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We consider the adiabatic mode of Brownian particle motion in a periodic potential under
the action of symmetric dichotomous �uctuations of an external force F with zero mean
value (rocking ratchet), in which the �uctuation frequency is much less than the inverse
relaxation time of the particle in each of the states of the dichotomous process. Expressions
are given for force-dependent �uxes of an adiabatic classical rocking ratchet. In the absence
of thermal �uctuations, within the semiclassical approximation, analytical expressions are
obtained for the rocking-ratchet tunneling �ux in a sawtooth periodic potential of arbitrary
asymmetry and in the potential of two sinusoids. It is shown that the tunneling �ux has a
linear asymptotics in modulus of small F due to (i) the absence of reverse tunneling �uxes
with respect to the direction F and (ii) the root dependence of the integrand of the Gamow
formula on the potential energy. The main parameters of the model are the energy barrier
V0 and the period L of the potentials, as well as the rocking force F and the asymmetry
parameter ξ = l/L of the sawtooth potential with the width of one of its teeth equal to l. It is
shown that the direction of quantum ratchet motion is opposite to the motion direction of the
corresponding classical ratchet in a limited range of values of the rocking force |F |L/V0 < αc,
where the parameter αc changes from the value α1 = (

√
5− 1)/2 ≈ 0.618 for the extremely

asymmetric sawtooth potential (ξ = 1) to the value α2 = 2/3 ≈ 0.667 for the symmetric
potential (ξ = 1/2). In the range of values α1 < αc < α2, the sign of the tunneling �ux
changes with the change in the asymmetry parameter ξ. Numerical calculations for the
potential of two sinusoids corresponding to the e�ective value ξ ≈ 0.655 of the asymmetry
lead to similar results with αc ≈ 0.81.
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1. Introduction

Among various models of controlled

nanotransport, the most common models are

∗also atDUT-BSU Join Institute, Dalian University of

Technology, Dalian 116024, P.R.C.
†also at Semenov Institute of Chemical Physics, Russian

Academy of Sciences, 119991 Moscow, Russian Federation

the so-called rocking ratchets, in which, spatial

and/or temporal symmetry is being broken,

unbiased nonequilibrium �uctuations of an

external force can lead to directed motion of

nanoparticles [1�4]. The main factor determining

the direction of Brownian ratchet motion is

the asymmetry of the potential relief [3, 5�8].

In addition to the asymmetry and features of

the potential relief, the motion direction is also
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signi�cantly a�ected by dynamic e�ects [9]. More

possibilities for controlling nanotransport arise

for nanoparticles of su�ciently large or small

mass, for which inertial or quantum e�ects are

to be taken into account [2, 3]. Models that

use classical description in the framework of

di�usion dynamics based on the Fokker-Planck

equation [10] are the most studied. Accounting

for laws of quantum mechanics in describing

the ratchet functioning leads to fundamentally

new e�ects that were impossible to discover

within the classical description [2]. In this case,

the critical factor is the temperature of the

process. At certain temperature, the mechanism

of the process is known to be transformed from

the low-temperature tunnel mechanism to the

classical over-barrier one (see, for example, Refs.

[11, 12] and references therein). In other words,

there is a criterion, depending on the parameters

of the barrier and the particle mass, for the

temperature at which the mechanism of particle

transfer alters. In particular, this applies to

the quantum rocking ratchet, which was �rst

described in the pioneering work [13]. The model

of the quantum ratchet system considered in [13]

