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Abstract. We analyze the physical meaning of quantum phase effects from a new perspective, related to
our recent disclosure of two novel quantum phases for electric/magnetic dipoles — in addition to the pre-
viously known Aharonov-Casher and He-McKellar-Wilkens phases, and two novel quantum phases for
point-like charged particles — in addition to the electric and magnetic Aharonov-Bohm phases. We show
that the obtained complete expression for the quantum phase of a moving charge in an EM field allows to
establish its direct link with the interactional electromagnetic momentum in the system “particle and ex-
ternal field” and to better understand the physical meaning of quantum phase effects, which is discussed
using a number of particular examples.

1 Introduction

The Aharonov-Bohm (A-B) effect was predicted more than 60 years ago [1, 2] and later con-
firmed experimentally [3]; nevertheless, discussions about its physical meaning and implications
are carried out up to the present time (see, e.g. [4-10]).

In a general consideration, the analysis of the A-B effect involves, as minimum, three enti-
ties: a charged particle, a source of EM field, its EM fields/potentials, and in the most general
approach, all of them should be quantized (see, e.g., [9]).

In what follows, in our analysis of the A-B effect, we will mainly follow the approximate
description applied in [1], where the source of EM field and its fields/potentials are treated as
semi-classical, while the moving charge is considered as a quantum particle. Not to have to dis-
cuss at this point the limits of applicability of this approximation, we notice that this approach
allows one to exclude from consideration any specific sources of EM fields/potentials, and to
consider EM fields and potentials in the vicinity of the trajectory of a charged particle as some
exogenous parameters. This approach was applied in the very first paper establishing the A-B
effect [1] along with the known expression for the Hamiltonian of a quantum charged particle in
an EM field (see, e.g. [11])
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Here A and j denote for the vector and scalar potentials, correspondingly, defined at the location
of the charged particle e.

In this case, both the magnetic and electric A-B phases can be simultaneously derived
through the Schrodinger equation with Hamiltonian (1), leading to the general expression for the
quantum phase of charged particle in the presence of an EM field (see, e.g., [1])
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Here ﬁo =—inV/2m stands for the Hamiltonian of the particle in the absence of EM field. In-

deed, combining egs. (1) and (2), we present, with sufficient accuracy of calculations, the A-B
phase da.g for charged particle e as the sum
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corresponds to the electric A-B phase, and

1
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stands for the magnetic A-B phase, ds=vdt is the spatial elements, and v is the velocity of charge.

The magnetic A-B phase (5) was first observed in [3]. The available attempts to experimen-
tally confirm the presence of the electric A-B effect (4) remain unsuccessful due to serious tech-
nical difficulties in distinguishing this phase effect from dynamical effects arising from the non-
vanishing electric component of the Lorentz force even in optimized experimental setups (see,
e.g. [12]). At the same time, from a conceptual viewpoint, there are no doubts in reality of both
electric (4) and magnetic (5) A-B phases, since they are conjointly derived from the Schrédinger
equation for a charged particle in an EM field with the common Hamiltonian (1).

A few decades later since the discovery of the A-B effect, a new quantum phase has been
predicted by Aharonov and Casher for a magnetic dipole, moving in an electric field E [13]

_1 (m, x E)-ds, (6)
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where my is the proper magnetic dipole moment of the dipole.
Next, by the end of the past century, one more quantum phase for a moving electric dipole in
the presence of a magnetic field B has been predicted by He, McKellar and Wilkens [14, 15]

1
de:‘h_cL(pOXB)'ds' (7)

where po designates the proper electric dipole moment.

Later, the existence of quantum phase effects (6) and (7) has been confirmed experimentally
[16, 17]. Usually, the Aharonov-Casher (A-C) phase is associated with the presence of a hidden
momentum for a magnetic dipole (see, e.g., [18-20]), while the He-McKellar-Wilkens (HMW)
phase for an electric dipole can be associated with the product (pO X B)/c, which was named in

[21] as the hidden momentum for an electric dipole.

It is worth to notice that both quantum phase effects for moving dipoles (6) and (7) have
been derived in [13-15] with some particular non-covariant expressions for the Lagrangian of an
electric/magnetic dipole in an EM field, which, in general, left open the problem of the possible
existence of more quantum phase effects for such dipoles.

This problem was first explored in refs. [21, 22] on the basis of an explicitly covariant ex-
pression for the Lagrangian density of a material medium in the presence of an EM field [23]

I=M™F_ /2, (8)

where M™ is the magnetization-polarization tensor, and F. is the tensor of EM field.

Further integration of the Lagrangian density (8) over the volume of a compact dipole al-
lowed us to obtain a new Lorentz-invariant expression for the Lagrangian,

L=p-E+m-B, (8a)
where p, m stand for the electric and magnetic dipole moment, respectively, for a laboratory ob-
server.

Based on eg. (8a), we obtained a new relativistically consistent motional equation and a new
Hamilton function for the dipole [21, 22]. Its further generalization to the quantum limit with ap-
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plication of eq. (2) yields the following new expression for the total quantum phase of a moving
dipole [21, 22]

1 1 1 1
aipore =%J‘(m0 x E)-ds—%‘.‘(po X B)-ds—ﬁfg(po/, ' E)\/-ds—WIg(mo,, -B)v-ds; ©)

where p,,, m,, denote vector components collinear with the velocity of the dipole v.

One can see that the first and second terms on the rhs of eq. (9) correspond to the A-C phase
(6) and the HMW phase (7), while the remaining two terms describe new quantum phases,
emerging under the motion of an electric dipole in an electric field

1
dpE :_Ejg(pou : E)v-ds, (10)

and under the motion of a magnetic dipole in a magnetic field

1
d.g =—Wj'g(mo,, -B)v-ds, (11)

correspondingly.

