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Abstract—A compact approximation of an expression for an averaged sum of reciprocal cubed phase veloci-
ties of elastic waves, which determines the Debye temperature at 0 K in terms of the components of the tensor
of the elastic moduli of solids with arbitrary anisotropy, has been obtained. The general relations are applied
to a particular case of materials with cubic symmetry.
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INTRODUCTION
It is known that, according to the Debye theory, the

molar specific heat of a solid is given by the following
expression (see, e.g., [1–3]):

(1)

where R is the universal gas constant, s is the number
of atoms per unit cell, T is the body temperature, and
Θ is the Debye temperature. Strictly speaking, the
simplifying suggestions of the Debye model are not
satisfied in practice and the parameter Θ is not con-
stant and depends on temperature T. At low tempera-
tures (much lower than Θ), the phonon contribution is
critical for the specific heat and formula (1) is trans-
formed as follows:

(2)

from here on, Θ is the Debye temperature at 0 K. This
temperature can be calculated theoretically using the
elastic-wave phase velocities [4]:

(3)

Here, ℏ is Planck’s constant, k is the Boltzmann con-
stant, NA is Avogadro’s number, ρ is the solid density,
M is its molar mass, and the value

(4)

is the sum of reciprocal cubed elastic-wave phase
velocities (quasi-longitudinal and two quasi-trans-

verse ones), averaged over all directions. Averaging is
performed as follows:

(5)

Calculations based on formula (4) are trivial for elas-
tically isotropic bodies, in which the elastic-wave veloci-
ties are independent of direction: ,
where  and  are the longitudinal- and transverse-
wave phase velocities, respectively. If material is aniso-
tropic, integration over angular variables of form (5)
cannot be perform analytically at any crystallographic
symmetry of material, and the precise result of averag-
ing can be found only numerically.

Analytical expressions for the I value were obtained
in [4, 5] in the form of power-law series, using the
approximate theory of elastic waves in crystals. They
make it possible to calculate I with any specified accu-
racy. The formulas obtained are inconvenient because
they are expressed in terms of intermediate quantities
specific for a given theory, and calculations must be
carried out each time for crystals with different sym-
metries.

The purpose of this study was to derive approxi-
mate expressions for I containing directly the compo-
nents of the tensor of elastic moduli  (21 moduli
for triclinic crystals with the lowest symmetry). These
expressions make it possible to estimate the I values
and, therefore, Debye temperature Θ (3) with mini-
mum computational expenditures. The solutions have
the form of power-law series up to the terms quadratic
in deviations of ciklm from elastic moduli  of an iso-
tropic medium, the elastic properties of which are
most close to those of the material under consider-
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ation. As an example, the obtained general expressions
are applied to materials with cubic symmetry.

EQUATION FOR 
Squared elastic-wave phase velocities are eigenval-

ues of the Green–Christoffel symmetric tensor Λ [4]:

(6)
where Λim = λiklmnknl. Here, λiklm = ciklm/ρ, where ciklm
is the fourth-rank tensor of elastic moduli, ρ is the
crystal density, n is the unit vector of the phase nor-
mal, and ub are the vector amplitudes of the isonormal
waves. Subscript 0 in (6) is related to a quasi-longitu-
dinal wave, and subscripts 1 and 2 are related to quasi-
transverse waves.

To pass to reciprocal cubed velocity, we introduce
the tensor

(7)
Then,

(8)

In Eq. (8), eigenvalues of tensor α, which is a half-
integer power of tensor Λ, are chosen to be positive.
Obviously, the sum of reciprocal cubed velocities is the
trace  of tensor α. In this case, .

To derive the equation to which the αt value satis-
fies, we will use some properties of reciprocal tensors
[4]. Having denoted the determinant of tensor α as |α|,
we note that at  the tensor , which is reciprocal

to tensor α, is defined as . The following
relations are valid:

At the same time,  and . Therefore,

Let us take into account relations (7). Then,

 and . In addi-

tion, . As a result, we arrive at

(9)

Equation (9) is a quartic equation with respect to αt,
with coefficients expressed in terms of the invariants of
tensor Λ; the latter is assumed to be specified.
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EXPANSION OF COEFFICIENTS INTO SERIES

Let us represent the Green–Christoffel tensor Λ as
the sum of the main part Λ0 and small additive
Λ' = Λ – Λ0. This partition is ambiguous, and the ques-
tion of the proper choice of Λ0 will be discussed below.

