 1(H)d , (11)

where � and � are the Vinogradov symbols (b � a and a � b mean that a =
O(b)). Suppose further that for any other hypercube H ′ in U with 1(H ′) �
ρ(Q),

|H ′ ∩ H ∩ B(R j ; δ)| � δm−d 1(H ′)d . (12)

Then the pair (R, 6 · 7) is called a ubiquitous system with respect to ρ (refer-
ence to the weight is usually omitted).

The intersection estimates (11) and (12) have been used in preference to
more geometrical descriptions of the intersections H ∩ R j for generality. The
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first requires that the hypercube H and the resonant set R j intersect substan-
tially and that small hypercubes H ′ intersect H ∩ R j as they ‘should’. For res-
onant sets R j with a reasonable structure, d will be the topological dimension
of each R j and the intersection conditions (11) and (12) will be satisfied more
or less automatically. Indeed when the R j are d-dimensional affine spaces in
Euclidean space, we can take the approximating set A(Q) to be a union of
ρ(Q)-neighbourhoods of R j , namely A(Q) = ⋃

6 j7�Q B(R j ; ρ(Q)). It is
then readily verified that the intersection conditions (11) and (12) can be re-
placed by the single measure condition∣∣∣∣∣∣

⋃
6 j7�Q

B(R j ; ρ(Q))

∣∣∣∣∣∣ → |U | as Q → ∞.

This condition can be weakened to the left-hand side being at least c|U | for
some constant c, 0 < c � 1 and all Q sufficiently large, see Rynne (1992).
Ubiquity can be relatively simple to establish and in practice the function ρ

emerges naturally. For instance Dirichlet’s theorem implies that the set of ratio-
nals (with weight the modulus of the denominator) is ubiquitous with respect to
a function comparable with Q−2 log Q; in Rn , the rational points p/q, where
p ∈ Zn , q ∈ Q, are ubiquitous with respect to a function comparable with
Q−1−1/n log Q, see Dodson, Rynne & Vickers (1990).

A general lower bound

The distribution of the resonant sets in ubiquitous systems allows the determi-
nation of a general lower bound for the Hausdorff dimension of the lim-sup
set

	(R ; ψ) = {u ∈ U : dist∞(u, R j ) < ψ(6 j7) for infinitely many j ∈ J },

where ψ : N → R+ is a non-increasing function and the resonant sets have
common dimension d = dimR, say, and codimension m − d = codimR.

Theorem 5 Suppose R is a family of resonant sets which is ubiquitous with
respect to ρ and that ψ̃ : R+ → R+ is a non-increasing function satisfying
ψ̃(Q) � ρ(Q) for Q sufficiently large. Then

dim 	(R ; ψ̃) � dimR + γ codimR,

where γ = lim supQ→∞ log ρ(Q)/ log ψ̃(Q) � 1.
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This is proved in Dodson, Rynne & Vickers (1990) and another proof using
the mass distribution principle is given in Bernik & Dodson (1999), Chapter 5.
The constant γ is at most 1 since ψ̃(Q) � ρ(Q) for Q sufficiently large.

This result can be used to establish the correct lower bound for the Hausdorff
dimension of ψ-approximable systems of linear forms. It can be shown using
Minkowski’s linear forms theorem that the resonant sets Rq, where q ∈ Zm is
non-zero, given by

Rq = {A ∈ [0, 1]mn : q A ∈ Zn}

are ubiquitous with respect m Q−1−m/n log Q and ‘most’ matrices A in
[0, 1]mn are ‘close’ to a set Rq with weight 6q7 = |q| not too large (see Dodson
1992, 1993). The correct upper bound for the Hausdorff dimension of Km,n(ψ)

can obtained using a straightforward covering argument. The complementary
result follows from Theorem 5 with ψ̃(Q) 8 Qψ(Q) (a 8 b means that a and
b are comparable, i.e., a � b and b � a). The lower order λ( f ) of a function
f : N → R+ is defined to be lim infQ→∞(log f (Q))/(log Q).

Theorem 6 Let ψ : N → R+ be a decreasing function and let λ be the lower
order of 1/ψ . Then

dimKm,n(ψ) =
{

(m − 1)n + (m + n)/(λ + 1) when λ � m/n,

mn when λ � m/n.