Thus, we have found four quantum phase effects for a moving electric/magnetic dipole, cor-
responding to four possible combinations between the pair E, B and the pair py, mg, and this
finding makes topical the question about their physical interpretation.

Seeking an answer to this question, we supposed in refs. [24, 25] that, due to the linearity of
fundamental equations of quantum mechanics, each quantum phase for a moving dipole can be
presented as a superposition of the corresponding quantum phases for all charges composing the
dipole.

This idea, being attractive from the physical viewpoint, nevertheless faces substantial diffi-
culties in an immediate attempt of its realization. This is due to the fact that all components of
the quantum phase for the dipole, presented by the four terms in eq. (9), explicitly depend on the
velocity v of this dipole, and thus, they cannot include the velocity-independent electric A-B
phases (4) for the charges of the dipole. At the same time, it is obvious that the remaining mag-
netic A-B phase (5) for point-like charges cannot simultaneously explain the four quantum phase
effects for a moving dipole presented by eq. (9).

We explore this problem in sect. 2 and show that the application of the *“superposition prin-
ciple” to explanation of quantum phase effects to electric/magnetic dipoles allows disclosing two
new quantum phase effects for moving charges, next to the phases (4), (5), with the following
expression for the velocity-dependent phase component [24-26]:

e e . e
dgy (V)=—| A-ds+—|j v-ds—— | Vv(A-v)-ds. 12
o (V)= [A-dsto 5 [iv-ds— < [V(A-V) (12)
Here the first term on the rhs corresponds to the magnetic A-B phase (5), while the other

two terms define new quantum phase effects for a moving charge, named in [24, 25] respectively
as the complementary electric A-B phase

1 ;.
dg ZWJ.GJ v-ds, (13)

and the complementary magnetic A-B phase

e
dm:—ﬁj(v-A)v'ds. (14)

In sect. 3 we show that the disclosure of the velocity-dependent quantum phase for a
charged particle in the form (12) allows us to clarify its physical meaning, where it is directly
related to the interactional field momentum for a charged particle in an external EM field — a
point, which was not so obvious, when we deal with the magnetic A-B phase (5) taken alone.
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This finding allows us to conclude that the wave vector of a moving charged particle Kk is
linearly proportional to the sum of mechanical Py and electromagnetic Pgy momenta. Therefore,
Pev does affect the quantum phase of charged particle even in the situation where no net force
exerts on the particle and its mechanical momentum Py, remains constant along different paths.

Further, we emphasize that the new expression for the velocity-dependent A-B phase (12)
cannot be derived via equation (2) with the standard Hamiltonian (1) and requires its modifica-
tion to the form [10, 25]

G o iV =Py, )
2M

where Pgy denotes the interactional EM field momentum for the system “charged particle in an
EM field”.

As we further showed in refs. [10, 25], eq. (15) implies an appropriate re-definition of the
momentum operator for a charged particle, where instead of its canonical momentum (which, as
is known, does not have a real physical meaning [27]), this operator is associated with the sum of
the mechanical and interactional field momentum for a charged particle in an EM field [10, 25].

The close link between the disclosure of the complementary electric (13) and complemen-
tary magnetic (14) A-B phases for electrically charged particle and the need to redefine the mo-
mentum operator makes topical the problem of experimental observation of the phases (13), (14)
either directly for relativistic electrons or indirectly, by measuring new quantum phases (10) and
(11) for moving dipoles, as discussed further in sect. 3.

Next, in sect. 4, we discuss the problem of non-locality of the A-B effect from a new angle
of view and clarify the role of EM fields and potentials in its manifestation. Finally, we conclude
in sect. 5.

+q (15)

2 Quantum phase effects for dipoles and new fundamental quantum
phases for moving charges

Here, we analyse four quantum phase effects for moving dipoles, presented by eq. (9). In order
to simplify subsequent calculations, we will use a weak relativistic limit, corresponding to an
accuracy ¢, where eq. (9) can be written in a convenient approximate form [22]

1 1 1 1
yipote z%j(mx E)-ds—%j((px B))-ds—ﬁj'(p- E)v-ds—ﬁj'(m- Bv-ds, (16)

with all quantities evaluated in a labframe.

Further, in the subsequent derivation of the fundamental quantum phases for point-like
charges, which compose the quantum phases for dipoles (16), we have to express all terms of
(16) through the scalar j and vector A potentials. This problem has been solved in ref. [25],
where the following relationships were obtained:

1
de:—%.L[\J;rA-dst, (17a)
1 (o
de:_W‘”J ru-dsav, (17b)
1 .
oE =_E'H” v-dsdv, (17c)
d =—h—13”(r u- A)-dsiV ; (17d)
C LV

here r is the charge density, and u is the flow velocity of carriers of current in a magnetic dipole.
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In ref. [25], we proposed to clarify the physical meaning of egs. (17a-d) through the “super-
position principle” for quantum phases, using the simplest model of an electric dipole — two me-
chanically bound charges —e and +e, separated by a small distance d; and using the simplest
model of a magnetic dipole — a small electrically neutral conducting loop carrying a steady cur-
rent.

First, we consider the HMW phase and A-C phases, which have been confirmed experimen-
tally and thus, the application of “superposition principle” for these phases can be considered as
its practical validation.

So, we apply the adopted model of electric dipole to the HMW phase (17a) and obtain:

de:—%\HrA-dst=—h—i[£A(r+d)-ds—E[A(r)-ds , (18)

where L. (L.) stands for the paths of a positive (negative) charge of the dipole, and r is the spatial
coordinate of the dipole.

