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Abstract – We present an updated analysis of the total expression for the Aharonov–Bohm (AB) phase
of a charged particle in an electromagnetic field, which we previously obtained through the
superposition principle for quantum phases of charges and dipoles (Sci. Rep. 8 (2018) 11937), and here
we re-derive it directly in the framework of the general approach, when the source, the electromagnetic
field and the charged particle are quantized. The disclosure of the full set of quantum phase effects for a
moving charged particle allows an important update of the wave-particle duality concept by
generalizing the de Broglie relationship, where the wave vector associated with the particle is
proportional to the vector sum of the mechanical and interactional electromagnetic momenta.

Introduction. – In our recent papers [1, 2] devoted to the
analysis of quantum phase effects for charges and dipoles, we
predicted two new fundamental quantum phases for moving
charged particles, which we have named as the
complementary magnetic Aharonov–Bohm (AB) phase given
by the equation
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and complementary electric AB phase defined as
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which should therefore be added to the well-known magnetic
AB phase
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and electric AB phase
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Here A,  are the vector and scalar potentials,
correspondingly, v is the velocity of charge, ds=vdt is the path
element, and other designations are standard.

We remind that the prediction of complementary AB
phases (1), (2) has been made through the analysis of the full
set [3] of quantum phase effects for dipoles with application
of the principle of superposition of quantum phases (SQP),
where the phase of a dipole is presented as a superposition of
quantum phases for all charges composing the dipole.

The validity of SQP follows from the linearity of the
fundamental equations of quantum mechanics and, as we have
shown in [1], the full set of quantum phases for moving
dipoles disclosed in [3] consists of three fundamental phases
(1)-(3) for moving point-like charges, which fulfils the
requirements of the SQP principle (the next section).

Despite the fact that the complementary AB phases (1),
(2) are v/c times smaller than the corresponding AB phases (3)
and (4), they play an important role in the clarification of the
physical meaning of the AB effect, and lead to important
implications for the entire quantum physics, as we discuss
below.

This makes topical the problem of direct derivation of
complementary AB phases (1) and (2) through some general
principles of quantum physics applied to the system “source,
charge and their electromagnetic (EM) field”, and to the
moment, this problem remains still unsolved.

As we will show below, a first step towards solving this
problem was made in ref. [4], where in the framework of a
fully quantum model (where the source, the EM field and the
charged particle are quantized), the authors of ref. [4] derived
a new expression for the “point-by-point” quantum phase,
aimed to elucidate the primary role of EM fields over EM
potentials in the determination of the AB phase.
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In the present contribution, we will show that further
development of the approach of [4] allows us to derive
directly a full set of quantum phase effects for point-like
charges (1)-(4), including complementary magnetic (1) and
complementary electric (2) AB phases.

We discuss the importance of this finding and conclude in
the last section.

Quantum phase effects for charges and dipoles.
– We remind that, by the end of the 20th century, two quantum
phase effects for moving dipoles had been predicted: the
Aharonov-Casher (AC) effect for a magnetic dipole m in an
electric field [5], and the He-McKellar-Wilkens (HMW) effect
for an electric dipole p in a magnetic field [6, 7], and both of
them have later been confirmed by experiments [8, 9].

At the same time, the derivation of the AC and HMW
phases was carried out in [5-7] with particular expressions for
the Lagrangian of a dipole in an EM field, which left
unanswered the question of the possible existence of other
quantum phases for dipoles.

Seeking an answer on this question, we proposed [3] to
use the covariant expression for the Lagrangian density of a
material medium in an EM field [10]

2
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(where M is the magnetization-polarization tensor, and F is
the tensor of EM field) to determine the corresponding
Lagrangian L and the Hamilton function   LLH  vv
for a compact dipole. Then, going to the quantum limit and
defining the corresponding Hamiltonian, we discovered the
quantum phase of the moving dipole as the sum of four
components, which in the weak relativistic limit, up to the
terms of order (v/c)3, reads as [1, 2]:
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with all quantities evaluated in a labframe.
The first and second terms on the rhs of (5) correspond to

the AC and HMW phases, respectively, while the third and
fourth terms thus stand for new quantum phases associated
with the motion of an electric dipole in an electric field, and
the motion of a magnetic dipole in a magnetic field.

The disclosure of four quantum phase effects for moving
dipoles definitely makes topical the physical interpretation of
each term of eq. (5), which should be based on some unified
and general physical principle, equally applicable to each
component of phase (5). Such a general principle of SQP has
been advanced in refs. [1, 2], where we assumed that due to
linearity of fundamental equations of quantum mechanics, the
quantum phase for a dipole should be presented as a
superposition of quantum phases for all charges composing
the dipole.

