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Abstract. We analyze the physical meaning of quantum phases for moving electric/magnetic 

dipoles through a superposition of quantum phases for point-like charges of the dipole, and in 

this way we disclose two new quantum phases for moving charges, next to the well-known 

magnetic and electric Aharonov-Bohm phases. We find that a consistent description of the full 

set of quantum phase effects for charged particles requires to modify the standard definition of 

the momentum operator via the canonical momentum of a particle towards a more inclusive 

definition, where this operator is associated with the vector sum of mechanical and interaction-

al electromagnetic (EM) momenta for a charged particle in the EM field. Some principal impli-

cations of this result are discussed. 

 

1. Introduction 

It is known that in the middle of 20th century, Aharonov and Bohm predicted two quantum phase ef-

fects for electrons in an electromagnetic (EM) field [1,2]: the electric Aharonov-Bohm (A-B) effect, 

characterized by a phase  

 ò-= dt
e
jdj

h
 (1) 

as well as the magnetic Aharonov-Bohm (A-B) effect with a phase 

 ò ×=
L

A d
c

e
sA

h
d . (2) 

Hereinafter j, A stand for scalar and vector potentials, correspondingly, ds=vdt is the path element 

of the charge e along the line L, c is the light velocity in vacuum, and h  is the reduced Planck con-
stant. 

A few decades later, Aharonov and Casher predicted a quantum phase effect for a moving magnetic 

dipole m in the presence of an electric field E, which is given by the equation [3] 

 ( )ò ×´=
L

mE d
c

sEm
h

1
d , (3) 

while He, McKellar [4] and Wilkens [5] derived a corresponding quantum phase for a magnetic dipole 

p, moving in a magnetic field B,  
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 ( )ò ×´-=
L

pB d
c

sBp
h

1
d . (4) 

At the same time, neither the authors of [3], nor the authors of [4,5] provided a reasonable physical 

interpretation of equations (3) and (4). 
This problem became especially topical after a direct observation of both the Aharonov-Casher (A-

C) phase [6,7] and the He-McKellar-Wilkens (HMW) phase [8], and our team seems to have been the 

first to pin down the actual physical meaning of the phases (3), (4) (see section 2). In this way, we, 
first of all, derived the classical motional equation for dipoles in an EM field on the basis of an explic-

itly covariant expression for their Lagrangian. Then, going to the quantum limit, we have revealed two 

more quantum phase effects for moving dipoles [9,10], next to the A-C and HMW phases. 

Further on, in our subsequent publications [11,12] we proposed a new way of understanding the 

physical meaning of quantum phases for electric/magnetic dipoles as a superposition of quantum phas-

es for point-like charges composing the dipoles. Such a “superposition principle” for quantum phases 

naturally follows from the linearity of fundamental equations of quantum mechanics, and its applica-

tion to the description of quantum phase effects for moving dipoles allowed us to find two new fun-

damental quantum phases for moving charges – next to the known electric and magnetic A-B phases – 

which we named as complementary electric and complementary magnetic A-B phases, corresponding-
ly [11,12].  

Thus, the total quantum phase for a charged particle in an EM field represents the sum of four 

components, and in section 3 we find a direct relationship between the velocity-dependent quantum 

phases and the interactional EM field momentum PEM for the system “charged particle in an EM field”, 

which could not be found earlier, when only the magnetic A-B phase (2) was associated with the mov-

ing charge. This new result allows us to arrive at a generalized de Broglie relationship, where the 

wavelength of a moving charged particle is defined by the modulus of the vector sum of mechanical 

PM and electromagnetic PEM momenta. This finding naturally explains the phase shifts of the wave 

functions of a moving charge due to variation of PEM even if the mechanical momentum PM remains 
constant in the absence of any net force on the particle.  

In section 4, we emphasize that the full set of quantum phase effects we obtained for electric charg-

es cannot be deduced via the Schrödinger equation for a charged particle in an EM field, as well as 
using the fundamental equations of relativistic quantum mechanics, if the standard definition of the 

momentum operator in an EM field is applied, i.e. 

 
c

eA
pp -® ˆˆ , (5) 

where Ñ-= hip̂  is the momentum operator in the absence of EM field. 