Eq. (18) signifies that the HMW phase represents the algebraic sum of the magnetic A-B
phases (2) for each charge constituting the dipole. This result demonstrates the applicability of
the “superposition principle for quantum phases” to the explanation of the origin of quantum
phase effects for moving dipoles. Moreover, the experimental confirmation of the HMW phase
mentioned above [8], along with observations of magnetic A-B phase (see, e.g. [3]) does confirm
the correctness of this principle.

This result makes further application of the superposition principle for quantum phase to be
important and interesting, and further we address the A-C phase, which has also been confirmed
by experiments [6,7].

Using the model of magnetic dipole specified above, we adopt that the positive charges of the
frame of the loop of the dipole are immovable in its proper frame, and their phase is defined as

1 ¢
(de)pos'tive = _W\J;fj r.v- dsdV . (198.)

Considering the contribution of the negative charged (the carries of current), we designate
their flow velocity through u, and obtain their phase as

1 .
(de )negative = _WJ‘§J r _(U + V)' dsav . (19b)
\%

Summing equations (19a) and (19b) at r , =—r _=r , we obtain the phase (17b).

Equations (19a-b) indicate that the motion of a point-like charge in the field of a scalar po-
tential j yields the phase (13), which has been named in refs. [21, 22] as a “complementary elec-
tric A-B phase”. In what follows, we will supply it with the subscript “c”.

Next, we consider the phase dpe, which for the adopted model of an electric dipole takes the
form:

1 . e . e r.

pE=_WJ{rJv~dwv:—WL{J (r+dW-dS+WL{J (r)v-ds. (20)

This equation shows that the observed quantum phase dye for an electric dipole can be pre-
sented as a superposition of complementary electric A-B phases d; (13), and once again con-
firms the necessity of introducing this phase to clarify the physical meaning of quantum phase
effects for moving dipoles.

Finally, we consider the remaining phase d.g (17d) for a magnetic dipole, which for the

model of the magnetic dipole specified above can be written by analogy with egs. (19a-b):
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(de)pos'tive = _izj"[r +(V' A)V -dsdV, (218‘)

nc?d
1 ¢
(A )regarve = = J fir (u+v) A)u+v)-dsav . (21b)

Summing egs. (21a) and (21b) at r, =—r _, and taking into account that for a closed loop
the integrals ”(u -A)u-dsiv, ”(V A)u-dsdV are vanishing, we arrive at the phase (17d).
VL VL

Thus, we have shown that the phase d.g for a magnetic dipole moving in a magnetic field
can be presented as a superposition of new quantum phases for point-like charges (14), which
has been named in refs. [21, 22], as “complementary magnetic A-B phase”.

Thus, the idea to present the quantum phases for a moving dipole through a superposition of
fundamental phases for point-like charges, composing the dipole, allowed us to disclose the new
phase effects for moving charges (13) and (14), and to establish a relationship between quantum
phase effects for charges and dipoles as shown in Fig. 1.

Fundamental phases

Magnetic A-B Complementary | | Complementary

phase electric phase magnetic phase
dq dcj ch
HMW phase A-C phase Phase Phase
de de dpE de

Derivative phases

FIG. 1 adapted from [25]: Relationship between velocity-dependent quantum phases for charged particles and for
moving dipoles, established through the superposition principle for quantum phases.

3 Quantum phase effects for a charge particle through the interac-
tional EM momentum and possible ways for their observations

In this section, we first explore the physical meaning of the velocity-dependent quantum phase
(12) for a moving charge in an EM field, which, as assumed in [25], should be closely related to
the interactional EM field momentum for the system “charged particle in an EM field” [27]

1 1
P, =—|(ExB_ )JdV +—|(E_.xB)dV, 22
EM 4pC\J;( x e) +4pC\J/-( e X ) (22)

where E, B are the external electric and magnetic fields, while E., Beare the electric and magnet-
ic fields of the charged particle e.

In order to determine the relationship between the velocity-dependent phase (12) and the in-
teractional EM field momentum (22), we have, first of all, to express Pgyv through the scalar j
and the vector A potentials of the external EM field. Adopting the case of a macroscopic source
of external EM fields, where the fields E, B can be taken as constant vectors in the vicinity of a
charged particle, we obtain [25, 26]

_eA Vg _ev(A)

C CZ 3 !

P
EM c

(23)

Comparison of egs. (12) and (23) straightforwardly yields a relationship between the veloci-
ty-dependent quantum phase (12) and the interaction EM field momentum (23):



7

dey, (v)=% [ Py - s. (24)

This equation could not be revealed earlier, when the complementary electric and magnetic
A-B phases were unknown. We will show below that this equation, recently found in [26], opens
new perspectives in understanding the physical meaning of quantum phase effects for moving
charges in the presence of an EM field.

Next, we remind that the quantum phase for a freely moving particle, which we designate as
d,.(v), is defined by de Broglie relationship [11], i.e.

1
d free(v) = %J- I:)M -ds, (25)
where Py denotes the mechanical momentum of the particle.
Hence, the total velocity-dependent phase of charged particle is given as the sum of egs. (24)
and (25):

1
d(v):dEM (V)+dfree(v):EJ.(PM + I:)EM).ds' (26)
Using the general expression for the phase in terms of the wave vector k,
d(v)=[k-ds, (27)

and comparing egs. (26) and (27), we obtain: k =(P,, + Py, )/%.
Therefore, the wavelength of a charged particle moving in the EM field is equal to [26]
h

K:|PM + P (28)

This equation shows that the de Broglie wavelength of a charged particle depends not only
on its mechanical momentum Py, but rather on the modulus of the vector sum of the mechanical
and EM momenta®. This means, in particular, that at constant Py, when no net force acts on the
charge, its de Broglie wavelength may nevertheless change due to a variation of the interactional
EM field momentum Pgp.

