
Journal Pre-proof

Numerical study of free convection in a thin layer between coaxial horizontal cylinders

Alexander Fedotov, Yana Tsitavets, Andrey Elyshev

PII: S2214-157X(22)00843-7

DOI: https://doi.org/10.1016/j.csite.2022.102606

Reference: CSITE 102606

To appear in: Case Studies in Thermal Engineering

Received Date: 21 September 2022

Revised Date: 12 November 2022

Accepted Date: 26 November 2022

Please cite this article as: A. Fedotov, Y. Tsitavets, A. Elyshev, Numerical study of free convection in a
thin layer between coaxial horizontal cylinders, Case Studies in Thermal Engineering (2022), doi: https://
doi.org/10.1016/j.csite.2022.102606.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Ltd.

https://doi.org/10.1016/j.csite.2022.102606
https://doi.org/10.1016/j.csite.2022.102606
https://doi.org/10.1016/j.csite.2022.102606


 
 

Numerical study of free convection in a thin layer between coaxial 

horizontal cylinders 

Alexander Fedotova,b,* , Yana Tsitavetsa,b, Andrey Elysheva
 

aNature-inspired engineering center, University of Tyumen, Volodarskogo Str. 6, Tyumen, 625003, 

Russia 
bPhysics Faculty, Belarusian State University, Nezalezhnasci av., 2, Minsk, 220030, Belarus. 

 

Abstract 

We consider free convection in 2D and 3D horizontal cylindrical layers with the inner hot 

and outer cold boundary at Ra (Rayleigh number) in range (4∙103  4∙105) and the ratio δ ≈ 1:20 of 

the layer width to inner radius. Prandtl number was 0,71, fluid properties were taken for air at 293 K.  

It was shown that the flow in a 2D cylindrical layer can be divided into three regions. Stable 

symmetric convective rolls are formed in the layer’s upper part; regions with the transient flow 

appear at the lateral sides; transitional regions between the upper and the lateral regions have 

convective rolls of an unusual asymmetric shape.  

The flow in a 3D cylindrical layer in the upper part is organized into a spatially stable 

convective roll pattern. With increase of the Rayleigh number (Ra), roll pattern becomes suppressed 

by a transient plume pattern.  

The global Nu (the Nusselt number) is proportional to 0,0019∙Ra0,567 for the 2D case and to 

0,22∙Ra0,192 for the 3D case. The 2D problem provides a reasonable estimation of the Nusselt number 

for Rayleigh number up to 4∙104 and overestimates Nu for higher Rayleigh number, which agrees 

with Lyapunov exponent values. 
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Nomenclature 
 

 

�⃗� flow velocity, m/s 

P pressure, Pa 

T temperature, K 

ρ density, kg/m3 

t time, s 

ꞵ volumetric temperature expansion coefficient, K-1 

χ thermal diffusivity, m2/s 

ν kinematic viscosity, m2/s 

g free fall acceleration, m/s2  

η Kolmogorov scale, m 

ηB Batchelor scale, m 

Λ Lyapunov exponent, s-1 

φ angular coordinate, ⁰ 

R internal radius of cylinder, m 

Tcold temperature of cold boundary, K 

Thot temperature of hot boundary, K 

L distance between coaxial cylinders, m 

iq  coordinates of particle, m 

Δj,s distance between i-pair of particles at time s, m 
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1. Introduction 

Convective flow is one of the major heat transfer mechanism. It influences the formation of 

clouds [1] and volcanic basalt columns [2], thawing of ice  [3], solar granulation [4], etc. Convective 

instability defines heat transfer in many functional devices: heat exchangers, nanostructure 

deposition setups [5], cooling systems [6], nuclear reactors [7–9] and particle accelerators  [10–12]. 

Thus, understanding and controlling convective flow remains an important topic of physics and 

thermal engineering research. 

The thin cylindrical layer is a remarkable physical system. On the one hand, it can be divided 

into almost plane-parallel fragments; on the other hand, these fragments are interconnected, and each 

of them is inclined differently with respect to gravity from neighboring fragments. The consideration 

of such a system will make it possible to bind the concepts of traditional Rayleigh-Bénard convection 

and convection in a more complex curved geometry. Convection in a thin layer between coaxial 

horizontal cylinders is important for numerous engineering applications, including solar 

concentrators [13], thermal screens of particle accelerator setups [12,14,15], power cables [16], and 

others.  