Indeed, in the non-relativistic case, the corresponding Hamiltonian for a charged particle with mass 
m and charge e 

 
( )

je
m

cei
H +

-Ñ-
=

2
ˆ

2
Ah

 (6) 

yields only A-B phases (1), (2). Moreover, we emphasize that relativistic quantum mechanics also fails 

to describe the complementary electric and magnetic A-B phases with the customary definition of the 
momentum operator (5).  

Therefore, the disclosure of complementary A-B phases requires re-defining the momentum opera-

tor in a wider form, where the term eA/c in equation (5) is replaced by the EM field momentum PEM 
for the system “charged particle in an EM field”. Hence, instead of equation (5), we get [12,13] 

 EMPpp -® ˆˆ , (7) 
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and below we will show that equation (7) reduces to (5) only in the non-relativistic limit, where terms 

of order (v/c)2 and higher are neglected. 

Insofar as the Schrödinger equation for a charged particle in the presence of an EM field does con-

tain the terms of order (v/c)2, then it should deal with the momentum operator (7) instead of the old 

definition (5), and the same re-definition of the momentum operator (7) should be also applied in rela-
tivistic quantum mechanics.  

In section 5 we discuss the obtained results and indicate their principal implications.  

2. Going from classical to quantum description of electric/magnetic dipoles. Quantum phases for 

dipoles and point-like charges 

In our previous papers (e.g., [9,10]) we have shown that all previously known expressions for the force 

on electric and magnetic dipoles are relativistically inconsistent. In order to obtain a Lorentz-invariant 

expression for the force, we have used the covariant expression for the Lagrangian density for a mag-

netized/polarized medium in the presence of an EM field [14] 

 αβ

αβFMl
2

1
int = , (8) 

where 
abM  is the magnetization-polarization tensor and αβF  is the tensor of EM field [14].  

Integrating (8) over the volume of a point-like dipole, we arrive at the following Lagrangian [9]:  

 BmEp ×+×+-=
g

2Mc
L . (9) 

Further substitution of (9) into the Euler-Lagrange equation  

 vr ¶
¶

=
¶
¶ L

dt

dL
, 

yields a relativistic expression for the total force on the dipole [9, 10]: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ),11
00

2

//0

2

//0

EmBp

vBmvEp
BmEpvF

´-´

+
×

+
×

+×Ñ+×Ñ==

cdt

d

cdt

d

cdt

d

cdt

d
M

dt

d gg
g

 (10) 

where the subscript “0” stands for the proper electric and magnetic dipole moments. 

Further, we address to the known expression for the Hamilton function Lvv -×¶¶= LH , which, 

in the quantum limit, determines the corresponding Hamiltonian Ĥ . Hence, the total quantum phase 

of a dipole in the presence of an EM field takes the form [9,10]: 

 

( ) ( )

( ) ( ) ( ) ( ) .
1111

111

00

//02//02

òòòò

ò òò

×-×-×´-×´

+××-××-==

dtdtd
c

d
c

d
c

d
c

dtH

BmEpsBpsEm

svBmsvEp

hhhh

hh

)

h
ggd

 (11) 

In our subsequent analysis, we omit the Stark phase [15] and Zeeman phase [16], which emerge for 

resting dipoles, and focus on the quantum phases for moving dipoles, presented by the first four terms 

on the rhs of equation (11).  

As shown in [9,10], to the accuracy of calculations c-3 (which can be adopted as a weak relativistic 

limit), the sum of the remaining terms in equation (11) yields 
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 ( ) ( ) ( ) ( )( )òòò ò ×´-×´+××-××-» sBpsEmsvBmsvEp d
c

d
c

d
c

d
c hhhh

1111
22

d ,  (12) 

where all quantities are evaluated in a laboratory frame.  