As we will see in the next section, eq. (28) plays an important role in further clarification of
the physical meaning of quantum phase effects for charged particles, moving in an EM field.

Now we emphasize the key point, which is that the new phases (13) and (14) could in no
way be obtained using the Schrodinger equation with the commonly used Hamiltonian (1); the
latter, as is known, yields only electric (2) and magnetic (3) A-B phases. Moreover, the Dirac
equation and the Klein-Gordon equation too, fail yielding complementary A-B phases (13) and
(14), when the standard definition (1) for the momentum operator is implied [10].

The incapacity of the known fundamental equations of quantum mechanics to derive the
complementary electric (13) and magnetic (14) A-B phases becomes especially crucial in the
situation, where the A-C phase for a moving magnetic dipole is revealed in the experiment [16],
which, in the view of an equivalent presentation of the A-C phase through the scalar potential
(17b), can also be considered as an experimental confirmation of the complementary electric A-
B phase. These facts do validate the entire approach based on the derivation of quantum phase
effects for dipoles (9) through the covariant Lagrangian (8a) with a further application of the
“superposition principle” for quantum phases, and endorse the existence of both complementary
electric (13) and magnetic (14) A-B phases.

?We notice that eq. (28) also holds for the bound electron in hydrogenlike atoms with the appropriate expression for
the interactional EM field momentum [28, 29].
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In this situation, one can realize that the disclosure of new phases (13) and (14) requires, in
general, to modify the Hamiltonian of a charged particle in view of eg. (2), and such a modifica-
tion should have a general character and equality applicable to both the weak relativistic limit
(corresponding to the Schrodinger equation for a charged particle in an EM field) and to the gen-
eral relativistic case (covered by the Dirac and the Klein-Gordon equations). As is known, the
covariance of the latter equations is ensured, amongst other things, by the known fact that the
scalar potential and vector potential entering into these equations constitute a four-vector. One
more four-vector, characterizing the properties of the EM field is the combination of the interac-
tional EM energy Ugy and the interactional EM momentum Pgy; of the system “charged particle
in an EM field”. In the general case the interactional EM energy is presented as the sum of the
electric and magnetic components, and, as is known (see, e.g. [27]), the corresponding Hamilto-
nian does not include the component of the interactional magnetic energy. From the physical
viewpoint, this reflects the known result of classical electrodynamics as to the magnetic force
does not do work. Taking further into account that the interactional electric energy is already
presented in all fundamental equations of quantum mechanics as the term ¢ , one can thus re-
place the term with the vector potential (eA/c) by the interactional EM momentum Pgy without
violating the covariance of these equations.

Such a replacement can be formally made by re-defining the momentum operator for the
system “charged particle in an EM field”, where instead of the old customary definition of this
operator through the canonical momentum of a charges particle P, i.e.

P-p, +2 L, p—inv, (29)
o
we associate this operator with the vector sum of the mechanical momentum Py, and the interac-
tional EM momentum Pgy [10, 25], i.e.
P, + Py, - P=—inv. (30)

Thus, using the new momentum operator (30) we obtain the Hamiltonian of the Schrédinger
equation in the form (15) instead of eq. (1) derived with the momentum operator (29).

Further, using the explicit presentation of the EM field momentum (23) via the EM poten-
tials, we arrive at a new expression for the Hamiltonian

H=_t (P—%—Vej +eV(A'V)j2+ej , (31)

oM c c? c?

where all variables are considered as operators.

Assuming the Coulomb gauge, where the operators v and A commutate with each other (see,
e.g. [11]) and adopting the weak relativistic limit, where the equation P = Mv can be used, we
obtain with an accuracy ¢:

2 i\ /2 2
He M Aig AV 8V +ev(A.v)'

32
2M c c? c? (32)

Here we have neglected the term e2A2/2Mc‘Z in comparison with other terms of eq. (37), which
is justified in any practical situation.

Next, substituting Hamiltonian (32) into eq. (2), we obtain the total phase of a charged parti-
cle associated with its motion in the EM field, as

er. e e . e
dgy, =—%J'J dt+%J‘A-ds+ﬁJ‘j v-ds—%J'v(A-v)-ds. (33)

The first and second terms on the rhs stand for the electric and magnetic A-B phases, while
the third and fourth terms describe the complementary electric and magnetic A-B phases, corre-
spondingly.
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By such a way, the total phase (33) derived from the Schrodinger equation with a new defi-
nition of the momentum operator (2), contains all the fundamental quantum phases for point-like
charges indicated in Fig. 1, which are harmonized with the corresponding quantum phases for
the moving dipoles entering into Eq. (16) through the superposition principle for quantum phases
[24, 25] resulting from the linearity of the fundamental equations of quantum mechanics.

Further on, we emphasize that both definitions of the momentum operator (29) and (30) rep-
resent, in fact, alternative basic postulates of quantum mechanics, which can only be verified ex-
perimentally. In this regard, the problem of observing complementary A-B phases (13) and (14)
acquires a fundamental significance.

Discussing possible ways of experimental observation of complementary A-B phases, we
notice that they are \?/c? times smaller than the corresponding electric (4) and magnetic (5) A-B
phases at all other equal conditions. Hence, in the non-relativistic case, the electric and magnetic
A-B phases strongly dominate over the complementary A-B phases, and the latter become prac-
tically not observable.