Convection in a horizontal cylindrical layer has drawn prodigious attention in recent years. 

A. Passerini and coauthors proved the stable flows existence for such a system by studying the 

Oberbeck–Boussinesq equations [17]. Y. Wang and others showed that the fluid circulation  

intensifies  the  heat  transfer  in a  most  significant way in the narrow regions above and below the 

cylinder [18]. H. Majdi and colleagues proved that the radius ratio between inner and outer cylinders 

has a fundamental impact on the flow character [19]. However, the above-mentioned research 

considers a thick cylindrical layer with a width of the same order of magnitude as the cylinders’ 

radius. J.-S. Yoo considered the two-dimensional thin layer with a ratio of width to the inner radius 

δ = 1:12. It was found out that thermal instability creates a series of counter-rotating cells, which 

differs as from the flow in a thick cylindrical layer and Rayleigh-Bénard cells [16,20]. 

Recent studies showed that Nu number increases and buoyancy-driven convection intensifies 

with Ra in thin crescent cavities [21]. In case of magnetohydrodynamic mixed convection due to a 

rotation of a cylinder in a trapezoidal enclosure filled with nanofluid, the average Nusselt number 

may be increased by raising the Hartmann number, thermal conductivity and the cylinder 

radius  [22]. The convection phenomena in such a system is strongly affected by the Reynolds and 

Richardson numbers [23]. A.K. Hussein et. al. have established that the radius and alignment of 

internal cylinder can significantly change heat transfer properties in a cavity [24,25]. It was shown 

that conduction mechanism dominates between two coaxial inclined cylinders at low Ra, and that 

the highest Nu number is achieved at 90⁰ inclination angle [26]. Mallikarjuna and coauthors showed 

that thermophoretic porous flow past horizontal conical body can be described by ordinary 

differential equations, where velocity at surface of body can be increased by tuning the amount 

thermal radiation of Darcy  and Forchheimer parameters [27]. Elkhazen and coauthors explored 

electroconvection in an elliptical annulus and found that unipolar charge injection from the internal 

electrode significantly changes the topology of the flow with a formation of multicellular convective 

pattern [28]. 

Thus, free convection in a thin cylindrical layer is of interest both from a fundamental and 

an applied point of view. Because thin layers have received relatively low attention, we decided to 

focus our research on them in this study. The thin layer's geometric characteristics corresponds to 

the interval between the thermal screen and the heat source in Time-Projection Chamber of Multi-

Purpose Detector setup of NICA (Nuclotron based Ion Collider fAcility) [11,12]. Deeper 

understanding of this flow type will benefit to thermal engineering via optimization of heat spatial 

distribution in thermal systems.  

The study of convection in a thin curved layer is computationally challenging. The meshing 
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of curved smooth domain boundaries leads to a significant increase in the cells number in 

comparison with flat boundaries. However, modern codes for finite-element analysis support 

computational meshes with different shapes, aspect ratios, and orientations of cells [29,30]. This 

makes the meshes optimization possible and opens new perspectives for computational studies of 

flows in complex domains. We chose the COMSOL Multiphysics code since it provides a state-of-

the-art implementation of the finite element method (FEM) and an appropriate mesh generator.  

In this work, we study free convection in a horizontal cylindrical layer with the inner hot and 

the outer cold boundary. We explore the dynamics of convective flow including the spatial shape of 

convective cells, type of convective pattern, mixing regime and Nusselt number. Both the two-

dimensional and three-dimensional cases are compared in order to check if there is noticeable 

difference in heat transfer properties. The ratio of layer width to the inner radius is δ = 1:20, and the 

Rayleigh number is in range (4∙103  4∙105).  

 
2. Simulation details 

Let us consider a two-dimensional (2D) and three-dimensional (3D) problem of convection 

in a thin cylindrical layer. The initial-boundary value problem was set up for the Navier-Stokes 

equations for an incompressible fluid in the Boussinesq approximation [31] : 
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where �⃗� is the flow velocity, P is the pressure, T is the temperature, ρ is the density, t is the time, g 

is the gravitational constant, ꞵ is the coefficient of thermal expansion, χ is the thermal diffusivity, ν 

is the viscosity, ρ0 is the fluid density at the reference temperature T0.   