The Jarnı́k–Besicovitch theorem corresponds to m = n = 1 and ψ(q) = q−v .
Dickinson & Velani (1997) have extended Jarnı́k’s Hausdorff measure ana-
logue (Jarnı́k 1929) of Khintchine’s theorem for simultaneous Diophantine
approximation to systems of linear forms, thus establishing the Hausdorff mea-
sure analogue of the Khintchine–Groshev theorem (Sprindžuk 1979). Instead
of ubiquity, they work with an elaborate Cantor-type construction. There are
some interesting applications to normal forms of pseudodifferential operators
(Dickinson, Gramchev, & Yoshino 1995). The complete hyperbolic analogue
of the Jarnı́k–Besicovitch theorem was established by Hill & Velani (1998)
using Cantor type subsets.

Inhomogeneous Diophantine approximation, which in one dimension con-
cerns the size of |qx − α − p| for some fixed α ∈ R, differs somewhat from
homogeneous Diophantine approximation, where α = 0. It is easier in the
doubly metric case where one considers the joint measure of the set of points
(x, α) but harder in the singly metric case where α is given. Using ubiquity,
a general form of the inhomogeneous version of the Jarnı́k–Besicovitch theo-
rem has been obtained for the doubly metric case (Dodson 1997) and Levesley
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(1998) has established it in the more difficult singly metric case with the addi-
tional help of uniform distribution.

Dickinson has discussed the Hausdorff dimension for systems of linear
forms which have small modulus and has shown that the set of matrices
A = (ai j ) ∈ Rmn such that for infinitely many q ∈ Zm ,

|qA| = max
j=1,...,n

{|q1a1 j + . . . + qmamj |} < |q|−v (13)

has Hausdorff dimension m(n − 1) + m/(v + 1) for v � (m/n) − 1 and mn
otherwise (Dickinson 1993). The upper bound is obtained by the usual cov-
ering argument but ubiquity gives the correct lower only for m > n. In the
complementary range where m � n, a diffeomorph of the set is decomposed
into the cartesian product of an (m − 1)(n − m + 1)-cube and a space to which
the arguments in the first range apply. For a more general approach, see Dick-
inson (1993) and Rynne (1998a,b). The p-adic version of the general Jarnı́k–
Besicovitch theorem is essentially of the form (13). The Hausdorff dimension
of the corresponding set was obtained by Abercrombie (1995) for m > n us-
ing Billingsley dimension; the dimension when m � n has been determined
in Dickinson, Dodson & Jin (1999) using the same approach as in Dickinson
(1993).

4 Khintchine-type theorems on manifolds

Theorem 1 has been generalised to approximation by real algebraic numbers
and to Diophantine approximation on manifolds in Euclidean space. The func-
tional dependence between the coordinates in the latter case causes formidable
technical problems but approximation on the rational normal curve

V = {(x, . . . , xn): x ∈ R} (14)

is related to approximation by real algebraic numbers. In this connection, in
1966 Baker raised (with a slightly different notation) the question of the mea-
sure of the set M(n)(ψ) of x ∈ R such that the inequality

|P(x)| < ψ(H(P)) (15)

has infinitely many solutions P ∈ Z[x] with deg P � n. Baker proved that
|M(n)(ψ)| = 0 if ψ is monotonic and if

∑∞
q=1 ψ1/n(q) < ∞ (see Baker

1966). He further conjectured that the convergence condition can be replaced
with

∑∞
q=1 qn−1ψ(q) < ∞; this was proved by Bernik (1989), see also Bernik

& Dodson (1999).
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Theorem 7 Let ψ : N → R+ be monotonic. Then |M(n)(ψ)| = 0 whenever
the sum

∞∑
q=1

qn−1ψ(q) (16)

converges.

The proof of this result was used to improve the regular system of algebraic
numbers constructed by Baker & Schmidt.

Example 5 (see Bernik & Dodson 1999, p. 101). For each n ∈ N, let

N (γ ) = H(γ )n+1(log H(γ ))−(n+1)

for γ ∈ A(n). Then (A(n), N ) is a regular system.

Regular systems were used to establish a Khintchine–Groshev type theorem
for M(n)(ψ) when the sum (16) diverges (Beresnevich 1999):

Theorem 8 Let ψ : N → R+ be a monotonic sequence. Then for each n ∈ N,
the set M(n)(ψ) has full measure† whenever

∑∞
q=1 qn−1ψ(q) = ∞.

