
Nonlinear Phenomena in Complex Systems, vol. 25, no. 1 (2022), pp. 82 - 91

Linear Skorokhod SDE: Evaluation of Expectations of
Functionals
Alexander Egorov∗

Institute of Mathematics of National Academy of Science of Belarus,
11 Surganova Str, 220072 Minsk, BELARUS

Anatoly Zherelo†
Belarusian State University, 4 Nezalezhnasti Ave., 220030 Minsk, BELARUS

(Received 26 January, 2022)

This paper considers a linear stochastic differential equation (SDE) containing the
Skorokhod integral. A formula for the approximate calculation of functionals of solutions
of this equation is constructed, which is approximately exact for polynomials of the third
order.

AMS Subject Classification: 60C30, 60H10
Keywords: stochastic differential equation, approximate calculation
DOI: https://doi.org/10.33581/1561-4085-2022-25-1-82-91

1. Introduction

Known functional quadrature formulas for
calculating the mathematical expectations of
nonlinear functionals from the trajectories of
random processes, as a rule, require the
fulfillment of the condition of their accuracy for
polynomial functionals of a given order. The most
frequently used formulas are exact for functional
polynomials of the third order, which are used
to obtain a fast initial approximation, as well
as in combination with other approximations [1-
5]. However, in the case of processes specified
as complex functions of other random processes,
the constructed functional quadrature formulas
are difficult for numerical implementation. In
this paper, we solve the problem of constructing
approximate formulas in which the requirement of
their accuracy for approximations of polynomials
is imposed instead of accuracy for the polynomials
themselves. Since the mathematical expectations
of functional polynomials from a random process
depend linearly on the moments of the process,
in fact, when constructing approximate formulas,
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†E-mail: zherelo@bsu.by

approximations of the moments are considered.
The solution of this problem is considered on
the example of a linear stochastic Skorokhod
equation with a Wiener leading process and
an initial condition in the form of a function
of a linear functional of the Wiener process.
When constructing approximate formulas, the
moments of solving the equation up to the third
order inclusive and their approximations obtained
by expanding the functional that specifies the
initial condition in a Taylor series are used.
The main goal of the paper is an approximate
formula for the mathematical expectation of
nonlinear functionals from the solution of the
linear Skorokhod equation, which has a third-
order error in time.

2. Approximate formula

We consider only such linear Skorokhod
SDEs for which the moment of the first order from
the solution is equal to zero [6]. Moments of the
second and third orders in the general case cannot
be represented in a multiplicative form. However,
their approximations can often be represented as
finite sums with terms that have a multiplicative

82

Acc
ep

ted
 M

an
us

cri
pt
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form. Let some approximation of the moment
M3(t1, t2, t3) of the third order of the random
process X(t), t ∈ [0, T ], be represented as

M̂3(t1, t2, t3) =
4∑

k=1

a3,kM3k(t1, t2, t3). (2.1)

Here we have chosen sum of only four components
to facilitate the construction of approximations,
a3,k are constants, which are the mathematical
expectations of the functionals given by the
conditions of the problem, which can be written
out exactly or with a sufficiently high degree of
accuracy. The symbol ˆwas introduced to stress
the approximateness of the formula (2.1).M3k has
the general multiplicative form:

M3k(t1, t2, t3) =

3∑
j=1

xk,j,1(t1)xk,j,2(t2)xk,j,3(t3).

(2.2)
Here again the sum of three component us
chosen with above mentioned reasons. where
xk,j,l(t), l = 1, 2, 3 are real functions, t1, t2, t3 is
ordered ascending numbers t1, t2, t3 and some of
the factors in (2.2) may be equal to 1.