Experimental evidences of the need to redefine the momentum operator (2) can be obtained,
at least in principle, by measuring the magnetic A-B phase for relativistic electrons, moving at a
velocity v tending to c in a region with a non-vanishing vector potential A, and j =0. Then, one
can see from Eq. (12) that the total phase (the sum of the magnetic A-B phase and the comple-
mentary magnetic A-B phase) tends to zero at v—c. Therefore, the decrease of the total magnetic
A-B phase with an increase of the velocity of relativistic electrons should be interpreted as an
unambiguous proof towards the existence of the complementary magnetic A-B phase. In turn,
this result should once again demonstrate the need to re-define the momentum operator in the
form (2).

A similar argumentation is applicable to the electric A-B phase for relativistic electrons
moving in a region with a non-vanishing scalar potential j and A=0, where the total phase (the
sum of the electric A-B phase and the complementary electric A-B phase) tends to zero when
V—C.

Nowadays, both kinds of such experiments with relativistic electrons look technically com-
plicated, and their detailed discussion lies outside the scope of the present paper.

In the non-relativistic limit, the existence of complementary electric (13) and complemen-
tary magnetic (14) A-B phases can be confirmed indirectly through the corresponding measure-
ment of quantum phases for moving dipoles, as indicated in Fig. 1, provided that the validity of
the superposition principle for quantum phases is demonstrated in experiments.

From this angle of view, the recent experiment [17], where the HMW phase dpg for electric
dipoles has been observed, acquires a fundamental importance as the practical validation of the
superposition principles for quantum phases, given that the HMW phase is composed from the
known magnetic A-B phases summarized over all charges of the electric dipole (see eq. (18)).

This fundamentally important result, along with the successful observation of the A-C phase
[16], unambiguously indicates the existence of the complementary electric A-B phase (13). Since
the latter phase can be derived from the Schrédinger equation only with a new definition of the
momentum operator (2), we can already consider the result [16] as the first experimental confir-
mation of the new form (2) for the momentum oper ator.

Further experimental evidence with respect to the existence of complementary A-B phases
(13), (14) can be obtained by measuring the quantum phases dpe (17¢) and dmg (17d), which are
directly related to the complementary A-B phases as indicated in Fig. 1.

In particular, the phase dye (17c) can be revealed in the quantum interference of molecules
with a large electric dipole moment, and in ref. [22] we suggested, as an example, a molecule
BaS, which meets this requirement. The corresponding numerical estimation gives a typical val-
ue dpe =10 mrad under realistic experimental conditions [22], which is comparable with the A-C
and HMW phases revealed in refs. [16, 17].

The measurement of the phase d,g can be carried out using neutron interferometry, and un-
der realistic experimental conditions it can achieve a value near 30 mrad [22].
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The estimated values of the phases d,e and dng are comparable with the A-C and HMW
phases observed in experiments [16, 17], which makes their measurement topical, provided that
they are reliable distinguished from the Stark phase [30] (for d,e) and the Zeeman phase [31] (for
Omg)-

At the same time, we once again highlight the importance of experiments for the direct
measurement of the complementary electric (13) and complementary magnetic (14) A-B phases;
until such experiments are not performed, the existence of complementary phases should be tak-
en as a conjecture.

We also emphasize that new measurements of quantum phase effects for charges and dipoles
moving in an EM field represent an important source of information regarding the choice of the
correct definition of the momentum operator.

This claim is gained by the fact that realizations of the A-B effect, e.g., in gravitational field
(see, e.g., [32]), or in photonic systems [33] cannot contribute to the solution of this problem.
This is related to the fact that in the phase factor for the wave function g™k the presence of
gravity affects the time rate t and thus influences on the term wt, whereas the velocity-dependent
complementary electric and magnetic A-B phases are determined by the variation of the wave
vector k.

Under observation of the photonic A-B effect (see, e.g. [33] and references therein), both the
frequency w and the wave vector k of photons are modulated, though the physical mechanisms
of such modulation substantially differ from the mechanism of variation of quantum phase for
electrically charged particles, which is analyzed in the next section.

4 On the physical meaning of quantum phase effects for charged par-
ticles in an EM field

Analyzing the physical meaning of quantum phase effects for charged particles with the inclu-
sion of complementary electric and complementary magnetic A-B phases, we address the ex-
pression for the total quantum phase (33), which can be presented in the equivalent form

d :——_[Jdt+dEM ———J.jdt+ [ Pey - ds (34)

with taking into account egs. (12) and (24).
Further on, using the known expression for the interactional electric energy for a charged
particle e located in a static electric field E [27]
§ - [E-EqV (35)
ap 5

(where E, stands for the electric field of the particle), and the expression for the interactional

EM field momentum (22), we reveal that the total phase (34) can be expressed exclusively in
terms of external electric E and magnetic B fields, without explicit introducing the correspond-
ing scalar and vector potentials:

1 1
dEM:—TMI\_[E~Eedth+MJJ(ExB dst+—” )-dsaV . (36)

Thus, we express the quantum phase dgy for a charged particle exclusively in terms of ex-
ternal electric E and magnetic B fields, without explicit introducing the corresponding scalar and
vector potentials.

The new form (36) for the total quantum phase suggests to renew the discussion about the
manifestations of quantum phase effects and their physical meaning, which is carried out below.

In the subsequent analysis, we first address the recent discussion about the possibility of an
alternative understanding of the A-B effect through the non-local interaction of gauge-
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independent quantities, proposed in [6], instead of its common interpretation through local
gauge-dependent quantities, such as scalar and vector potentials [1, 2].

In particular, in [6] it was assumed that even in the case when the net force on the electron
on behalf of a source of the EM field is equal to zero, the local action of the field of the electron
on the charged particles of a source is capable to explain the non-vanishing A-B phase due to the
mechanism of quantum entanglement, described through the overall wave function for the elec-
tron and the source. In support of this claim, some particular examples are considered in [6],
dealing with the electric A-B effect and with the magnetic A-B effect, correspondingly, which
yield correct expressions for quantum phases through quantum entanglement.