Theorem 8 can be derived from Theorem 9 below using the following argu-
ments. Let A(n)(ψ) be the set consisting of x ∈ R such that there are infinitely
many γ ∈ A(n) satisfying

|x − γ | < ψ(H(γ )). (17)

It can be verified easily that for any interval I0, there is a sufficiently small
positive constant c such that A(n)(ψ̃)∩ I0 ⊂ M(n)(ψ)∩ I0 if ψ̃(q) � cψ(q)/q
for all q ∈ N. Thus the following suffices to prove Theorem 8, see Beresnevich
(1999).

Theorem 9 For any n ∈ N and monotonic sequence ψ : N → R+, the set
A(n)(ψ) has full measure whenever

∑∞
q=1 qnψ(q) = ∞.

Regular systems play the key role in the proof of Theorem 9. Indeed this
Khintchine-type result requires ‘best possible’ knowledge about the distribu-
tion of real algebraic numbers. Given an interval I and a positive number T ,
the collection (9) is chosen from the set %N (I, T ) = {γ ∈ % ∩ I : N (γ ) � T }.
† A set A has full measure if |R \ A| = 0
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This set may contain many points which are not included in (9). For example,
in the Baker–Schmidt regular system (see Example 4),

card%N (I, T )

the number of points satisfying (9)
8 |I |(log T )3n(n+1).

In Example 5 this ratio is 8 |I |(log T )n+1, a little smaller. This suggests the
following.

Definition 3 (see Beresnevich 2000.) The regular system (%, N ) will be called
best possible if for any finite interval I

sup
T >0

card%N (I, T )

T
< ∞. (18)

The following example of a best possible regular system is given in Beres-
nevich (1999) where more details are given.

Example 6 For each n ∈ N, let N (γ ) = H(γ )n+1/(1 + |γ |)n(n+1). Then
(A(n), N ) Then (%, N ) is a regular system.

The proof of this example is based on measuring the solution sets for cer-
tain Diophantine inequalities efficiently (see Beresnevich 1999 for more de-
tails). The proof of Theorem 9 is based on the following generalised Borel–
Cantelli lemma, also used in the proof of the Khintchine–Groshev theorem
(see Sprindžuk 1979, Chapter 2,§ 2; Harman 1998, p. 35).

Lemma 2 Let Ei ⊂ R be a sequence of measurable sets and the set E consist
of points x belonging to infinitely many Ei . If all the sets Ei are uniformly
bounded and the sum

∑∞
i=1 |Ei | diverges, then

|E | � lim sup
N→∞

(∑N
i=1 |Ei |

)2

∑N
i=1

∑N
j=1 |Ei ∩ E j |

. (19)

The sets Ei are taken to be small neighbourhoods of points (9). The set A(n)

having a best possible regular system makes it possible to control the sum in
both the numerator and the denominator of (19). As far as approximation by
points of regular system is concerned, the following Khintchine-type result is
proved in Beresnevich (2000).
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Lemma 3 Let (%, N ) be a regular system, ψ : N → R+ be monotonic and
	(%, N ; ψ) be the set defined in Lemma 1. Then, for any interval I ⊂ R

|	(%, N ; ψ)∩I | =
{

0, if
∑∞

q=1 ψ(q) < ∞ and (%, N ) is best possible,
|I |, if

∑∞
q=1 ψ(q) = ∞.

Extending Khintchine-type theorems to a manifold M in Rn is difficult be-
cause of the functional relationships between the coordinates of points (the
measure is of course the induced Lebesgue measure on M). A half-way house
is to show that the set L(M; ψ) of points x ∈ M such that

‖x · q‖ < ψ(|q|)
for infinitely many q ∈ Zn is null (in the induced measure on M) when ψ(q) =
q−v for any v > n. The set L(M; ψ) is dual to the set S(M; ψ) of points
x ∈ M satisfying

max{‖qxi‖ : i = 1, . . . , n} < ψ(q)

for infinitely many q ∈ N. By Khintchine’s Transference Principle, the set
Sv(M), which is S(M; ψ) with ψ(q) = q−v , is also null for v > 1/n (see
Bernik & Dodson 1999).