Similarly, the approximation of the moment
M2(t1, t2) of the second order of the random
process X(t), t ∈ [0, T ], is represented as

M̂2(t1, t2, t3) =
4∑

k=1

a2,kM2k(t1, t2), (2.3)

where a2,k are constants, which are also the
mathematical expectations of the functionals
specified by the conditions of the problem, which
can be written out exactly, or with a sufficiently
high degree of accuracy, andM2k may not depend
on some of the variables t1, t2; while M2k(t1, t2)
have a multiplicative form:

M2k(t1, t2) =

3∑
j=1

xk,j,1(t1)xk,j,2(t2), (2.4)

where xk,j,l(t), l = 1, 2, 3, are real functions, t1, t2
are ordered ascending number t1, t2, and a factor
xk,j,2(t2) may be equal to 1.

It is important to note that the sets of
functions xk,j,l for the moments of the third order
and the second order are different.

For the component
xk,j,1(t1)xk,j,2(t2)xk,j,3(t3) from (2.2) we
construct an approximate formula in a way to
give precisely zero for a constant functional and
for any first-order and second-order monomial,
whereas for an above written third order
monomial the formula should give a precise
value.

We denote the approximant as
J3,k,j(F (X(·))) and write it down in the form

J3,k,j(F (X(·))) = −
T∫
0

T∫
0

∂

∂s

(
xk,j,1(s)

xk,j,2(s) + h

)
∂

∂τ

(
xk,j,3(τ)

xk,j,2(τ) + h

)
(2.5)

×ΛF ((xk,j,2(·) + h)1[0,·](s)1[·,T ](τ))dsdτ

+
xk,j,3(T )

xk,j,2(T ) + h

T∫
0

∂

∂s

(
xk,j,1(s)

xk,j,2(s) + h

)
ΛF ((xk,j,2(·) + h)1[0,·](s))ds

−
xk,j,1(0)

xk,j,2(0) + h

T∫
0

∂

∂τ

(
xk,j,3(τ)

xk,j,2(τ) + h

)
ΛF ((xk,j,2(·) + h)1[·,T ](τ))dτ
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84 Alexander Egorov and Anatoly Zherelo

+
xk,j,1(0)

xk,j,2(0) + h

xk,j,3(T )

xk,j,2(T ) + h
ΛF ((xk,j,2(·) + h))

+h

T∫
0

T∫
0

∂

∂s
(xk,j,1(s))

∂

∂τ
(xk,j,3(τ))ΛF (1[0,·](s)1[·,T ](τ))dsdτ

−hxk,j,3(T )

T∫
0

∂

∂s
(xk,j,1(s))ΛF (1[0,·](s))ds

+hxk,j,1(0)

T∫
0

∂

∂τ
(xk,j,3(τ))ΛF (1[·,T ](s))dτ − hxk,j,1(0)xk,j,3(T )ΛF (1),

where ΛF (x) = 1
2(F (x) − F (−x)), 1[0,t](s) is

the indicator function of [0, t]. The symbol “·”
is used to denote the value of functional in a
current point. Note that this formula is also
valid for calculating the contribution in the case
xk,j,3(t3) = 1.

The constant h is chosen in such a way that
in the fractions presented in the formula (2.5) the
denominator does not turn to 0 for any values of

the argument of the function xk,j,2(t) used in the
course of calculations. It should be noted that the
formula (2.5) is constructed in such a way that the
formula does not depend on h in cases when F is
a monomial of the first, second, third order or a
constant.

For the component xk,j,1(t1)xk,j,2(t2), from
(2.4) we construct an approximate formula
J2,k,j(F (X(·))) and write it down in the form

J2,k,j(F (X(·))) =

T∫
0

∂

∂s

(
xk,j,1(s)

xk,j,2(s) + h

)
∆F ((xk,j,2(·) + h)1[0,·](s))ds

−h
T∫
0

∂

∂s
xk,j,1(s)∆F (1[0,·](s))ds+

xk,j,1(0)

xk,j,2(0) + h
∆F (xk,j,2(·) + h)− hxk,j,1(0)∆F (1),

where ∆F (x) = 1
2(F (x) + F (−x)). In the case of

second-order moments, the contribution equal to
the term xk,j,1(t1), is given by the same formula
in which h = 0 and xk,j,2(t2) = 1. This formula
gives a zero value for monomials of the first and

third orders in X(·).
Now, let us sum up all above introduced

approximants J2,k,j , J3,k,j , k = 1, 4, , j = 1, 3
together and obtain the following theorem:
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Linear Skorokhod SDE: Evaluation of Expectations of Functionals 85