Exploring this idea, it is convenient to introduce the scalar
potential and the vector potentials for the EM field, as well as
the charge density  and the current density j=u for dipoles,
where u is the flow velocity of carriers of current in the rest
frame of the magnetic dipole. After some calculus, we have
obtained [1, 2]:
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Further, defining the charge density as
    

i
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for an electrically neutral dipole (ei=0), we found that the
HMW phase pB (6b) represents the algebraic sum of the
magnetic AB phases (3) over all charges of the electric dipole,
while the phase mB (6d) can be presented as the sum of the
complementary magnetic phases (1) over all charges of the
magnetic dipole [2]. Next, addressing to the AC phase mE
(6a) and the phase pE (6c) we revealed their common origin
as the composition of the complementary electric AB phases
(2) for all charges of the dipoles [2].

Therefore, experimental confirmation [8] of the AC phase
(6a) concurrently serves as the validation of the
complementary electric AB phase (2), which already leaves no
doubts about the existence of the complementary magnetic AB
phase (1), too, although direct measurement of the phase mB
(6d) is still required.

Note that the electric AB phase (4) cannot contribute to
the total quantum phase (5) for a moving dipole, where its
components explicitly depend on the velocity of dipole v. At
the same time, it is well known that the electric AB phase does
not explicitly depend on the velocity of the charge, and can
exist already for a charge at rest.

Anyway, three velocity-dependent phases (1)-(3) occur to
be sufficient to explain the full set of quantum phases for a
moving dipole (5) by applying the SQP principle [2].

In this situation, the direct derivation of complementary
AB phases for a point-like charge in an EM field acquires a
fundamental importance, which thus represents the principal
new point of the present contribution.

As we mentioned in the introduction section, a first step
towards the solution of this problem has been recently made in
ref. [4] on the basis of a general model, where a charged
particle, a source and its electromagnetic (EM) field are
quantized. In the framework of this approach, the authors of
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[4] have derived a new expression for the “point-by-point”
quantum phase
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is the interactional EM energy between the charge and the
solenoid. (Here we removed the incorrect factor ½ taking
place in the corresponding equation of [4]). In this equation,
rc, rs designate the radial coordinates of the charge and the
solenoid, respectively, in the motional plane of the electron,
B0, E0 stand for the magnetic and electric fields of the
solenoid, Bc, Ec are the magnetic and electric fields of the
charge, and other designations are standard.

Eqs. (7) and (8) show an explicit dependence of the AB
phase on EM fields, and the problem of the locality of the AB
effect was solved in [4] through entanglement of the quantum
charge and the quantized EM field.

We add that, based on eqs. (7) and (8), the authors of [4]
predicted a gauge-independent phase difference at each point
along the charge path, which definitely elucidates the primary
role of EM fields over EM potentials in generating the AB
phase. This can be seen from the known fact that the integral

 
s

dsA

is gauge-independent for a closed path only. By such a way,
Marletto and Vedral [4] arrived at their principal claim that the
AB phase is generated locally, like all other quantum phases,
and proposed the idea of an experiment to measure the
“partial” AB phase.

Now, we will show that the new presentation (7), (8) for
the “point-by-point” phase of a charged particle does not lead
to the customary expression for the total AB phase as the sum
of the magnetic (3) and electric (4) components only, but the
resulting new expression does contain two more terms, which
exactly coincide with the complementary magnetic (1) and
complementary electric (2) AB phases, correspondingly.

In order to prove the validity of this assertion, we
consequently consider two typical configurations: the first one
is aimed to observe the magnetic AB effect (an elongated
solenoid as a source of magnetic field B0 with E0=0) and the
second one is aimed to observe the electric AB effect (a
parallel plate charged capacitor as a source of electric field E0
with B0=0).

In the first case (magnetic AB effect), eq. (8) takes the
form (in CGS units used below):
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Next, we define the AB phase of the electron, which is
acquired between time moments 0 the t:
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Here dt=ds/v, where v is the velocity of the electron. For a
non-radiating electron, we have [11]
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Substituting this equality into eq. (10), and using the
identity     acbcba  , we obtain
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is the interactional EM field momentum of the system
“solenoid and electron”.

At this point, it is important to emphasize that, in general,
the EM field momentum (12), being expressed through
potentials, is not equal to eA/c and contains an additional
term, so that eq. (11) is not equivalent to the customary
expression for the magnetic AB effect (3).