Addressing the magnetic A-B effect, Vaidman suggested introducing into the Mach-Zehnder
interferometer a solenoid of a special configuration, consisting of two non-conducting cylinders
of radius r, large length L and opposite charges Q and —Q, which are homogeneously distributed
on their surfaces. It is assumed that the cylinders rotate in opposite directions without friction,
and thus, when an electron enters one arm of the circumference co-axial to the solenoid, it induc-
es torques of opposite sign on each cylinder. The torque, being integrated for each cylinder, in-
duces a phase in the electron wave function, which numerically coincides with the observed A-B
phase (for details of calculations, see [6]).

Thus, according to [6], the magnetic A-B effect can be interpreted in term of a gauge-
independent interaction through an electric field with the introducing of non-local quantum en-
tanglement of an electron and a solenoid.

However, as pointed out in ref. [34], Vaidman missed the principal problem of how a phase
generated at a solenoid becomes detectable on an electron. The authors of [34] show that the lat-
ter problem can be consistently solved when we abandon the approximation of classical field,
and consider a quantizied EM field. This way, they show that “...the A-B phase is mediated lo-
cally by the entanglement between the charge and the photon...”, and predict a gauge-invariant
value for the phase difference at each point along the electron’s path. This leads the authors of
[34] to conclude that for any two points — which they designate as r_ and rg — belonging to two
branches of the electron path, there exists a gauge-independent phase difference that is measura-
ble, at least in principle.

At the same time, the authors of ref. [34] do not comment on the work by Aharonov et al.
[7], where the entire idea of VVaidman to explain the origin of the magnetic A-B effect by the
quantum entanglement of the electron and the source was strongly criticized. In particular, the
authors of [7] proposed to introduce an electromagnetic superconducting shield between the so-
lenoid and the electron, which screens the solenoid from the electric and magnetic fields of the
electron, when it passes near the solenoid along a semicircular orbit. Consequently, any torque
on each cylinder of the solenoid disappears, and no phase emerges in the wave function of the
electron and cylinders. At the same time, the vector potential A generated by the solenoid at the
location of the electron remains practically unchanged in the presence of a shield, so that the
magnetic A-B effect is present even in the absence of any torque on the cylinders of the solenoid
due to the moving electron [7].

This observation shows that, as minimum, the idea by VVaidman to explain the magnetic A-B
phase via quantum entanglement cannot be universal. Based on this result, the authors of [7]
came to the conclusion that the original interpretation of the magnetic A-B effect through the lo-
cal action of the vector potential of the solenoid on the electron [1, 2] remains in force.

We can add that the criticism of Aharonov et. al. [7] regarding the approach by Vaidman [6]
remains also in force with respect to the work [34], where no comments were made with respect
to the case of an electrically shielded solenoid.

Now, we suggest to reanalyze the magnetic A-B effect on the basis of eq. (36), which for an
infinitely long solenoid and an orbiting electron, is simplified to the form

el j [(E.xB)-dsav, (37)
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where B stands for the magnetic field of the solenoid. One can show [26] that eq. (37) can be
presented in the form
e

d=
chg®

jA.ds,zéjA-ds (38)

S

for a non-relativistic electron, which coincides with the standard expression for the magnetic A-
B effect.

Further, we emphasize that involvement of a superconducting shield between the solenoid
and the electron leads to the emergence of an electric Eqigg=—Ee and a magnetic Bgjag=—Be
fields in its inner volume, including the location of the solenoid. Thus, any force on the solenoid
due to a moving electron (resulting from the time variation of the “hidden momentum” of the
solenoid (see, e.g., [18-20]), and not mentioned in [6]) and any torque on its cylinders disap-
pears. At the same time, the emergence of the fields Egjaq, Bsiegd d0€s not affect the interactional
EM field momentum for the solenoid and the orbiting electron

1

Py =— [(E.xB)dV, 39
0 = 20 (FexB) (39)

and does not affect the quantum phase (37).

One should mention that eq. (39) still does not determine the total interactional EM field
momentum in the presence of a superconducting shield; we have also to take into account the
components of the interactional EM field momentum, determined by the vector products

E.xBg,qq and Eg, 4 % B,, which, in general, are not equal to zero inside the shield. At the same

time, due to the equalities Egieg=—Ee and Bgigg=—Be in the inner volume of the shield, we find
that in any practical situation the sum E_x By, 44 + Egqq X B. = —2E,x B, is much smaller than

the product E_x B ineq. (39), so that it can be neglected.

Thus, egs. (37) and (38) remain applicable to the description of the magnetic A-B effect re-
gardless of the presence (or absence) of any shielding of the solenoid. The physical meaning of
these equations is closely related to the generalized de Broglie relationship (28), which indicates
the dependence of the de Broglie wavelength not only on the mechanical momentum of a
charged particle, but also on the interactional EM field momentum for the system *“charged parti-
cle and a source of EM field”. The situation looks as if a charged particle instantly “senses” the
interactional EM field momentum at any fixed time moment through variation of its de Broglie
wavelength (28), even if such an EM field momentum is, in general, distributed over the entire
free space.

Here, it is important to emphasize that the latter observation still does not violate classical
causality due to the known fact that the velocity-dependent (bound) EM field always represents a
function of the state of its source charges [35], which in the particular case of a uniformly mov-
ing charge is expressed by the Heaviside solution of Maxwell equations [27, 36]. According to
this solution, the electric and magnetic fields measured at the four-point (t, r) generated by a uni-
formly moving source charge located at the four-point (t, r¢), can be presented as the correspond-

ing functions of the difference of the present coordinates |r(t)— re(t)| and the charge velocity v.

