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Abstract— being one of the most challenging tasks in 

computer vision dynamical object tracking problems have faced 

additional issues regarding the unmanned aerial vehicle. In 

particular, image degradation, uneven object intensity, variety 

in object sizes, etc. In this paper, we proposed the 

implementation of the S-Y-biLSTM technique for on-road 

object shooting from an unmanned aerial vehicle. The training 

and testing process of the proposed network was performed 

based on the dataset of on-road objects shouted at the height of 

15-45 meters.  

Keywords— multi-object tracking, deep neural network, 
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I. INTRODUCTION 

Over the past several decades the computer vision area is 
moving highly forward in the range of tasks, e.g., motion 
analysis [1], object capture [1], object detection [3], traction, 
etc. primarily due to the opportunities provided by the deep 
learning-based methods. Its high speediness and accuracy 
result in feature extraction and scaling has extended the range 
of applications where such systems may be utilized. [4] One 
of the most challenging and high-promising domain 
application area is the unmanned aerial vehicle. [5 – 12] 

It is worth to mention, that appropriate image processing 
technique of single-shot camera-based computer vision 
system in the long-term perspectives seems one of the key 
competitive techniques in such system due to the high cost of 
utilizing and deployment of alternative systems. For example, 
sensing systems with Radiofrequency (RF) ranging [13], 
LIDAR-based systems [14] or other multisensory systems 
[15]. To build and validate the deep-learning based algorithms 
fairly, the data science community has successfully developed 
a number of datasets including detection datasets (e.g., 
Caltech [16] and DETRAC [16]) and tracking datasets (e.g., 
KITTI-T [17] and VOT2016 [18]). The visual tracking 
approach using deep learning neural networks has been not 
only significantly improved compared to traditional 
approaches [19], but also improved over the last 10 years in 
terms of deep learning approaches [20]. 

In [21] the authors presented the DeepSort-based network 
that used the pre-trained convolutional neural network to 
compute bounding boxes. The authors of [22] proposing the 
Tracktor ++ network have progressed in accurate and speed 

by using a Faster R-CNN [23] for frame-to-frame tracking by 
extracting features. Other suggestions, for example, Joint 
Detection and Embedding (JDE) [24] network based on 
RetinaNet [25] architecture, deviated from the two-stage 
paradigm. 

However, despite the high promising perspectives of the 
computer vision-based systems, the object detection and 
tracking scenarios from the unmanned aerial vehicle has 
accompanied by the range of additional challenges [26 – 30]: 

• Image degradation. Rapid changes in the movement 
within the external environment cause noisy and fuzzy 
aerial images. In addition, high-speed flight or camera 
rotation also increases the complexity of object 
detection. 

• Uneven object intensity. Flexibility in camera 
movement may result in an uneven density of captured 
and detected objects. [16] Also, most objects occupy a 
small part of the entire image, that resulting in 
challenges to separate them from their surrounding 
environment. 

• Real-time problem. Object tracking is highly different 
from the detection or classification task due to the 
requirement to accurately locate the observing objects 
in real time. 

In this paper we proposed an implementation of proposed 
S-Y-biLSTM network for object tracking from unmanned 
aerial vehicle. According to our hypothesis, the memory -
based methods will be highly effective for the task of object 
tracking via the unmanned aerial vehicle, because on-road 
objects regularly move along a strictly trajectories from the 
UAV’s shooting view. To validate our idea, we have collected 
the dataset based on image sequences shooted from the 
unmanned aerial vehicles shouted: VisDrone 2019 [31], 
Drone Vehicle Dataset [32], and DTB70 [33] with the 
corresponding labels. Finally, we have provided the 
robustness analysis of S-Y-biLST compared to LYOLOv4eff 
[34], ROLO [35] and DeepSort. [32] 

II. R-S-BILSTM OBJECT TRACKING METHOD 

In this paper we have presented the R-S-biLSTM object 

tracking method for on-road objects shoot from an unmanned 

aerial vehicle consisted of 3 major steps. The key motivation 
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behind the proposed method is that for the tracking technique, 

the learning process based on historical visual information 

seems like an optional approach. In our vision, within the 

tracking technique the recurrent convolutional-based network 

will be doubled the effectiveness due to the fact, that it uses 

both the history of locations and robust visual features of past 

frames. In particular, the Long Short Time Memory (LSTM) 

[36 – 41] using memory cells better discover the long-range 

temporal relations. This method extends the neural network 

learning and analysis into the spatial and temporal domain.  