The third and fourth terms on the rhs of equation (12) stand for the A-C (3) and HMW (4) phases, 

respectively, while the first and second terms correspond to previously unknown quantum phases. One 

of them is related to the motion of an electric dipole in an electric field, 

 ( )ò ××-= svEp d
c

pE 2

1

h
d , (13) 

and the second one is related to the motion of a magnetic dipole in a magnetic field  

 ( )ò ××-= svBm d
c

mB 2

1

h
d . (14) 

The next problem is to disclose the physical meaning of the four quantum phases dmE, dpB, dpE, dmB 
for moving dipoles. In the solution of this problem, we applied for the first time the “superposition 

principle” for quantum phase effects, where the observed phase for a dipole represents a superposition 

of corresponding phases for each of its charge [9,10].  

Solving this problem, we have to express the phases for the dipoles through the scalar j and vector 

A potentials by analogy with the quantum phases for point-like charges.  

We start our analysis with the HMW and A-C phases, which have already been tested experimen-

tally and thus, the results obtained with these phases will be especially convincing.  

First, addressing to the HMW phase, we derive: 

 ( ) =×´-= ò sBp d
c

pB
h

1
d  

( ) ( )( ) dVd
c

dVd
c

dVd
c

V LV LV L

ò òò òò ò ×=×´Ñ´-=×´- sAsAPsBP r
hhh

111
. (15) 

 

Here, we used the equalities ò=
V

dVPp  (where P is the polarization, and V the volume of the di-

pole), AB ´Ñ= , and the vector identity [17] 

 ( ) ( ) ( ) ( ) ( ) -´Ñ´+´Ñ´=×-×-× òòòòò
VVSSS

dVdVddd APPASPASAPSPA  

 ( ) ( )òò ×Ñ-×Ñ
VV

dVdV APPA ; 

further on, we have taken into account that the polarization P is vanishing on the boundary surface S of 

the dipole, so that all integrals on lhs of this identity are equal to zero. Finally, we have used the equal-

ities P×-Ñ=r  (where r is the charge density), 0Ñ´ =P , as well as the Coulomb gauge 

( 0Ñ × =A ). 

We clarify the physical meaning of (15) for the simplest model of an electric dipole – two point-

like charges +e and –e located at opposite ends of a rigid rod of length d. For such a dipole, equation 

(15) yields: 

 ( ) ( )
÷
÷

ø

ö

ç
ç

è

æ
×-×+= òò

-+ LL

pB dd
c

e
srAsdrA

h
d . (16) 
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where L+ (L-) stands for the path of the positive (negative) charge of dipole, and r being the radial co-

ordinate. 

Equation (16) signifies that the HMW phase represents the algebraic sum of the magnetic A-B 

phases (2) for each charge constituting the dipole.  

This comfortable result demonstrates the significance of the “superposition principle” for the quan-
tum phases of moving dipoles in elucidating their physical meaning, and the fact of experimental con-

firmation of the HMW phase mentioned above [8], along with observations of magnetic A-B phase 

(see, e.g., [18]) does validate the entire approach based on the superposition of quantum phases of 
point-like charges to compose the observed phases for the dipoles.  

We add that equation (16) has already been derived in [19], but the authors were not aimed by then, 

to disclose its actual physical meaning. 

Thus, in a view of the obtained physical interpretation of (16), it becomes important to clarify the 

meaning of other quantum phases for the dipoles entering into equation (12). 

Next, we first address the A-C phase, which, like the HMW phase, has been confirmed experimen-

tally [6,7]. Therefore, the clarification of its physical meaning via the superposition principle for quan-

tum phases is indeed intriguing.  

Analyzing equation (3) for the A-C phase, we assume for simplicity that the external electric field 

does not contain an inductive component and is defined through the gradient of the scalar potential, 

i.e., j-Ñ=E . Substituting this equality into (3), and using the definition ò= dVMm  (where M 

denotes the magnetization), we obtain: 

 ( ) =×Ñ´-= ò ò
V

mE dVd
c

sM jd
h

1
 

 ( ) ( ) ( )ò òò òò ò ×´Ñ-=×´Ñ-×´Ñ
VVV

dVd
c

dVd
c

dVd
c

.
111

sMsMsM jjj
hhh

 (17) 

 

In the derivation of (17), we used the vector identity ( ) jjj Ñ´-´Ñ=´Ñ MMM , and took in-

to account that the volume integral ( )ò ò ×´Ñ
V

dVdsMj  can be transformed into a surface integral, 

where the magnetization M is vanishing.  