However, this still does not violate the classical causality, and does not imply any kind of non-
local interaction, because for a uniformly moving charge, its electric and magnetic fields at each
spatial point r at a given time moment t can always be expressed through the retarded spatial co-
ordinates of the charge, since at constant v, the present and retarded coordinates are unambigu-
ously related to each other (see, e.g., [27, 36]). Therefore, the possibility of describing the EM
fields of a uniformly moving charge in the present time coordinates should be considered only as
a mathematical artifact [27, 36].

Accordingly, the interactional EM field momentum (22) for the system “uniformly moving
charged particle and the source of the EM field” can be expressed both through the present and
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the retarded coordinates of the charge. The first way is definitely convenient from a mathemati-
cal viewpoint; nevertheless, the physically meaningful presentation of the interactional EM mo-
mentum is to be achieved via retarded coordinates.

The latter option becomes especially important in the analysis of the physical meaning of the
generalized de Broglie relationship (28), which naturally explains the phase shifts of the wave
functions of a moving charge by the change of its wavelengths versus Pgy, even if the mechani-
cal momentum Py in eq. (28) remains constant (no net force of the charge) Here, it is obvious
that the calculation of the spatial integrals in eq. (22), defining Pgy in the present time coordi-
nates, is convenient from the mathematical viewpoint. Nevertheless, in the analysis of the physi-
cal meaning of eq. (28), one should keep in mind that, at the fundamental level, the interactional
EM field momentum for a moving charged particle in the presence of an external EM field rep-
resents the function of its retarded spatial coordinated, where the electric E. and magnetic Be
fields of the charge, being evaluated in different present coordinates r and a fixed time moment t
in the integral (22), correspond to the suitable retarded coordinates r’ taken at different retarded
times t'. Here, we specially emphasize that any event (t, r) is always related to the corresponding
event (t', r') via the time-like space-time interval, which implies no non-locality.

This result means, in particular, that at a constant or at slowly varied velocity of a charged
particle, where the radiation losses of the particle are negligible, and its bound EM field repre-
sents the function of state [35] (which is always the case in observations of A-B phases), the
generalized de Broglie relationship (28), being closely related to eq. (12) for a velocity-
dependent quantum phase, does not mean the violation of classical causality. Therefore, the
equivalent presentation of the velocity-dependent quantum phase in terms of the electric and
magnetic fields in the last two terms of eq. (36) cannot be interpreted as a manifestation of a non-
local effect, even if the interactional EM field momentum determining this phase is distributed
over the entire space.

Realizing this fact, it becomes obvious that a formal mathematical operation — where the in-
teractional EM field momentum (22), defined as the function of EM fields, is modified to eq.
(23) expressed via the scalar j and the vector A potentials — cannot affect the physical meaning
of the velocity-dependent component of the A-B phase (24), and only highlights its essence as a
local effect, regardless of a particular presentation of interactional EM field momentum either
through the EM fields (22) distributed over the entire space, or through the EM potentials at the
location points of the moving charge (23).

Next, we consider the electric A-B phase, which corresponds to the first term on the rhs of
eg. (36). We would like to re-emphasize that in the absence of any force on the moving charge —
which, in fact, represents the necessary condition for observation of quantum phase effects — the
electric field E of a uniformly moving electron consists of the velocity-dependent (bound) com-
ponent alone, which, as we have mentioned above, represents the function of state [35]. There-

fore, the volume integral J.E -E.dV in eq. (36) admits it evaluation in the present spatial coordi-
\%

nates. At the same time, one should keep in mind that for a uniformly moving electron the pre-
sent time coordinates of its electric field Ee are unambiguously linked with the corresponding
retarded coordinates and thus, the presentation of the electric A-B phase as a function of the
fields Eg, E in the first term of (36) does not contradicts classical causality and, therefore, does
not means any violation of locality in the manifestation of this effect. This is especially clearly
seen through Eq. (34), where the scalar potential j is defined at the location point of the source
charge e. Thus, like in the case of the velocity-dependent quantum phase, which allows two
mathematically equivalent presentations through EM fields and potentials on the basis of egs.
(22), (23), the electric A-B phase also admits two mathematically equivalent presentations
through electric fields and scalar potential through egs. (36), (34), and can be interpreted as a lo-
cal effect, even if the integration of the product E - E, in the first term on the rhs of this equation

is carried out over the entire free space at a fixed present time moment.
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The common interpretation of the electric A-B effect in terms of local interaction was ques-
tioned in [6]. Like in the case of the magnetic A-B effect, Vaidman argued [6] that that the elec-
tric A-B effect can be understood through the quantum entanglement of the source of the electric
field/potential and the electron due to the force exerted by the electron on a source of electric
field in a situation, where the reactive force of the source on the electron is equal to zero.

As an example, the author [6] proposed to consider a special configuration of the Mach-
Zehnder interferometer, where an electron e, propagating along on its arm, falls into some *“po-
tential hole” and spends some time t=t there. Simultaneously, two source particles with the same
charge Q are rapidly approaching the electron from opposite sides and stop at equal distances r
from the electron, remaining at rest during the time interval T<t. In this configuration, the net
force acting on the electron due to both source charges is always equal to zero, whereas the force
on each source charge due to the electron has the equal value and opposite sign for each charge.

Therefore, as Vaidman shows [6], the overall wave function acquires a phase

d- —2eQT
rh

which is equal to the phase of the electric A-B effect for the considered configuration.