included but a two-sinusoidal potential and �xed

values of the external force; it was demonstrated

that, at su�ciently high temperatures, the

ratchet e�ect led to particle motion in the

direction coinciding with the classical case,

while at low temperatures, when the tunnel

motion prevails, the particle moved in opposite

direction. This theoretical result was con�rmed

experimentally in Ref. [14]. In this paper, we

consider the adiabatic mode of Brownian particle

motion in a periodic potential relief under the

action of symmetric dichotomous �uctuations of

an external force F with zero mean value (rocking

ratchet). We analyze the dependencies of the

particle �ux on the magnitude of the �uctuating

force in both the classical and quantum rocking

systems. Section 2 presents the main results

of the theory of classical adiabatic rocking

ratchets with arbitrary periodic potentials

and temperature values; the results are then

concretized to potentials of a sawtooth shape

with the energy barrier V0 and low temperatures

(V0/kBT >> 1,kB is the Boltzmann constant,

Ò is the absolute temperature) when the kinetic

description can be used. The main result of

this section is that the dependence of the �ux

on the rocking force F in the interval of values

FL < V0 (L is the period of the potential) is a

monotonically increasing function, quadratic in F

if F is small. In Section 3, within the framework

of the semiclassical approximation, analytical

expressions are obtained for the tunneling �ux

of an adiabatic rocking ratchet in a sawtooth

periodic potential of arbitrary asymmetry at

zero absolute temperature. It follows from these

expressions that, for a quantum rocking ratchet,

the dependence of the �ux on F in the same

range of its values, FL < V0, is a nonmonotonic

function having a section of linear dependence at

small F , where the sign of the �ux is opposite

to the analogous contribution for the classical

rocking ratchet. The presence of this linear

contribution is due to the absence of the reverse

tunneling �ux at �xed F . For certain values of F

from the same interval, FL < V0, the direction

of the quantum ratchet motion reverses and

becomes the same as that of the classical ratchet.

A similar result is obtained for the motion of a

rocking ratchet when choosing the two-sinusoidal

form of the potential, analogous to considered

in Ref. [13]. The discussion and conclusions are

presented in the �nal Section 4.

2. Classical rocking ratchet

An analytical expression for the classical-

rocking-ratchet �ux in the adiabatic regime of

the ratchet motion can be derived from the

exact solution of the problem of di�usion of

a Brownian particle in a stationary spatially

periodic potential V (x), of a period L, under

the action of a uniform and stationary force F

[10, 15, 16]:
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Jcl = D

(
1− e−βFL

)
L∫
0

e−βU(x)dx
L∫
0

eβU(x)dx− (1− e−βFL)
L∫
0

dxe−βU(x)
x∫
0

dx′eβU(x′)

, (1)

where U(x) = V (x) − Fx, β = (kBT )−1, D is

the di�using coe�cient. The average velocity of

the directed particle motion, v, is then expressed

through Jcl as

v = JclL

, so that, in linear in F approximation (in the

limit of small forces βFL� 1), it will be

v = µe�F

, where µe� is the e�ective coe�cient of particle

mobility in the periodic potential [10, 15, 16]:

µe� = ζ−1L2Z−1
+ Z−1

− , (2)

Z± =

L∫
0

dx exp [±βV (x)].

This formula was �rst obtained by Lifson

and Jackson [17] when another problem (namely,

determining the di�usion coe�cient of a particle

in a periodic potential) was solved using the

Einstein relation Deff = µe�kBT . Eq. (2) shows

that as V (x) → 0, and the presence of the

potential always reduces the particle mobility.

The integrals in Eqs. (1) and (2) are readily

evaluated if we choose V (x) in the form of a

sawtooth potential with the potential barrier

V0, given in its major region by the following

expression:

V (x) = V0 ×
{

x/l, 0 ≤ x ≤ l,
(L− x)/(L− l), l ≤ x ≤ L. (3)

The slopes of the linear sections 0 ≤ x < l

and l ≤ x < L become f+ = V0/l − F and f− =
−V0/(L− l)−F , respectively, and we then obtain

[18, 19]:

βDJ−1
cl = − l

f+
− L− l

f−
+ β−1

{
eβ f−(L−l) − 1

f2
−

− e−β f+l − 1
f2
+

+
1

e−β f+l − eβ f−(L−l)

[
eβ f−(L−l) − 1

f−
− e−β f+l − 1

f+

]2
 ,

µe� = ζ−1w2/sinh2w, w = βV0/2. (4)

Thus, for the sawtooth potential, the

e�ective mobility does not depend on its

asymmetry. Consider a dichotomous process of

alterning two states, denoted by ′′+′′ and ′′−′′,
which are characterized by durations τ± and

potential pro�les U±(x) = V (x) ∓ Fx (Fig. 1).
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The applied forces make the potential pro�les

tilted (tilted periodic potentials, washboard

potentials); in each of the pro�les a stationary

particle �ux J± occurs. In the adiabatic

approximation, the values τ± signi�cantly exceed

the characteristic relaxation times (the times

during which the initial conditions are forgotten

and the �uxes become stationary); and, for a

symmetric dichotomous process (τ+ = τ−), the

average �ux is then the arithmetic mean of the

�uxes J±:

〈J〉 = (J+ + J−)/2. (5)

It is this average �ux that is the rocking-

ratchet �ux in the adiabatic approximation.

FIG. 1. The mechanism of occurrence of directed
motion in a rocking ratchet, induced by �uctuations of
the applied force F , due to which the potential pro�les
U±(x) = V (x)∓Fx (V (x) periodic potential, which is
shown as a sawtooth in the �gure) become tilted, and
in each of these pro�les occurs either thermoactivated
�ux of particles (at high temperatures) or tunneling
�ux (at low temperatures).