The scheme of the computational domain is given in Figure 1a,b. We considered solid nonslip 

walls with Thot temperature at the inner boundary Гin and Tcold temperature at the outer boundary Гout. 

Boundary conditions for the 2D problem are given in (2), and for the 3D problem in (3):  

 

0,  , Г ,Г ;        ,  , Г ;        ,  , Гin out hot in cold outv x y T T x y T T x y=  =  = 
                   (2) 

max max 20 100,  , Г ,Г ;     ,  , Г ;     ,  , Г ;     ,  ,  , Г ,Гin out hot in cold pout z zz z z z pv v T T xv x y T T x y x y yT T = = = ==  =  =  = =
   (3) 

 

The Rayleigh number governs the intensity of free convection and is given by the following 

expression [32]: 

3( )
Ra hot coldg T T L



−
= ,       (4) 

where L is the characteristic height,. The Rayleigh number was set up by varying the temperature 

Thot at the inner boundary. We considered the Prandtl number Pr = 0,71 as well as material properties 

for air.  

Equations (1) with conditions (2),(3) were solved in Cartesian coordinates by a finite-element 
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method implemented in the COMSOL Multiphysics [33]. Velocity, pressure, and temperature fields 

were approximated by second-order Lagrange polynomials. Polynomial coefficients were found 

from the corresponding systems of linear equations, which were solved by the LU-decomposition 

method (PARDISO library [34–36]). Time integration was performed using the implicit time-

dependent solver based on second-order backward differentiation formula [37–39]. Time step did 

not exceed 1∙10-3 s. COMSOL testing and verification for known free convection problems is 

described in details in Appendix A. 

Parts of computational meshes are shown in Figures 1c, d. The final meshes included about 

105 elements for the 2D problem and about 107 elements for the 3D one. In order to accurately capture 

the features of the flow, mesh resolution has to be at least of the same order of magnitude as the 

Kolmogorov scale η and Batchelor scale ηB  [40–42]:  

( )

1/2
1/2

1/4

Pr
;         Pr

Ra (Nu 1)
B

L
   −= =

 −
    (5) 

 As further computations have shown (chapter 4), Nu number does not exceed 3.5, which 

leads to η in range (0,0018  0,0126) m and ηB in range (0,0021  0,0150) m for Ra = 4∙105. In this 

study mesh elements had linear sizes about Δ2D ≈ 0,0019 m in the 2D case and Δ3D ≈ 0,0023 m which 

is enough to study the convective flow under given conditions.  

The Lyapunov exponent Λ is a useful indicator for quantifying the intermixing in the 

flow [43]. The negative Lyapunov exponent means that two points with close initial positions tend 

to approach each other over time, while the positive one indicates that the points tend to 

disperse [44].  

In order to compute Λ, we traced fluid volumes in the flow using massless Lagrange particles 

as markers. The velocity of each particle matched the flow velocity [45]: 

,idq
v

dt
=        (6) 

where iq are the coordinates of marker particle and v  is the velocity of the fluid at coordinates iq , 

determined from Eqs. (1). Eqs. (6) were time-integrated with the Dormand-Prince method [46]. 

First, a number of randomly distributed particles were introduced to the quasistationary flow. 

Second, the distances Δj,s between pairs of closely located particles were calculated at time s. Finally, 

the distances for the same pairs were updated and new distances Δj,s+1 were found at the next time 

step (s+1). The averaged Lyapunov exponent Λ was computed from the following expression [47]: 

 

 
, 1
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Δ1 1
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Δ
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j s

javg j st N

+

=

 =         (7) 

 

where N is the number of particle pairs in the considered volume, tavg = 0,05 s is the time interval 

between s and (s+1) time moments. About 105 particles were used in each simulation. 

The angular distribution Λ(φ) was computed by averaging local exponents with a 5° step. 

The angular coordinate φ was counted clockwise from the vertical passing through the center of the 

cylindrical layer (Figure 1a).   
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Figure 1. Computational domain scheme for the 2D (a) and 3D (b) problem, and fragments of 

computational meshes for the 2D (c) and 3D (d) problem. 