The first general result in the metrical theory of Diophantine approximation
on manifolds was due to Schmidt (1964). He investigated C3 planar curves of
the form % = {( f1(x), f2(x)): x ∈ I }, where I is an interval, f1, f2: I → R

are C3 functions such that the curvature f ′
1(s) f ′′

2 (s) − f ′′
1 (s) f ′

2(s) �= 0 for
almost all s ∈ I , and proved that for any such curve, the set of very well
approximable points is relatively null, i.e., the curve is extremal (see Bernik &
Dodson 1999 for terminology). Thus M is extremal if the set of simultaneously
very well approximable points

Sv(M) = {ξ ∈ M : ‖q ξ‖ < q−v for infinitely many q ∈ N} (20)

is relatively null when v > 1/n or equivalently if the set

Lv(M) = {ξ ∈ M : ‖q · ξ‖ < |q|−v for infinitely many q ∈ Zn}
is null in M when v > n respectively. The terminology reflects the fact that for
almost all points on an extremal set, the exponents in Dirichlet’s theorem are
unimprovable, for more details see Bernik & Dodson (1999), Koksma (1936)
p. 67. A manifold M is strongly extremal if given any v > n, the set of points
x = (x1, . . . , xn) ∈ M satisfying

‖q · x‖ <

n∏
j=1

(|q j | + 1)−v/n,
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for infinitely many q ∈ Zn is null in M , so that a strongly extremal manifold
is extremal. Baker conjectured that the rational normal curve V (see (14)) is
strongly extremal in Baker (1975) and Sprindžuk extended the conjecture to
any manifold M satisfying the conditions of H1 (Conjecture H2 in Sprindžuk
1980). The rational normal curve V was shown to be strongly extremal by
Bernik & Borbat (1997) for n = 4.

Manifolds satisfying a variety of analytic, geometric and number theoretic
conditions have been shown to be extremal (more details are in Bernik & Dod-
son 1999; Sprindžuk 1979, 1980; Vinogradov & Chudnovsky 1984). In an ex-
tension of Schmidt’s theorem to higher dimensional manifolds, Kovalevskaya
(1978) has shown that surfaces in R3 having non-zero Gaussian curvature
almost everywhere are extremal (see also or Sprindžuk 1979, p. 149, Theo-
rem 18) and, together with Bernik, later extended this result to m-dimensional
surfaces in R2m , see Bernik & Kovalevskaya (1990). These are special cases of
the more general result that smooth (C3) manifolds of dimension at least 2 (so
that M is at least a surface) and satisfying a curvature condition (which spe-
cialises to non-zero Gaussian curvature for surfaces in R3) are also extremal
(see Dodson, Rynne & Vickers 1989, 1991, and the next section).

Schmidt’s result has been extended to C4 curves in R3 by Beresnevich &
Bernik (1996). Recently Kleinbock & Margulis (1998) have proved that mani-
folds which are nondegenerate almost everywhere are strongly extremal. Non-
degeneracy can be regarded as a generalisation of non-zero curvature and is
defined as follows. For each j � k, the point x = θ(u) ∈ M ⊂ Rn is j-
nondegenerate if the partial derivatives of θ at u up to order j span Rn . The
point x is nondegenerate if it is j-nondegenerate for some j . This result is best
possible and implies both Sprindžuk’s and the stronger Baker–Sprindžuk con-
jectures. The proof uses ideas from dynamical systems, particularly unipotent
flows in homogeneous spaces of lattices. Their techniques are likely to lead
to further progress and have led to a generalisation of Baker’s result (Baker
1966).

In 1991, the following Khintchine–Groshev-type result was obtained for
fairly general manifolds. Let M be a C3 manifold embedded in Rn with di-
mension at least 2 and 2-convex almost everywhere (i.e., M has at least 2
principal curvatures with strictly positive product almost everywhere). Then
L(M; ψ) is null if the sum (16) converges. If the sum diverges and M satisfies
a stronger curvature condition, then L(M; ψ) is full (Dodson, Rynne & Vick-
ers 1991, Theorem 1.1. If the sum

∑∞
q=1 ψ(q)n converges, then S(M; ψ) is

null. Khintchine–Groshev type analogues of Schmidt’s theorem were obtained
in Beresnevich, Bernik, Dodson & Dickinson (1999) and Bernik, Dodson &
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Dickinson (1998). A slightly different notation has been adopted, reflecting
the connection with M(n)(ψ).