Firstly, we recalculated the difference between the 
following frames and passed it through the YOLO-based 
network to extract the feature map. All skip connection 
outputs, and the final output, are concatenated together and 
fed through a final fully connected layer to further reduce the 
dimensionality of the embedding space. The YOLO-based 
features based on our hypothesis will be more robust for using 
as an input of LSTM network. As the detection technique, we 
proposed the SSD_eff method. The bidirectional LSTM was 
used as a backbone tracking technique due to possibility to 
remember longer term relationship. Compared to the 
backbone LSTM network [45], where spatial information is 
lost due to the encoded input, in our method we have replaced 
the fully connected layers with the convolutional ones. Thus, 
in our case in the input-to-state and state-to-state transitions 
the fully spatial-temporal correlation information is used.  

The detailed equations' formulation of biLSTM sell is 
presented in the 1 – 5 below: 

 i(t) = sigma (W(x,i) * x(t)+W(h,i) * H(t-1)+b(i)); (1) 

 k(t) = sigma (W(x,k) * x(t)+W(h,k) * H(t-1)+b(k)); (2) 

 f(t) = sigma (W(x,f) * x(t)+W(h,f) * H(t-1)+b(f)); (3) 

 CELL(t) = f(t) * CELL(t-1) +i(t) * tahn (W(x) * X(t) + 
W(h) * H(t-1) + b(cell));  (4) 

 H(t) = k(t) * tahn (CELL(t)) (5) 

In equations (1) – (5) “*” – convolution operator, “x” – 

Hadamard product, σ is the sigmoid function and W(x*), 

W(h*) - convolutional kernels (input and hidden 

respectively). The hidden H(t) and cell states C(t) updated 

based on the input states X(t) that pass via i(t), f(t), k(t) gates 

activations during time steps, b – bias terms. 

The bidirectional LSTM can thereby access long-range 

context in both directions of the time sequence of the input, 

therefore potentially gain a better understanding of the video 

sequence.  

To sum up, the set (h(f), c(f)) from the first LSTM cell is 

redirected on the forward pass, the second set (h(b), c(b)) on 

the backward pass. In additional it is worth to mention, that 

for each time sequence the corresponding hidden states from 

the two LSTM sets after stacking are passing through a 

Convolution layer to build a resulted hidden representation, 

that will be redirected to the next time step.  

III. RESULTS 

We have analyzed datasets with videos of objects in the 
cities shooting from UAV's on-board cameras. Finally, our 
dataset was collected our based-on parts of three datasets: 
VisDrone 2019 [31], Drone Vehicle Dataset [32], and DTB70 
[33] with included pre-labeled annotations of bounding 
boxes. In our task, we collected sequences of objects in side-
shot scope mode from the height level (15 – 45 meters). 
Within the preprocessing stage, we have resized images to a 
single resolution 1024x540 using the pre-trained ImresNet 
[46] network based on residual learning strategy. The 
collected dataset includes 300 video sequences 3.4 hours long 
with the corresponding annotations of objects. The average 
area occupied by detected and tracked objects was about 
3,4% pixels of the whole frame, the maximum was 23,6%. 
Our method we have compared to the up-to-date tracking 
methods: ROLO [47], DeepSort [48] and LYOLOv4eff [35]. 
First, it is worth to mention, that the proposed method 
surpassed the LYOLOv4eff, DeepSort and ROLO based on 
the majority of MOT metrics presented in the Table 1. In 
particular, we have dramatically decreased the number of ID 
switches in contrast to LYOLOv4eff, that with the lower 
retention level by MT metric demonstrate the significant 
positive shift in the tracking robustness in compared to 
LYOLOv4eff. However, we have mentioned tracked objects 
during less than 20% of its lifespan by the proposed network. 
However, higher value of ML metric leveled out by the 
higher values by FN and FP metrics. To sum up, considering 
the 2 major MOT metrics MOTA and MOTP we have 
mentioned that the proposed method achieved the higher 
robustness and accuracy ability in compared to LYOLOv4eff 
[34] ROLO and DeepSort. 

IV. CONCLUSION 

With this paper, we have proposed a novel S-Y-biLSTM 

network for dynamical on-road object tracking from the aerial 

vehicle, in particular, unmanned aerial vehicles. (UAV) It 

consisted of 3 major stages. The performance analysis of the 

proposed approach has shown that our network S-Y-biLSTM 

surpasses not only the LYOLOv4eff but also ROLO and 

DeepSort methods based on 2 cumulative MOT metrics 

MOTA, MOTP with the following results for S-Y-biLSTM  

compared to LYOLOv4eff, DeepSort and ROLO. 
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