Theorem 1. The approximate formula

E[F (X(·))] ≈ J(F (X(·))) ≡ F (0) +
4∑

k=1

a2,k

3∑
j=1

2∑
r=1

BrJ2,k,j(F (qrX(·)))

+

4∑
k=1

a3,k

3∑
j=1

2∑
r=1

ArJ3,k,j(F (crX(·))), (2.6)

where A1 = −1
3 , A2 = 1

6 , c1 = 1, c2 = 2, B1 = 2, B2 = −2, q1 = 1, q2 = 1√
2
, is approximately exact for

functional polynomials of the third order.

Let us consider the application of the
proposed approach to the calculation of the
mathematical expectation of functionals from the
solution of the Skorokhod equation:

Xt = X0 +

t∫
0

σ(s)XsδWs, (2.7)

where X0 = g
( T∫

0

a(τ)dWτ

)
; Wt, t ∈ [0, T ], is

Wiener process, defined on a probability space
Ω = C0([0, T ]), Wt(ω) = ω(t); σ(s), g(u), a(τ)

are deterministic functions,
T∫
0

σ2(s)ds <∞; g(u)

is differentiable the required number of times,

a(τ) ∈ L2([0, T ]),
T∫
0

a(τ)dWτ is a stochastic

integral in Ito sense.

The integral on the right side (2.7) is the
Skorokhod integral, because X0 is not adapted to
the filtration generated by the Wiener process.

The solution of this equation can be fount in
explicit form (see [6-8])

Xt = g
( T∫

0

a(τ)dWτ −
t∫

0

a(τ)σ(τ)dτ
)

× exp
{ t∫

0

σ(s)dWs −
1

2

t∫
0

σ2(s)ds
}
,

and first three moments has the following form:

E[Xt] = E
[
g
( T∫

0

a(τ)dWτ

)]
,

E[Xt1Xt2 ] = exp
{ t1∧t2∫

0

σ2(τ)dτ
}
E
[
g
( T∫

0

a(τ)dWτ +

t1∫
0

a(τ)σ(τ)dτ
)

×g
( T∫

0

a(τ)dWτ +

t2∫
0

a(τ)σ(τ)dτ
)]
≡M2(t1, t2),
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86 Alexander Egorov and Anatoly Zherelo

E
[ 3∏
k=1

Xtk

]
=
∏
{ti,tj}

exp
{ ti∧tj∫

0

σ2(τ)dτ
}

×E
[ ∏
{ti,tj}

g1

( T∫
0

a(τ)dWτ ; ti, tj

)]
≡M3(t1, t2, t3),

where ti ∧ tj = min(ti, tj),

g1

( T∫
0

a(τ)dWτ ; ti, tj

)

= g
( T∫

0

a(τ)dW τ+

ti∫
0

a(τ)σ(τ)dτ+

tj∫
0

a(τ)σ(τ)dτ
)
,

and a pair {ti, tj} takes values
{t1, t2}, {t1, t3}, {t2, t3}.

We obtain a third-order moment
approximation in t ∈ T using the Taylor
series expansion of the function g1(u) and the
assumption that supτ∈[0,T ] |a(τ)σ(τ)| < 1 :

g1(〈a,W 〉, ti, tj) = g(〈a,W 〉) + g′(〈a,W 〉)(p(ti) + p(tj)) +
1

2
g′′(〈a,W 〉)(p(ti) + p(tj))

2

+
1

3!
g(3)(〈a,W 〉+ θ(p(ti) + p(tj)))(p(ti) + p(tj))

3.