In order to present (17) in a more convenient form, we introduce the current density 

 t¶¶+´Ñ= PMj , (18) 

and adopt a stationary polarization, where ( )PvP Ñ×-=¶¶ t . Thus, we obtain: 

 ( )( )ò ò ×Ñ×+-=
V

mE dVd
c

sPvjjd
2

1

h
. (19) 

We clarify the physical meaning of (19) with the simplest model of a magnetic dipole, presented by 

an electrically neutral current loop with a steady current. For such a dipole, its proper polarization is 

equal to zero, while the polarization for a moving dipole c0MvP ´=  is always orthogonal to the 

vector ds=vdt. Hence, equation (19) yields 

 ò òò ò ×-=×-=
VV

mE dVd
c

dVd
c

susj jrjd
22

11

hh
, (20) 

where we have used the equality j=ru. 
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Equation (20) expresses the A-C phase through the scalar potential, and for determination of its 

physical meaning we use the model of magnetic dipole adopted above. For this model, the positive 

charges of the frame of the loop are immovable in the proper frame of the dipole, and their phase is 

defined as  

 ( ) ò ò ×-= +
V

positivemE dVd
c

svjrd
2

1

h
. (21a) 

Considering the contribution of the negative charged (the carries of current), we designate their 

flow velocity as u, and obtain 

 ( ) ( )ò ò ×+-= -

V

negativemE dVd
c

svujrd
2

1

h
. (21b) 

Summing equations (21a) and (21b) for an electrically neutral magnetic dipole (where -+ -= rr ), 

we arrive at phase (20). 

Next, we observe that obtained equations (21a-b) are fulfilled only in the case, where the motion of 

a point-like charge in the field of a scalar potential j yields the phase  

 ò ×= sv d
c

e
c jd j 2
h

, (22) 

which we named in references [11,12] as a complementary electric A-B phase, supplying it with the 
subscript “c”.  

By such a way, we disclose the physical meaning of the A-C phase for a moving magnetic dipole as 

a superposition of complementary electric A-B phases (22) for all charges of the dipole.  
Further on, we consider the remaining phases (13) and (14) for a moving dipole, and again clarify 

their physical meaning using the superposition principle for quantum phases. 

Addressing the phase dpE (13), we assume as before that the external electric field E does not con-

tain an inductive component (i.e., )0=¶¶ tA . Hence, using equality j-Ñ=E , definition 

ò=
V

dVPp , as well as equality P×-Ñ=r , we derive 

 ( ) ( ) =×Ñ×=××-= ò òò
V

pE dVd
c

d
c

svPsvEp jd
22

11

hh
 

 ( ) ò òò òò ò ×-=×-××Ñ
VVV

dVd
c

dVd
c

dVd
c

svsvsvP rjrjj
222

111

hhh
. (23) 

 

Here, we have used the vector identity ( ) jjj Ñ×+×Ñ=×Ñ PPP , and taken into account that the 

volume integral ( )ò ò ××Ñ
V

dVdsvPj  can be transformed into a surface integral by the Gauss theorem, 

where the polarization P vanishes. 
In order to clarify the physical meaning of (23), we again use the simplest model of an electric di-

pole – two point-like particles with an opposite electric charge, which are separated by a small distance 

d. For such a dipole, equation (23) takes the form: 

 ( ) ( )òòò ò
++

×+×+-=×-=
LLV L

pE d
c

e
d

c

e
dVd

c
svrsvdrsv jjrjd

222

1

hhh
. (24) 
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This equation indicates that the observed quantum phase dpE for an electric dipole represents a su-

perposition of complementary electric A-B phases dcj (22), and once again confirms the necessity of 

introducing this phase with regards to the explanation of quantum phase effects for moving dipoles.  