Having restricted ourselves to linear and quadratic
terms, we expand the coefficients in Eq. (9), contain-
ing Λ, in series in powers of Λ':

(10)

(11)

For the determinant of tensor Λ, we have [4]

Since

we have

(12)

We choose Λ0 as the Green–Christoffel tensor of
an isotropic medium: . Its eigen-
values are a, a, and d. Later we will take the values of sca-
lars a and d such that the elastic properties of this
medium differ minimally from those of the anisotropic
material under consideration. For an arbitrary power n of
this tensor, we have ; there-
fore, the traces of tensors in (10) and (11) take the form
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(14)

In addition, , 
, and (12) is written as

As a result, the powers of the determinant |Λ|, entering
Eq. (9), are presented by the series

(15)

(16)

Finally, the desired αt value can be written in the form
of expansion

(17)

where the unknown terms k0, k1, and k2 must be deter-
mined on the assumption that k0 does not contain Λ';
k1 contains terms linear in Λ'; and k2 contains terms
quadratic in Λ'.

To determine the k0, k1, and k2 values, we substitute
relations (13)–(17) into Eq. (9), grouping the terms
with different powers of Λ'. For k0, which is a zero
approximation of the αt value, we obtain the following
quartic equation, similar to (9):

(18)

One can easily make sure that  is one
of its roots. This conclusion is in agreement with
the fact that the trace of tensor
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, related to the iso-
tropic medium whose eigenvalues are a–3/2, a–3/2, and
d–3/2, is the same. Thus,

(19)

Having grouped the terms linear in Λ' and taking
into account (19), we obtain the following linear equa-
tion for the k1 additive, which refines the αt value (17):

hence,

(20)

Similarly, a linear equation for the next additive k2 can
be obtained by considering the terms quadratic in Λ',
taking into account (19) and (20), from which we find

(21)

Simple but cumbersome calculations performed to
derive k2 are omitted.

Thus, a sum of reciprocal cubed isonormal-wave
velocities with phase normal n can be approximately
calculated using formula (17), which contains the
terms determined according to (19)–(21).

In accordance with [4], we will write the parame-
ters of an isotropic medium whose elastic properties
are most close to those of the anisotropic material
characterized by the tensor λiklm:

(22)

The tensor Λ', entering expressions (19)–(21), can be
written as

(23)

where  and  are the tensor of the iso-
tropic-medium elasticity moduli. Note that the com-
ponents of tensor  can be written in the Voigt
notation as follows:
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(24)

where . According to
(22),

(25)

It is important that the following equalities are valid at
this choice of parameters a and d [4]:

(26)

AVERAGING OVER THE PHASE-NORMAL 
DIRECTIONS

The parameter I, which enters formula (3) for the
Debye temperature, is obtained at averaging of αt (17)
over the directions of phase normal n:

(27)

Here, we take into account that  (because k0

(19) is independent of n) and that , in view of
relations (20) and (26). Thus, within zero approxima-
tion, I is the sum of reciprocal cubed elastic-wave
velocities  in an effective isotropic
medium, and the first approximation disappears
because the parameters a and d are chosen so that the
elastic properties of this medium differed minimally
from those of an anisotropic material. To calculate the
following approximation, one must average k2 (21);

i.e., average scalars , , and . Taking
into account relation (23), we obtain

(28)
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(29)

Only some terms are given in relations (29); in fact,
the second and the third relations contain 15 and
105 terms, respectively. However, the tensor  is
symmetric with respect to permutations of pairs of
indices and permutations of indices in each pair

; therefore, (28) will have
similar terms, related to one of the following eight
groups:

(30)

where symmetric second-rank tensors  and
 are introduced. As a result,
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(32)

where primed components are calculated in corre-
spondence with formulas (24).

The final expression for I is obtained using (27),
(21), and (31):

(33)

where the parameters a and d are found using formu-
las (25) and the invariants A, B, C, P, and Q are deter-
mined from formulas (32). The Debye temperature at
0 K can be obtained by substituting I (33) into rela-
tion (3); thus, this value is expressed directly in terms
of 21 elastic moduli cβγ of the material with arbitrary
anisotropy (λβγ = cβγ/ρ). The relative error in calculat-
ing the I value is determined by the contribution of the
third approximation and its order corresponds to
cubed relative average quadratic elastic anisotropy [4].