Let us denote 〈a,W 〉 =
T∫
0

a(τ)dWτ ,

p(t) =
t∫
0

a(τ)σ(τ)dτ, φ(t) =
t∫
0

σ2(τ)dτ . Then one

gets M3 in the following explicit form:

M3(t1, t2, t3) =

[
E[g3(〈a,W 〉)] + 2E[g2(〈a,W 〉)g′(〈a,W 〉)]

3∑
i=1

p(ti)

+ (E[g2(〈a,W 〉)g′′(〈a,W 〉)] + 3E[g(〈a,W 〉)(g′(〈a,W 〉))2])(p(t1)p(t2) + p(t1)p(t3) + p(t2)p(t3))

+ (E[g2(〈a,W 〉)g′′(〈a,W 〉)] + E[g(〈a,W 〉)(g′(〈a,W 〉))2])
3∑
i=1

p2(ti)

]
M31(t1, t2, t3) +O(max(t1, t2, t3))
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Linear Skorokhod SDE: Evaluation of Expectations of Functionals 87

= M̂3(t1, t2, t3) +O(max(t1, t2, t3)). (2.8)

where M31(t1, t2, t3) = exp{p(t1 ∧ t2) + p(t1 ∧ t3) + p(t2 ∧ t3)}. Now, taking into account the fact that

M31(t1, t2, t3) = e2φ(t1)eφ(t2), (2.9)

M32(t1, t2, t3) = p(t1)e
2φ(t1)eφ(t2) + e2φ(t1)p(t2)e

φ(t2) + e2φ(t1)eφ(t2)p(t3), (2.10)

M33(t1, t2, t3) = p(t1)e
2φ(t1)p(t2)e

φ(t2) + p(t1)e
2φ(t1)eφ(t2)p(t3) + e2φ(t1)p(t2)e

φ(t2)p(t3), (2.11)

M34(t1, t2, t3) = p2(t1)e
2φ(t1)eφ(t2) + e2φ(t1)p2(t2)e

φ(t2) + e2φ(t1)eφ(t2)p2(t3), (2.12)

a3,1 = E[g3(〈a,W 〉)],
a3,2 = 2E[g2(〈a,W 〉)g′(〈a,W 〉)],
a3,3 = E[g2(〈a,W 〉)g′′(〈a,W 〉)] + 3E[g(〈a,W 〉)(g′(〈a,W 〉))2],
a3,4 = E[g2(〈a,W 〉)g′′(〈a,W 〉)] + E[g(〈a,W 〉)(g′(〈a,W 〉))2]

the expression (2.8) can be rewritten in the form

M3(t1, t2, t3) =

4∑
k=1

a3,kM3k(t1, t2, t3).

It is clear thatM3k(t1, t2, t3) is determined by the
expression (2.2). Let us present the form of the
corresponding xi,j,k for various M3k as

for M31

x1,1,1(t) = e2φ(t), x1,1,2(t) = eφ(t), x1,1,3(t) = 1,

x1,2,1(t) = x1,2,2(t) = x1,2,3(t) = x1,3,1(t) = x1,3,2(t) = x1,3,3(t) = 0;

for M32

x2,1,1(t) = p(t)e2φ(t), x2,1,2(t) = eφ(t), x2,1,3(t) = 1,

x2,2,1(t) = e2φ(t), x2,2,2(t) = p(t)eφ(t), x2,2,3(t) = 1,

x2,3,1(t) = e2φ(t), x2,3,2(t) = eφ(t), x2,3,3(t) = p(t);

for M33

x3,1,1(t) = p(t)e2φ(t), x3,1,2(t) = p(t)eφ(t), x3,1,3(t) = 1,

x3,2,1(t) = p(t)e2φ(t), x3,2,2(t) = eφ(t), x3,2,3(t) = p(t),

x3,3,1(t) = e2φ(t), x3,3,2(t) = p(t)eφ(t), x3,3,3(t) = p(t);

for M34

x4,1,1(t) = p2(t)e2φ(t), x4,1,2(t) = eφ(t), x4,1,3(t) = 1,

x4,2,1(t) = e2φ(t), x4,2,2(t) = p2(t)eφ(t), x4,2,3(t) = 1,

x4,3,1(t) = e2φ(t), x4,3,2(t) = eφ(t), x4,3,3(t) = p2(t).
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88 Alexander Egorov and Anatoly Zherelo