Finally, we consider the phase dmB represented by equation (14) and express it through the vector 

potential A, using the equality AB ´Ñ=  along with definition ò= dVMm  and vector identity 

( ) ( ) ( )MAAMAM ´Ñ×+´Ñ×=´×Ñ . Hence, we derive from (14): 

 

( )( ) ( )( )

( )( ) ( )( )ò òò ò

ò òò ò

×´Ñ×-=×´Ñ×

-×´×Ñ=×´Ñ×-=

VV

VV

mB

dVd
c

dVd
c

dVd
c

dVd
c

,
11

11

22

22

svMAsvMA

svAMsvAM

hh

hh
d

 (25) 

where we have taken into account that the volume integral  

 

 ( )( )ò ò ×´×Ñ
V

dVdsvAM  

is vanishing by the Gauss theorem. For evaluation of the remaining integral (25), we involve equality 

(18) and again assume that the polarization is stationary, i.e. ( ) 0=Ñ×+¶¶= PvPP tdtd , and 

( )PvP Ñ×-=¶¶ t . Hence, combining equations (18) and (25), one gets: 

 ( )( ) .
1

3 ò ò ×Ñ××+×-=
V

mB dVd
c

svPvAjA
h

d  (26) 

The second integral in (26) can be presented in the form: 

( )( ) ( )( ) ( ) òò òò òò ò ÷
ø

ö
ç
è

æ ×-×=Ñ××=×Ñ×× dt
dt

d
vdtdV

dt

d
vdtdVvdVd

VVV

A
pPAPvAsvPvA

222
. 

Therefore, it is vanishing under the natural conditions A(t=0)=A(t=¥)=0, and equation (26) yields 

 ( ) ( )ò òò ò ××-=××-=
VV

mB dVd
c

dVd
c

svAusvAj rd
33

11

hh
, (27) 

where we have used, once again, the equality j=ru. 
Applying equation (27) to the adopted model of a magnetic dipole as an electrically neutral current 

loop with a steady current, we obtain by analogy with (21a-b): 

( ) ( )ò ò ××-= +

V

positivemB dVd
c

svAvrd
2

1

h
, 

( ) ( )( )( )ò ò ×+×+-= -
V

negativemB dVd
c

svuAvujrd
2

1

h
. 

These equations indicate that the phase dmB for a moving magnetic dipole in the presence of a mag-

netic field can be presented through a superposition of new quantum phases for point-like charges of 

the dipole 

 ( )ò ××-= svAv d
c

e
cA 3

h
d . (28) 
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In references [11,12], we have entitled the phase (28) as complementary magnetic A-B phase.  

Thus, the application of “superposition principle” for the quantum phases of dipoles and charges al-

lowed us to conclude that the quantum phases dmE, dpB, dpE, dmB for an electric/magnetic dipole, given 

by equation (12), originate from three fundamental phases for the moving point-like charges: 

- magnetic A-B phase dA (2); 

- complementary electric A-B phase dcj (22);  

- complementary magnetic A-B phase dcA (28).  

3. Total quantum phase for moving charges and generalized de Broglie relationship  

The obtained results indicate that the total velocity-dependent component of the quantum phase for a 
moving charge in an EM field is given by the sum of equations (2), (22) and (28): 

 ( ) ( )òòò ××-×+×= svAvsvsAv d
c

e
d

c

e
d

c

e
EM 32

hhh
jd . (29) 

In references [12,20], we revealed that this phase is directly linked with the interactional EM field 
momentum of the system “charged particle in an EM field”: 

 ( ) ( ) ( )
32

4

1

4

1

c

e

c

e

c

e
dV

c
dV

c
V

e

V

eEM

vAvvA
BEBEP

×
-+=´+´= òò

j
pp

, (30) 

where Ee, Be are respectively the electric and magnetic field of the moving charge. 

Thus, comparing equations (29) and (30), we obtain the equality 

 ( ) ò ×= sPv dEMEM
h

1
d . (31) 

This equation, first obtained in [20], opens the key for a new understanding of quantum phase ef-

fects for moving charges in the presence of an EM field, which could not be revealed before when only 

the magnetic A-B phase (2) was associated with the moving charge. 
Now, with the disclosure of complementary A-B phases, we can see that the observed quantum 

phase for moving charges in an EM field is directly defined by the interactional EM field momentum 

for the system “charged particle in an EM field”. 