 

 
3. Velocity and temperature distributions 

We studied the temperature and velocity spatial distributions for the 2D and 3D problems. 

The temperature and velocity for the 2D cylindrical layer are given in Figure 2. As can be seen, there 

are three main regions where the flow's nature differs. The first (upper) region is located at the top 

of the cylindrical layer in the range of φ ≈ (–15° ÷ 15°). The second (transitional) region is located 

at φ ≈  (15° ÷ 50°). The third (lateral) region is on the sides of the cylindrical layer at 

φ ≈  (50° ÷ 170°). No convection develops in the range of φ ≈ (–170° ÷ 170°) because of the hot 

boundary located above the cold one. 

The velocity and temperature in the upper region are shown in Figure 2a,b. The velocity at 

Ra = 4∙103 is in (10-3 ÷ 10-2) m/s range. The temperature distribution is strongly affected by heat 

conduction, which leads to the smooth rolls formation (Figure 2b). At higher Rayleigh numbers, the 

velocity increases up to 10-1 m/s and the rolls have a plume shape due to the growing contribution 

of the convective heat transfer mechanism. This flow is similar to the classical Rayleigh-Bénard 

convection, except that convective rolls expand slightly with Ra (Figure 2a,b). 

Starting with Ra = 4∙104, rolls appear in the transitional region (Figure 2c,d). Rolls there have 

an asymmetrical shape because the lower vortex in a cell is elongated. This further elongation of the 

lower vortex with Ra leads to the spatial expansion of the rolls as in the case of the upper region.  

As in the transitional region, the flow in the lateral region arises when Ra is larger than 4∙103 

(Figure 2f,g). The flow is transient and does not lead to the formation of stable rolls. 
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Figure 2. Velocity and temperature fields for 2D problem: velocity spatial distribution for the 

upper (a), transitional (c) and lateral (f) regions and temperature spatial distribution for the upper 

(b), transitional (d) and lateral (g) regions for different Ra 

Velocity and temperature distributions for the 3D case are given in Figure 3 at the half-width 

of the cylindrical layer. The 3D free convection is characterized by periodic spatial pattern of 

(a) (b) 

(c) (d) 

(f) (g) 
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temperature distribution which is called a convective texture [48–51].  

At Ra = 4‧103, the flow arises only in the upper region and forms a stationary roll pattern 

(Figure 3a,b). This type of convective pattern is similar to Turing morphogenesis patterns [52]. It 

has been described by several researchers for Rayleigh-Bénard convection [48–51].  

At Ra = 4∙104, another type of pattern is observed in the lateral and transitional regions 

(Figure 3c,d). The flow in these regions consists of coherently moving plumes. Such a pattern 

visually resembles a combination of Rayleigh-Taylor and Rayleigh-Bénard instabilities [53,54]. 

With the increase of Ra to 4∙105, the plume pattern changes to a chaotical flow without an obvious 

spatial ordering.  

 

 

 
 

Figure 3. Slices of the velocity and temperature fields for the 3D problem at half-width of a 

cylindrical layer. 

Velocity for different Ra: (a) – 4∙103, (c) – 4∙104 , (f) – 4∙105. 

Temperature for different Ra: (b) – 4∙103, (d) – 4∙104 , (g) – 4∙105. 

 

 
4. Heat loading and dynamic properties 

4.1 Heat loading 

The heat loading is a quantity of heat that can be removed from a system during the heat 

transfer process. The heat loading was estimated as the time-averaged heat flux at the cold boundary 

qn. The angular distributions of qn are given in Figure 4a,b. As we see, qn is periodic in the upper 

region for Ra = 4‧103 due to the spatial periodicity of stable convective rolls (Figure 2a,b and Figure 

3a,b).  