Similarly, for the moment of the second order, we obtain

M2(t1, t2) =
4∑

k=1

a2,kM2k(t1, t2) +O(max(t1, t2)),

where

M21(t1, t2) = eφ(t1),

M22(t1, t2) = p(t1)e
φ(t1) + eφ(t1)p(t2),

M23(t1, t2) = p2(t1)e
φ(t1) + eφ(t1)p2(t2),

M24(t1, t2) = p(t1)e
φ(t1)p(t2),

a2,1 = E[g2(〈a,W 〉)],
a2,2 = E[g(〈a,W 〉)g′(〈a,W 〉)],
a2,3 = E[g(〈a,W 〉)g′′(〈a,W 〉)],

a2,4 = E[(g′(〈a,W 〉))2],

where for M21

x1,1,1(t) = eφ(t), x1,1,2(t) = 1,

x1,2,1(t) = x1,2,2(t) = x1,3,1(t) = x1,3,2(t) = 0,

for M22

x2,1,1(t) = p(t)eφ(t), x2,1,2(t) = 1,

x2,2,1(t) = eφ(t), x2,2,2(t) = p(t),

x2,3,1(t) = x2,3,2(t) = 0,

for M23

x3,1,1(t) = p2(t)eφ(t), x3,1,2(t) = 1,

x3,2,1(t) = eφ(t), x3,2,2(t) = p2(t),

x3,3,1(t) = x3,3,2(t) = 0,

for M24

x4,1,1(t) = p(t)eφ(t), x4,1,2(t) = p(t),

x4,2,1(t) = x4,2,2(t) = x4,3,1(t) = x4,3,2(t) = 0.

In the paper, the approximate formulas are
constructed for the class of functionals that can
be represented in the form

F (X(·)) = F (0) +
3∑

k=1

1

k!

T∫
0

(k). . .

T∫
0

Ak(t1, . . . , tk)
k∏
l=1

Xtldt1 · · · dtk

+
1

3!

1∫
0

(1− τ)3
T∫
0

(4). . .

T∫
0

G(τX(·), t1, . . . , tk)

4∏
l=1

Xtldt1 · · · dt4dτ, (2.13)

where T < 1, Ak(t1, . . . , tk) are deterministic functions, (k) denotes an integral multiplicity.
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Linear Skorokhod SDE: Evaluation of Expectations of Functionals 89

Such a representation has, for example, some
functionals that have functional derivatives up to

the 4th order, inclusive, in accordance with the
Taylor functional formula

F (X(·)) = F (0) +
3∑

k=1

1

k!

T∫
0

(k). . .

T∫
0

F (k)(0, t1, . . . , tk)
k∏
l=1

Xtldt1 · · · dtk

+
1

3!

1∫
0

(1− τ)3
T∫
0

(4). . .

T∫
0

F (4)(τX(·), t1, . . . , t4)
4∏
l=1

Xtldt1 · · · dt4dτ

≡ P3(F (X(·))) + r(F (X(·))),

F (4)(τX(·), t1, . . . , tk) functional derivative of F.
The following theorem gives an estimate for

the remainder r(F (X(·))):

Theorem 2. Let functional F (X(·)) can be represented in the form (2.13) and the conditions

sup
τ∈[0,1],t1,...,t4∈T

|E[G(τX(·), t1, . . . , t4)

4∏
l=1

Xtl ]| ≤ b1 ≡ const,

sup
τ∈[0,1],t1,...,t4∈T

|G(τcr(xk,j,l(·) + h)1[0,·](s)1[·,T ](τ), t1, . . . , t4)| ≤ b2 ≡ const,

and the set of functions xk,j,1, xk,j,2 for the moments of the second order are satisfies to the condition

sup
tl∈[0,T ],j=1,2

(∣∣∣xk,j,1(t1) 4∏
l=2

xk,j,2(tl)
∣∣∣+ h|xk,j,1(t1)|

)
≤ 1,

where t1, t2, t3, t4 is ordered ascending numbers t1, t2, t3, t4.
Then

|R| = |E[F (X(·))]− J(F (X(·)))| ≤ |P3(X(·))− P̂3(X(·))|+ T 4 1

4!
(b1 + b2).