Theorem 10 Let I be a finite interval and f1, f2 : I → R be C3 functions such
that f ′

1(x) f ′′
2 (x) − f ′′

1 (x) f ′
2(x) �= 0 for almost all x ∈ I . Let ψ : N → R+ be

monotonic and let L f1, f2(ψ) be the set of x ∈ I such that the inequality

|a2 f2(x) + a1 f1(x) + a0| < ψ(|a|∞), (21)

where |a|∞ = max{|a0|, |a1|, |a2|}, has infinitely many solutions a =
(a0, a1, a2) ∈ Z3. Then

|L f1, f2(ψ)| =
{

0, if
∑∞

q=1 qψ(q) < ∞,

|I |, if
∑∞

q=1 qψ(q) = ∞.
(22)

Analogues of Khintchine’s theorem have been obtained recently for non-
degenerate manifolds. This was done independently by Beresnevich (2001b)
and Bernik, Kleinbock & Margulis (1999). In the former, a development of
Sprindžuk’s method of essential and inessential domains is applied to smooth
curves with Wronskians which are non-zero almost everywhere and the result
extended to nondegenerate manifolds. In the latter, the geometry of lattices in
Euclidean spaces and flows on homogeneous spaces are used†. The comple-
mentary divergence case has also been established for various cases in Beres-
nevich (1999, 2000, 2001a, 2001b) and Bernik, Kleinbock & Margulis (1999),
and the full result seems likely to be proved soon.

5 Hausdorff dimension on manifolds

Extremal results and the convergence case of Khintchine–Groshev type the-
orems give rise to null sets and so the question of their Hausdorff dimen-
sion arises naturally. A manifold M which is a C3 planar curve with non-
vanishing curvature everywhere except on a set with zero Hausdorff dimension
is extremal by Schmidt (1964). By extending this and the results of Baker &
Schmidt (1970), R.C. Baker proved that the Hausdorff dimension of Lv(M)

is 3/(v + 1) for v � 2 (R.C. Baker 1978). It is shown in Dodson, Rynne
& Vickers (1989) that for manifolds M with dimension m � 2 and 2-curved
(this specialises to non-zero Gaussian curvature for surfaces in R3) everywhere
except on a set of Hausdorff dimension at most m − 1,

dimLv(M) = m − 1 + (n + 1)/(v + 1) (23)

† A stronger multiplicative version is also proved. These results can be extended to manifolds
which can be sliced into suitable curves, such as, for example, analytic manifolds.
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for v � n. Note that this implies that M is extremal and that when ψ is de-
creasing, this result can be extended to

L(M ; ψ) = {x ∈ M : ‖q · x‖ < ψ(|q|) for infinitely many q ∈ Zn}.
Ubiquity has been used to show that the right-hand side of (23) is a gen-

eral lower bound for the Hausdorff dimension of L(M; ψ) when M is a C1

extremal manifold in Rn (Dickinson & Dodson 2000).

Theorem 11 Let ψ : N → R+ be decreasing with the lower order λ. Let M be
a C1 extremal manifold embedded in Rn and suppose λ � n. Then

dimL(M; ψ) � m − 1 + (n + 1)/(λ + 1).

The proof uses the geometry of numbers and Fatou’s lemma. The question
of the correct upper bound is more difficult but we conjecture that equality
holds for nondegenerate manifolds. Some of the results and methods discussed
above have been extended to Diophantine approximation of complex and p-
adic numbers (see Abercrombie 1995; Dickinson, Dodson, & Jin 1999).

Simultaneous Diophantine approximation on manifolds

Determining the Hausdorff dimension of the set Sv(M) defined in (20) of si-
multaneously v-approximable points on manifolds can be more difficult than
the dual case. When M is the circle S1 and v > 1, the natural number q is part
of the Pythagorean triple (p, r, q). Melnichuk (1979) exploited this to obtain
the correct upper bound and (with regular systems) an estimate for the lower
bound. In fact using either ubiquity or regular systems, it can be shown that

dimSv(S
1) = 1/(v + 1)

for v > 1 (Dickinson & Dodson 2001). Exponential sums can be combined
with regular systems to obtain estimates for the Hausdorff dimension of Sv(M)

for certain manifolds M . The argument involves the distribution of rational
points near the manifold. Further details on this and other aspects of the theory
can be found in Bernik & Dodson (1999).
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