What is more, introducing the wave vector kEM, associated with the quantum phase dEM(v), we can 

write  

 ( ) ò ×= skv dEMEMd . (32) 

Thus, comparing equations (31) and (32), we obtain the equality 

 
h

EM
EM

P
k = . (33) 

Next, we remind that for a freely moving charge, its wave vector is defined through the mechanical 

momentum PM as 

 
h

M
M

P
k = . (34) 

Summing up equations (33) and (34), we arrive at a new expression for the total wave vector k of a 

charged particle, moving in an EM field: 
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h

EMM
EMM

PP
kkk

+
=+= , (35) 

which allows to straightforwardly generalize the expression for the de Broglie wavelength of a charged 

particle, moving in an EM field: 

 
EMM

h

PP +
=l . (36) 

Equation (36) indicates that the de Broglie wavelength for such a particle is defined through the 

modulus of the vector sum of its mechanical momentum PM and the interactional EM momentum PEM. 

This means, in particular, that at constant PM, when no net force acts on the charge, its de Broglie 
wavelength may nevertheless change due to the variation of the interactional EM field momentum 

PEM. This result, we believe, sheds light on the actual physical meaning of quantum phase effects. 

It is interesting to notice that equation (36) is also fulfilled for a bound electron in hydrogenlike 
atoms with application of the appropriate expression for the interactional EM field momentum for this 

system [21,22], which allows assuming that equation (36) has the general character and reflects the 

deepest laws of quantum mechanics.  

4. New form of the momentum operator 

The results we obtained above indicate that a moving point-like charge in the presence of an EM field 

is characterized by three quantum phases: i) the previously known magnetic A-B phase (2), ii) as well 

as the new complementary electric (21), and iii) the new complementary magnetic (29) A-B phases. 

The disclosure of the full set of quantum phase effects for charged particles allowed us to determine 

the direct relationship between the velocity dependent quantum phase ( )vEMd  and the interactional 

EM momentum for the system “charged particle and external EM field”. This finding straightforward-

ly led to the generalized de Broglie relationship (36), which makes understandable the origin of quan-

tum phase effects for electrically charged particles. 
Derivation of these results makes especially topical the problem to understand the failure of the 

Schrödinger equation with the standard Hamiltonian (6) for deriving complementary electric (22) and 

magnetic (28) A-B phases. What is more, the fundamental equations of relativistic quantum mechanics 

are also failed to obtain complementary A-B phases [12,13]. 

The way to solution of this puzzle can be clarified by comparing equations (31) and (2), which 

show that replacing the term eA/c in the integrand of equation (2) by the interactional EM field mo-

mentum PEM transforms it into equation (31), defining the total velocity-dependent phase. One can 

easy realize that solution (31) instead of (2) can be obtained via replacing the term eA/c by PEM in 

Hamiltonian (6), which yields 

 
( )

je
m

i
H EM +

-Ñ-
=

2
ˆ

2
Ph

. (37) 

In turn, one can see that the transition from Hamiltonian (6) to its new form (37) corresponds to the 

redefinition of the momentum operator (7), where it is associated with the sum of mechanical PM and 

electromagnetic PEM momenta for the system “charged particle in an external EM field”, instead of the 

canonical momentum PM +eA/c in the customary definition (5). 

Returning to the explicit expression for PEM (equation (30)), we see that the new definition of the 

momentum operator (7) is more general than the old one (5), and is equally applicable to both non-

relativistic and relativistic quantum mechanics [12].  
One more argumentation against the old definition of the momentum operator is related to the well-

known fact that the canonical momentum of a charged particle associated with this operator in the def-

inition (5) does not have a real physical meaning, and emerges in classical electrodynamics only as a 
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formal variable (see, e.g. [23]). What is more, using the explicit presentation of the interactional EM 

field momentum PEM (30), we can see that the sum of mechanical PM and electromagnetic PEM momen-

ta reduces to the canonical momentum PM +eA/c only in the limit v®0, whereas a non-zero mechani-

cal momentum implies the inequality v¹0. This makes the canonical momentum actually inconsistent 

from a physical viewpoint.  