With the increase of Ra up to 4‧104, the heat flux remains periodic for the 2D case (Figure 

4a). However, for the 3D case, the convection pattern becomes quasistationary (see Figure 3c,d) and 

qn loses its periodicity after time-averaging (Figure 4b). With the further increase of Ra, spatial 

(b) 

(a) (c) (f) 

(d) (g) 
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oscillations in qn disappear. 
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                                                 (a)                                                                          (b) 

Figure 4. The angular distribution of the heat flux at the cold boundary qn for the 2D (a) 

and 3D (b) problems for different Ra: 1 – 4∙103, 2 – 4∙104 , 3 – 4∙105 

 

4.2 Nusselt number 

 The Nusselt number defines the contribution of convection to overall heat transfer [55]. It 

was calculated as the ratio of overall heat flux qn at a cold boundary to flux qn
cond for a system with 

a heat conduction mechanism only [55]: 
2

0

2

0

( )d

Nu

( )d

n

cond

n

q

q





 

 

=




.      (8) 

The dependence of Nu on the Rayleigh number is given in Figure 5. As we can see, values 

of the Nusselt number for thin layers (points on the dotted lines 1 and 2) are a few times lower than 

Nu for classical RB-convection (solid line 4) [56] and Nu for a thick cylindrical layer (dashed 

line 3) [57]. Lower values of Nu for thin cylindrical layers may be explained by the existence of a 

region at the bottom of the layer where convection is not going on because the hot boundary is above 

the cold one. 

For a thin cylindrical layer, the 2D problem shows a higher Nu number than the 3D one. The 

difference between Nu for 2D and 3D problems is about 5% for Ra = 4∙104 and rapidly increases to 

47% for Ra = 4∙105. We approximated our simulated data with the power law and found that the 

Nusselt number for the 2D case is proportional to 0,0019∙Ra0,567 and for the 3D case is proportional 

to 0,22∙Ra0,192. 
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Figure 5. The Nusselt number dependence on the Rayleigh number for different systems:  

1 – the 3D problem, 2 –  the 2D problem,  

3 – the Rayleigh-Bénard convection [56], 4 – the convection between cylinders with δ = 1:5 [57] 

 

4.3 Lyapunov exponent 

To better visualize the mixing in the flow, we computed the Lyapunov exponent Λ given in 

Figure 6. In the 2D case, the Λ is highest at the lateral sides (“butterfly shape”, Figure 6a-c). In the 

3D case, the highest values of Λ shift down as Ra increases (Figure 6d-g).  

 
Figure 6. The Lyapunov exponent Λ angular dependence for the 2D (a)-(c) and the 3D (d)-(g) 

problem at different Rayleigh numbers:  

(a), (d) – 4∙103; (b), (f) – 4∙104; (c), (g) – 4∙105.  

Solid line is the average value, points are Λj for specific pairs of marker particles.  

(d) (f) 

(a) (b) (c) 

(g) 

2D, Ra = 4∙103 2D, Ra = 4∙104 2D, Ra = 4∙105 

3D, Ra = 4∙103 3D, Ra = 4∙104 3D, Ra = 4∙105 
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For Ra = 4∙103, Λ is higher by an order of magnitude for the 2D problem than for the 3D one 

(Figure 6a,d). This is caused by the 3D convective roll pattern (Figure 3a,b), which makes only half 

of the fluid involved in convection, while the other fluid remains still and non-intermixing.  

It must be noted that the absolute values of Λ are larger for the 2D problem. This qualitatively 

agrees with a higher Nusselt number because intermixing increase usually intensifies heat 

transfer [58,59]. 
 

 
5. Conclusions  

The numerical study of free convection in a thin cylindrical layer at Rayleigh number in 

range (4∙103  4∙105) was presented in this work. The following conclusions can be made: 

1. It was established that convective flow consists of three regions with different dynamics: 

(i) the upper region with Rayleigh-Bénard cells; (ii) the transitional regions with asymmetric 

convective cells; and (iii) the lateral regions with transient flow without stable cells; 

2. For the 3D problems, the roll convective pattern was observed at the Rayleigh number of 

4∙103, which changed to the plume pattern at the Rayleigh number 4∙104; 

3. The analysis of the Lyapunov exponent revealed that fluid mixing in the 2D problem is more 

intense than in the 3D one. This is consistent with the more intense heat transfer found for 

the 2D problem; 

4. It was found that for low Rayleigh numbers, the 2D problem may be used to provide a 

reasonable estimate of the heat transfer rate. The Nusselt number obtained from the 

2D problem overestimated Nu from 3D problem by 5% at Rayleigh number 4∙104 and by 

47% at Rayleigh number 4∙105; 

5. It was shown that Nusselt number depends on Rayleigh as 0,0019∙Ra0,567  for the 2D problem 

and as 0,22∙Ra0,192 for the 3D problem of free convection in the thin cylindrical layer. 
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APPENDIX A – CODE VERIFICATION 

In order to check if COMSOL Multiphysics is able to accurately solve the free convection 

problems we reproduced the classical Rayleigh-Bénard convection and compared the results to the 

literature data.  