This approach by Vaidman was again criticized by Aharonov et al. [7] on the basis of a
number of particular examples, where a moving electron creates no force on the source of elec-
tric field/potential, but the electric A-B phase definitely emerges. Thus, examples [7] show that
the idea by Vaidman [6] to explain the origin of the electric A-B effect by the quantum entan-
glement of the source of the electric field and the electron is at least not universal.

What is more, one can straightforwardly show that eq. (40) obtained in [6] for the electric
phase does agree with our general expression for the quantum phase (36) and corresponds to its
first term on the rhs, when we deal with a static or quasistatic case.

Thus, the general expression for the quantum phase (36) remains well applicable to all
problems dealing with both the electric and magnetic A-B effect, presented in [7] for demonstra-
tion of the failure of quantum entanglement [6] to explain these effects.

, (40)

5. Conclusion

1. In sect. 1, 2 and partially in sect. 3, we shortly presented, for the convenience of the readers,
our earlier results [10, 21, 22, 24-26] obtained in the study of quantum phase effects for electri-
cally charged particles, which can be summarized as follows:

- On the basis of the explicitly covariant expression (8) for the Lagrangian density of the
material medium in an EM field [21, 22], we derived the complete quantum phase (9) for a mov-
ing electric/magnetic dipole, which contains two previously known A-C and HMW phases (the
first and second terms on the rhs of eq. (9)), and two new terms described by the third and the
fourth terms on the rhs of eq. (9).

- In the analysis of quantum phase effects (9) for the moving dipoles, due to the linearity of
the Schrddinger equation, we adopted that each quantum phase for a moving dipole should be
composed of the corresponding quantum phases for point-like charges of the dipole [21, 22]. In
this way, we have shown that the application of the “superposition principle for quantum phases”
to eqg. (9) allows us to disclose two new quantum phases for point-like charges, next to the
known electric and magnetic A-B phases, which we named as complementary electric and mag-
netic A-B phases, correspondingly.

- The disclosure of complementary A-B phases does require to re-define the momentum op-
erator of an electrically charged particle in an EM field through the vector sum of the mechanical
momentum Py, and the interactional EM field momentum Pgy for the system “charged particle in
an EM field” [10, 25], instead of the previous definition of this operator through the canonical
momentum of a charged particle.

2. In the analysis of the physical meaning of quantum phase effects for electrically charged
particles, we distinguished the velocity-independent quantum phase of electric A-B effect d. (see
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eq. (3)) and the velocity-dependent component of quantum phase dgw(v) defined by eg. (12). We
have shown in sect. 3 that the phase dgm(V) is directly related to the interactional EM field mo-
mentum for the system “charged particle in an external EM field” through eq. (24). This finding,
along with the known expression (25) for the phase of a freely moving particle, allows us to ar-
rive at the generalized de Broglie relationship (28) for the wavelength of a charged particle,
moving in an EM field. The obtained relationship (28) indicates that the de Broglie wavelength
of the moving charge is inversely proportional to the modulus of the vector sum of the mechani-
cal momentum Py, of the particle and the interactional EM field momentum Pgy (22). Thus, in
the particular case of a constant Py, when no force acts on the particle, its wavelength can never-
theless change due to variation of the EM field momentum Pgy.

3. The latter finding occurs crucial in the analysis of physical meaning of quantum phase ef-
fects for moving charges. According to the customary viewpoint, the quantum phase of a
charged particle is affected by the direct local action of the scalar j and vector A potentials at its
location, and the explanation of this effect is based on the claim that a charged particle “feels”
EM potentials at its location. A recent attempt to interpret the A-B effect in terms of the non-
local action of gauge-independent quantities in the system “charge and source of EM field” [6]
and the further development of this idea for a quantized EM field [34] still encounter difficulties
in their extension to the case when the elongated solenoid is electrically shielded [7]. Now we
clarify the physical meaning of quantum phase effects for charged particles through the depend-
ence of their de Broglie wavelength on the interactional EM field momentum.

4. For the system “charged particle in an EM field” the interactional EM field momentum
Pem can be expressed either in terms of the EM fields (22), or in terms of EM potentials (23).
Despite the mathematical equivalence of egs. (22) and (23), one should emphasize that, from the
physical viewpoint, the interactional EM field momentum is distributed, in general, over the en-
tire free space, whereas the scalar potential ] and the vector potential A entering into eq. (23) are
defined at the location point of the charge.

In this situation, it is important to emphasize that for the motion of a charge with a constant
or slowly varying velocity — which is always the case in observation of A-B phases — the radia-
tion losses of the charge are negligible, and its electric E¢ and magnetic Be fields in eq. (22) for
interactional EM field momentum consist only of velocity-dependent (bound) components. The
latter, as is known [27, 35, 36], can be expressed through the present spatial coordinates of the
charge. This fact, however, does not affect the local origin of quantum phase effects, because at
constant v, the present and retarded coordinates of a moving charge are unambiguously related to
each other, so that the evaluation of both integrals on the rhs of eq. (22), defining the interaction-
al EM field momentum in the present time coordinates, is equivalent to its evaluation at suitable
retarded coordinates r’ at different retarded moments t', and each event (t, r) is related to the cor-
responding event (t', r') via a time-like space-time interval in a full agreement with classical cau-
sality. This observation once again confirms the local character of quantum phase effects, wheth-
er they are expressed through mathematically equivalent eq. (33) (dealing with potentials j , A),
or eq. (36) (dealing with the fields E, B).

Finally, we considered a number of particular examples [6, 7] aimed to calculate the A-B
phases in various situations, and confirmed the universal character of mathematically equivalent
egs. (33) and (36) in the description of quantum phase effects for charged particles in EM fields.
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