We can arrive at an explicit expression for the phase (11)
through the vector potential A, using the expression of the
interactional EM field momentum via A obtained in [12] at
E0=0:
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Further on, combining eqs. (11) and (13), we obtain a new
expression for the magnetic AB phase through the vector
potential, resulting from eqs. (7), (8):
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Thus, we see that the second term on the rhs of eq. (14)
correspond to the complementary magnetic AB phase (1),
which we have predicted earlier [1] by applying the SQP
principle to the analysis of quantum phase effects for dipoles.

Next, we consider the electric AB effect, where at B0=0
we have
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Evaluating phase (15), we assumed that an electron
moves along the axis x outside a parallel plate charged
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capacitor oriented in the xy plane. In this case, the inner
electric field of the capacitor E0 is collinear with the axis z,
and, in general, the field and the corresponding scalar
potential  do not represent smooth functions. Therefore, the
theorems of vector analysis become inapplicable to evaluate
the volume integral in eq. (15). In this situation, we have to
calculate directly the product E0Ee inside the capacitor, using
in the relativistic case the Heaviside expression [11] for the
electric field Ec of a uniformly moving charge e. Then, for a
small distance d between the plates, we obtain
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is the Lorentz factor of the charge, and we designated u=x/.
Integrating (16), we derive
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Here =Ed is the scalar potential at the location of the charge
with an appropriate choice of its value at infinity. Using
equalities

222 11 cv , ds=vdt,

we transform eq. (17) to the form
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Thus, a new expression for the electric AB phase (18),
derived from the general equations (7) and (8) of ref. [4], is
not equivalent to the customary expression for the electric AB
effect (4), and contains an additional term of the
complementary AB phase (2), which has already been derived
in ref. [1] by applying the SQP principle to the analysis of
quantum phase effects for dipoles.

Finally, considering the general case, where both the
electric field E0 and the magnetic field B0 are not vanishing,
we obtain the total quantum phase of a charged particle as the
sum of eqs. (14) and (18):
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Here, the first and second terms on the rhs stand for the
usual electric and magnetic components of the AB phase,
while the third and fourth terms describe the complementary
electric and complementary magnetic AB phases,
correspondingly.

By such a way, the approach of SQP suggested in refs. [1,
2] for the analysis of quantum phase effects for charges and
dipoles, as well as the general quantum approach of ref. [4],
leading to new expressions (7), (8) for the “point-by-point”
quantum phase of a charged particle, do converge to each
other with respect to the complete expression for the total AB
phase (19), containing complementary magnetic (1) and
complementary electric (2) phase components.

Further, we would like to elaborate on the clarification of
the physical meaning of eq. (19) for the total quantum phase
of charged particle, which can be presented in the form
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stands for the velocity-dependent component of the quantum
phase of the charge.

In order to analyze the physical meaning of eq. (20), it is
convenient to express the interactional EM field momentum
for the system “source, EM field, charged particle”
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through the EM field potentials [12]:
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Combining eqs. (20) and (21b), we reveal the equality
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Next, we notice that in the absence of EM fields, the
phase of a quantum particle associated with its motion can be
presented in the form
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due to the de Broglie relation
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between the wave vector kfree and the mechanical momentum
PM of the charge. By analogy with eq. (23), we can represent
the AB phase (20) as
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where the introduced wave vector is equal to
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Hence, defining the total wave vector as the sum of kfree
and kAB, we obtain
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and the wavelength of a charged particle in an EM field
becomes equal to

EMMtotal

hh
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Therefore, at constant PM (no force on the electron),  can
still vary due to the variation of PEM. In particular, for the
magnetic AB effect, PEM has opposite signs for two different
electron passes around the solenoid, which leads to the
corresponding phase shift.

Thus, eq. (24), first obtained in [13, 14] and named the
“generalized de Broglie relationship”, clearly clarifies the
origin of the AB effect, where the observed phase difference
over different paths of charge is explained by the
corresponding difference in wavelengths over both paths,
where the interactional EM field momentum PEM can be
different. One can also see that eq. (24) predicts a measurable
phase shift along any non-closed path; and hence, a physically
meaningful presentation of PEM that ensures the gauge-
invariance of eq. (24) should always be done through EM
fields, see eq. (21a).

Discussion. – We remind that eq. (19) for the total
quantum phase of a charged particle has already been obtained
in refs. [1, 2, 15] by applying the heuristical SQP principle to
quantum phases for dipoles, and was discussed in our recent
publications (see e.g. [13, 14]). Besides the evident advantage
of being rigorous, present re-derivation through eqs. (7), (8) in
the framework of the general quantum model [4] allows us to
disclose more implications of eq. (19).