1. Two-dimensional free convection 

The problem was set up for the system of equations (1) on the computational domain given in 

Figure 7. We considered plane-parallel solid walls with the temperature Tcold at the top Гu and the 

temperature Thot at the bottom Гb boundary with periodic conditions at the left Гp1 and right Гp2 

boundary: 

max max0 00,  Г ;   0,  Г ;   ,  Г ;   ,  Г ;      ;  xb u hot b cold u x x x xxv y v y T T y T T Ty v v T= = = ==  =  =  =  = =  (9) 
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Figure 7. Computational domain for the two-dimensional free convection problem 

 

Equations (1) with conditions (9) were solved using finite-element method implemented in 

COMSOL Multiphysics [33]. Pressure, velocity and temperature were approximated by a second-

order polynomial functions. The mesh included 1∙105 triangular elements. The velocity magnitude 

and temperature fields are shown in Fig. 8. Both fields are similar to the reported in literature for 

Rayleigh-Bénard convection [60–62].  

 

     
                                       (a)                                                                                              (b) 

Figure 8. Spatial distributions of (a) temperature and (b) velocity magnitude for the two-

dimensional free convection problem at Ra = 2∙104 

We compare vertical profiles of temperature from our work with the profiles given in 

work [63]. As can be seen from Fig. 9, simulated data is close to the data from  [63]. Temperature 

profile obtained in our simulations is a bit smoother, which may be related to the features of the 

finite element method used in COMSOL, which solves equations in a weak form with spatial 

averaging across the mesh cells. 
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Figure 9. Vertical temperature profiles for 2D convection problem (solid lines – literature data, 

points – our simulation) at Ra = 2∙104: 1 – profile between counter-rotating vortices, 2 – profile 

through the center of vortex. Inset: scheme of convective cell with marked profiles. 

2. Three-dimensional free convection 

The problem was set up for the system of equations (1) on the computational domain given 

in Figure 10. We considered plane-parallel solid walls with the temperature Tcold at the top Гu and 

the temperature Thot at the bottom Гb boundary, periodic conditions at the left Гp1 and right Гp2 

boundary and periodic conditions at the front Гp3 and back Гp4 boundary: 

max max max max0 0 0 0

0,  Г ;  0,  Г ;  ,  Г ;  ,  Г ;   

;  ;  ;  

b u hot b cold u

x x x xx x yy y y y yv

v z v z T T z T T

v T T v v T T

z

= = = = = = = =

=  =  =  = 

= = = =
             (10) 
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Figure 10. Computational domain for the two-dimensional free convection problem 

 

The computational mesh included 7∙105 tetrahedral elements. Most of the publications 

provide information about convective patterns. In Figure 11 there is a comparison between a 

convective pattern obtained from our simulations in COMSOL and literature data.  

      
                       (a)                                               (b)                                                (с)  

    
                                                   (d)                                                    (f)                                                      

Figure 11. Temperature distribution in the midplane between the upper Гu and bottom Гb boundaries 

for the three-dimensional free convection:  

(a) – temperature field from our simulations at Ra ≈ 4∙103;  

(b) – convection pattern from simulations [64] at Ra ≈ 3,4∙103;   

(c) – isothermal contours from experiment [65] at Ra ≈ 4∙103;  

(d) – temperature field from our simulations at Ra ≈ 105; 

(f) – temperature field from simulations [64] at Ra ≈ 105. 

 

It can be seen, that convective patterns simulated using the COMSOL are close to the 

literature data available. Small divergence between Fig.11d and Fig.11f can be attributed to a 

difference in color maps and lower Pr number in work [66]. Summarizing the above, it seems that 

COMSOL Multiphysics is able to reproduce significant features of free convective flow and can be 

used for this type of computational studies. 
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