In contrast, in the proposed redefinition of the momentum operator (7), both components of the 
momenta PM and PEM are defined at the same velocity of a charged particle, which is quite logical from 

a physical viewpoint. 

5. Discussion 

Having disclosed the complete set of quantum phases for electric/magnetic dipoles (12) (see [9, 10]), 

and applying the superposition principle for quantum phases, we have found a complete set of quan-

tum phases for electrically charged particles (29), which contains two previously known electric and 

magnetic A-B phases, as well as two new phases (22) and (28), which we have named as complemen-

tary electric and magnetic A-B phases, correspondingly [11,12].  

The disclosure of all quantum phase effects for point-like charges allowed us to reveal a direct rela-

tionship between the total velocity-dependent quantum phase for a charged particle dEM(v) and the in-

teractional EM momentum PEM for the system “charged particle in external EM field”, given by equa-

tion (31). This relationship straightforwardly leads to a generalization of the de Broglie relationship for 

a moving charged particle, where its wavelength depends on the modulus of the vector sum 

EMM PP +  (see (36)). The latter equation gives a key to understanding the physical origin of quantum 

phase effects for moving charges, which predicts the variation of their de Broglie wavelength with sca-
lar and vector potentials even at constant PM in the absence of a classical force. 

As we have shown above, these findings prove the need to re-define the momentum operator (5) in 

a new form (7), where the canonical momentum of a charged particle in an EM field is replaced by the 

sum EMM PP + . 

The unification of the laws of nature requires introducing a re-definition of the momentum operator 

(5) into basic equations of relativistic quantum mechanics, too [12,13]. One should emphasize that 
such a redefinition of the momentum operator does not require an additional redefinition of the energy 

operator in the presence of an EM field 

 jeEE -® ˆˆ , 

where the term ej, as is known, can be considered as the interaction electric energy for the system 

“charged particle in an EM field”. This is explained by the known fact that the magnetic interactional 

energy for this system anyway does not enter into the Hamiltonian. From a physical viewpoint, this is 

explained by the known fact in classical electrodynamics that the magnetic force does not make work 

(see, e.g. [23]).  

An analysis of physical implications, resulting from the application of the momentum operator (7) 

to relativistic quantum mechanical falls outside the scope of the present contribution. Now we will 
emphasize only some important consequences of (7) for free and electrically bound charges: 

1. For a freely moving charge, the Klein-Gordon and Dirac equations, like the Schrödinger equa-

tion for a charged particle in an EM field, yield a complete set of velocity-dependent quantum phases 
(29) using the momentum operator (7). It is important to notice here that the Klein-Gordon equation 

with momentum operator (7) no longer contains solutions with negative probability density and thus 

becomes well applicable to spinless charged particles.  
2. For bound charged particles, the expression for the interactional EM field momentum (30) be-

comes, in general, inapplicable and can take different forms for different problems. In particular, for 

hydrogenlike atoms, the re-definition of the momentum operator (7) with the corresponding estima-

tions of the interactional EM field momentum for the one-body and two-body problems, leads to an 
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appropriate modification of the basic equations of atomic physics. In fact, such modifications have 

already been introduced by us into the Breit equation without external field, albeit with a different 

physical argumentation [24]. We named this approach as the Purely Bound Field Theory, which actu-

ally achieved undoubted successes in eliminating the available subtle deviations between the QED cal-

culations and the experimental results [25,26]. 

Last, but not the least, one should add that the results obtained earlier by Yarman [21,27] and later 

advanced by our team [22,28] also indicate the need to redefine the momentum operator in the form 
(7). These and further consequences of the proposed redefinition of the momentum operator (7), even-

tually in full conformity with the law of energy conservation, encompassing the mass and energy 

equivalence of the special theory of relativity, will be considered in more details elsewhere. 
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