Here P̂ is the polynomial P , where expectations E[
∑

lXtl ] are replaced according to proposed
approximations.

Proof
Let us estimate the error R = E[F (X(·))]− J(F (X(·))) :

|R| ≤ |E[P3(X(·))]− J(P (X(·)))|+ |E[r(F (X(·))]− J(r(F (X(·))))|
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90 Alexander Egorov and Anatoly Zherelo

≤ |P3(X(·))− P̂3(X(·))|

+
1

3!

1∫
0

(1− τ)3
T∫
0

(4). . .

T∫
0

[∣∣∣E[G(τX(·), t1, . . . , t4)

4∏
l=1

Xtl

]∣∣∣+ ∣∣∣J(G(τX(·), t1, . . . , tk)

4∏
l=1

Xtl

)∣∣∣]dt1 · · · dtkdτ

≤ |P3(X(·))−P̂3(X(·))|+
1

4!
T 4(b1+b2)J

(∣∣∣ 4∏
l=1

Xtl

∣∣∣) ≤ |P3(X(·))−P̂3(X(·))|+
1

4!
T 4(b1+b2)J2

(∣∣∣ 4∏
l=1

Xtl

∣∣∣) ,

Here we use the fact, that
∣∣∣ 4∏
l=1

Xtl

∣∣∣ is

even functional, and the property of the

operator Λ. Let us denote J2,k(F (X(·))) =∑2
j=1 J2,k,j(F (X(·))). So

J2,k

(∣∣∣ 4∏
l=1

Xtl

∣∣∣) =
2∑
j=1

J2,k,j

(∣∣∣ 4∏
l=1

Xtl

∣∣∣) =
2∑
j=1

T∫
0

∂

∂s

(
xk,j,1(s)

xk,j,2(s) + h

) 4∏
l=1

(xk,j,2(tl) + h)1[0,tl](s)ds

−h
2∑
j=1

T∫
0

∂

∂s
(xk,j,1(s))

4∏
l=1

1[0,tl](s)ds+
2∑
j=1

xk,j,1(0)

xk,j,2(0) + h

4∏
l=1

(xk,j,2(tl) + h)1[0,tl](s)− h
2∑
j=1

x2k,j,2(0)

≤ |xk,j,1(t1)
4∏
l=2

xk,j,2(tl)|+ h|xk,j,1(t1)|.

The assertion of the theorem follows from the
obtained estimates for. �

3. Numeric experiment

Let us consider the application of proposed
formula.

Let T = 1, a(x) = x, σ(x) =
√
x and g(x) =

x and F (X) = X3. The results of calculation of
expectation for various t are shown in the table 1.

Let T = 1, a(x) = x, σ(x) =
√
x, g(x) = x3

and F (X) = sinX. The results of calculation of
expectation are represented in the table 2.

4. Conclusion

In this paper, an approximate exact formula
has been constructed for functional polynomials
from the solution of a stochastic differential
equation in the sense of Skorokhod. For the
proposed formula, an estimate of the accuracy of
the approximate values calculated with its help
was obtained. An example of applying the formula
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Table 1. Estimations and errors for the functional
E[X3

t ].

t Approximate Exact Error
0.1 0.00256806 0.00256807 0.00000001
0.2 0.01519577 0.01519888 0.00000311
0.3 0.04513598 0.04520618 0.00007020
0.4 0.10291310 0.10358754 0.00067445
0.5 0.20576686 0.20988220 0.00411534

Table 2. Estimations and errors for the functional
E[sinXt].

t Approximate Exact Error
0.1 -0.00016877 -0.00359667 0.00342790
0.2 -0.00085016 -0.01073725 0.00988709
0.3 -0.00173725 -0.02061174 0.01887449
0.4 -0.00127556 -0.03287304 0.03159748
0.5 0.00482462 -0.04724638 0.05207100

is given.
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