Gauge-invariance of the total quantum phase
First of all, we remind that the known expression for the

AB phase through the Hamiltonian or charged particle
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(where Ĥ , 0Ĥ stand for the Hamiltonian in the presence
and absence of the EM field, correspondingly) yields only the
known magnetic (3) and electric (4) AB phases, when the
customary definition of the energy-momentum operator for an
electrically charged particle in an EM field

 Ap ˆ (26)

is used. (Here A , A/c is the four-potential, and
=0…3).

Thus, the failure of eq. (25) with the momentum operator
(26) to obtain the total quantum phase of a charged particle as
the sum of four components in eq. (19), motivated us to re-
define the energy-momentum operator in a more general form
[2, 15]


EMPp ˆ , (27)

where 
EMP represents the interactional EM four-

momentum of the system “charged particle in an EM field”;
its zeroth component is defined through the interactional
electric energy, while its spatial components are given by the
interactional EM field momentum (21a) for the system
“charged particle in EM field”.

Next, comparing alternative definitions (26) and (27), we
see that the transition from the customary definition of the
momentum operator (26) to its new form (27) in the equations
of quantum mechanics is formally equivalent to replacing the
four-potential A with the four-momentum PEM

. Hence, the
known old expression for AB phase
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1
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(which includes the electric (4) and magnetic (3) AB phases
only) is modified to the form
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which yields eq. (19) with application of eq. (21b).
Further on, one should emphasize that the customary

expression for the AB phase (28) is gauge-invariant only for a
closed path of a charged particle, whereas the AB phase (29)
is manifestly gauge-invariant for an arbitrary closed or open
path. The latter property of eq. (29) seems especially
significant in connection with the principal possibility to
measure the difference of AB phases along an open path
revealed in [4].

Preliminary analysis of applications of the new
momentum operator (27) to various physical problems was
presented in ref. [2], and lies beyond the scope of the present
paper.

Locality of AB effect.
Next, we should comment on a typical situation in

observing the AB effect, where the field momentum PEM for
the considered system “source of EM field and charge” has a
finite value, while both the electric field and the magnetic
field vanish on the charge. In this situation, it is important to
emphasize the revealed link between eqs. (7), (8) obtained in
[4] and the generalized de Broglie relationship (24).
Therefore, the problem of the locality of AB effect, as
substantiated in [4], is solved through the quantum
entanglement of the quantized EM field and quantum charge.

Generalized de Broglie relationship
One should emphasize that the derivation of the

generalized de Broglie relationship (24) became possible only
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with the disclosure of complementary AB phases (1) and (2)
and subsequent re-definition of the energy-momentum
operator (27). Therefore, eq. (24) can be considered as a
relativistic extension of the well-known de Broglie
relationship

MPh

obtained in the framework of non-relativistic quantum
mechanics.

Further perspectives
First, we emphasize that the problem of experimental

confirmation of the complementary phases (1) and (2) is
closely related to the experimental verification of the
generalized de Broglie relationship (24). However, nowadays
such experiments for non-relativistic charges, which are
usually used in the observations of AB effect, look rather
difficult.

It seems that a more realistic way to confirm the existence
of complementary magnetic (1) and complementary electric
(2) AB phases can be to measure the total AB phase of
relativistic charged particles with 1.

As can be seen from eq. (19), AB phase should go to zero
at 1 due to mutual cancellation of AB phase components
(1)-(4). Therefore, observations of this effect could indicate
the validity of eq. (19) for the total AB phase.

We also find interesting the application of the total
expression for the AB phase (2) to bound states in relativistic
quantum systems [16], where new physical implications and
experimental schemes for verification of the phases (19) can
be found.

In addition, there exists an indirect way to confirm the
existence of complementary AB phases by measuring the full
set of quantum phase effects for dipoles (5), especially its two
new terms predicted in refs. [3] (third and fourth on the rhs of
eq. (5)). In the case of successful implementation of such
experiments, the existence of complementary AB phases for
electrically charged particles becomes plausible to the same
extend like an adoption of the SQP principle, connecting
quantum phases of charges and dipoles.

Finally, the achieved successes of the SQP principle make
interesting its application to the non-Abelian and non-
dispersive phases for dipoles, in particular, to the analogue of
the HMW phase described in ref. [17], to the AC phase in the
presence of a Lorentz-violating background coupled to a
spinor and a gauge field (see, e.g., [18]).
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