CALCULATIONS FOR CUBIC CRYSTALS

The calculations according to general formula (33)
do not present any difficulties for anisotropic bodies of
any crystallographic symmetry. Let us focus here on
the crystals of the cubic system, which have the highest
symmetry as compared to the crystals of other systems.
Their elastic properties are characterized by three
independent moduli, λ11, λ12, and λ44:
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while other moduli are zero. In accordance with (25),
one can find the parameters of an isotropic medium
whose elastic properties are the closest to those of
cubic crystals:

(34)

Then, the nonzero components of the difference
fourth-rank tensor  (24) are as follows:
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characterizes the deviation of the elastic properties of
a cubic crystal from the isotropic-medium properties.
Taking into account (32), we calculate the invariants
of tensor :
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Table 1. Theoretically calculated and experimental values of the Debye temperature at 0 K for some materials belonging to
the cubic system

Material
Elastic moduli, GPa

ρ, g/cm3 M, g/mol Δ Θ(0), K Θ(2), K Θ (precise), K Θexp, K
c11 c12 c44

Tungsten 532.6 204.9 163.1 19.317 183.84 0.0010 384.4 384.4 384.4 383

Aluminum 114.3 61.9 31.6 2.733 26.981 0.0343 431.6 430.5 430.5 433

Vanadium 232.4 119.4 46.0 6.051 50.941 0.0357 400.5 399.2 399.3 399

Tantalum 266.3 158.2 87.4 16.696 180.94 0.0854 268.3 264.4 263.9 245

Gold 201.6 169.7 45.4 19.488 196.96 0.102 173.2 164.6 161.6 162.3

Palladium 234.1 176.1 71.2 12.132 106.42 0.120 290.9 279.1 275.7 271

Silver 131.5 97.3 51.1 10.635 107.86 0.160 245.1 231.7 226.5 227.3

Lead 55.5 45.4 19.4 11.599 207.2 0.162 117.7 109.5 105.2 105

Nickel 261.2 150.8 131.7 8.968 58.693 0.171 502.3 481.9 476.0 477

Copper 176.2 124.9 81.8 9.018 63.546 0.187 376.5 354.1 344.5 347
The Debye temperature was calculated based on the
reported data within the zero approximation by substi-

tuting the values , which cor-
respond to an effective isotropic medium (column Θ(0)),
into formula (3). In the next approximation, the I
value refined according to (38) (column Θ(2)) was sub-
stituted. The most accurate I and Θ estimates were

− −≈ = +(0) 3/2 3/22I I a d
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Table 2. Relative deviations of the approximate Θ(0) and Θ(2)

values of the Debye temperature from the accurate Θ values,
calculated numerically using formulas (3) and (4)

Material |Θ(0) – Θ|/Θ, 
%

|Θ(2) – Θ|/Θ, 
%

|Θ – Θexp|/Θexp, 
%

Tungsten ∼0 ∼0 0.37

Aluminum 0.26 ∼0 0.58

Vanadium 0.30 0.03 0.08

Tantalum 1.7 0.19 7.7

Gold 7.2 1.9 0.43

Palladium 5.5 1.2 1.7

Silver 8.2 2.3 0.35

Lead 11.9 4.1 0.19

Nickel 5.5 1.2 0.21

Copper 9.3 2.8 0.72
obtained by computer-aided numerical averaging of
the sum , while the elastic-wave
velocities were determined as solutions to the charac-
teristic equation  for cubic crystals (penul-
timate column). The experimental values of the Debye
temperature at 0 K, taken from [7], are reported in the
last column in Table 1.

The relative deviations (in percents) of successive
temperature approximations Θ(0) and Θ(2) from the Θ
value, calculated using numerical averaging of the sum
of reciprocal cubed velocities, are listed in Table 2.
It can be seen that these deviations increase with an
increase in the degree of material anisotropy, reaching
in the case of lead 10 and ~4% for Θ(0) and Θ(2),
respectively. At the same time, the relative deviation of
the theoretical Θ value from the experimental mea-
sured Θexp values generally does not exceed 1% and
equals 7.7 and 1.7% only in some cases (tantalum and
palladium, respectively).

CONCLUSIONS

Approximate expressions (3), (32), and (33) for
estimating the Debye temperature at 0 K were derived.
These expressions contain directly the elastic moduli
of a solid cβγ (or λβγ = cβγ/ρ, where β, γ = 1, … 6) and
can be applied for materials of any crystallographic
symmetry. Note that relation (33) is presented in the
form of a series (up to quadratic terms) in deviations of
moduli cβγ from elastic moduli  of an effective iso-

+ +v v v
3 3 3
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Λ − =v
2 0
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tropic medium. The formulas obtained can be used for
fast estimating of the Debye temperature at 0 K, which
does not require time-consuming numerical averaging
of the  value over the directions of
the phase normals of isonormal elastic waves.
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