The features of the dependence 〈Jcl〉 on F for

the sawtooth potential (3) was illustrated in [18]

(see Fig. 2 therein). At either Fl < V0 or F (L −

l) < V0 (that is when the particle motion along

the F direction is inevitably accompanied by

thermally activated overcoming the barrier), the

magnitude of the �ux is small, and the function

describing its dependence on F monotonically

increases from zero at ξ > 1/2, while, at ξ <

1/2, it monotonically decreases. In the absence of

thermally activated overcoming the barriers, the

absolute value of the �ux increases a lot when

FL > V0, and then, for FL � V0, decreases to

zero, since there is no ratchet e�ect in the absence

of an asymmetric potential pro�le. We will not

be interested in the section of nonmonotonicity

corresponding large values of the rocking force

(FL > V0), since we intend to compare the

classical thermally activated barrier overcoming

with quantum tunneling in the context of their

manifestation in ratchet characteristics. In the

expansion of the expressions (5) and (1) in

small βFL, the linear in F contributions are

compensated, and the average �ux begins with

the quadratic, in F , terms [20, 21], that is

〈Jcl〉 = −βF 2µe� Φ +O[(βFL)4],

Φ =

L∫
0

dx
[
ρ+(x)− L−1

] x∫
0

dy
[
ρ−(y)− L−1

]
,

ρ±(x) = Z−1
± exp [±βV (x)] , (6)

where the quantity Φ determines the average

�ux for an adiabatically driven on-o� �ashing

ratchet, 〈Jcl〉�ash = τ−1 Φ, τ = τ+ + τ− is the

period of the dichotomous process (τ+ = τ−),

µe� is determined by the relation (2), and O(z)
denotes an in�nitesimal quantity of the order of

z. For the sawtooth potential (3), the relations (6)

are reduced, up to the contributions of the order

of F 2, to the following expression:

〈Jcl〉 ≈ (2ξ − 1)
F 2

2ζV0

w3

sinh2w

(
cothw +

w

sinh2w
− 2
w

)
≈ (2ξ − 1)

β3V 2
0 F

2

ζ
×
{
w/360, w � 1,
e−β V0 , w � 1.

(7)
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Force-Dependent �uxes of Adiabatic Classical and Quantum Rocking Ratchets 353

where w = βV0/2, ξ = l/L .

The sign of the �ux is determined by the

sign of (2ξ − 1), that is, by the asymmetry of the

sawtooth potential. For the symmetric potential

(2ξ − 1 = 0) the �ux is always zero. For the

stated purposes, it is su�cient to con�ne the

analysis to the approximation of large, compared

to the thermal energy kBT , potential barriers

(this low-temperature regime allows for using

kinetic approach), when the particle �ux in each

state U±(x) can be calculated using the Arrhenius
law. If we choose the coordinate origin coinciding

with one of the barriers V0 of the sawtooth

potential (Fig. 2), then

J
(cl)
± = C

[
e−β(V0−U±(−l)) − e−β(V0−U±(L−l))

]
= Ce−β V0

[
e±βF l − e∓βF (L−l)

]
, (8)

where C is a pre-exponential factor describing the

frequency with which particles hit the barrier, and

the quantities U±(−l) and U±(L − l) specify the

potential energies at the potential energy minima

closest to the chosen origin. Note that the signs

of the expressions for the �uxes in ′′+′′ and ′′−′′
states, in which the rocking force acts to the

right and to the left, are obtained automatically:

J
(cl)
+ > 0, J (cl)

− < 0.
Averaging Eqs. (8) using (5) gives:

〈Jcl〉 = 2Ce−β V0 sinh(βFL/2) sinh[βF (2l−L)/2].
(9)

At βFL � 1, formula (5) yields 〈Jcl〉 ≈
(C/2)(2ξ−1)(βFL)2e−β V0 . Comparing this result

with the approximate expression for the �ux (7)

with w � 1 gives the value of the pre-exponential

factor: C = 2βV 2
0 /(ζL

2) . The dependence of 〈Jcl〉
on the dimensionless force βFL/2 is shown in the

inset to Fig. 3. This dependence on the interval

FL < V0 is indeed a monotonically increasing

function when ξ > 1/2 .

FIG. 2. A fragment of a sawtooth potential illustrating
the tunneling of a quantum particle in the direction
of the applied force F . At F = 0, the initial triangle
with the base L equal to the period of the potential
and the height V0 (depicted by thin lines) undergoes
distortions caused by the force �uctuations. The result
is two distorted triangles, depicted in thick solid and
dashed lines, with bases a± and heights h± (see
the inset, upper left), which can be found from the
similarity of right triangles with vertical legs along
the ordinate axis.

3. Quantum rocking ratchet

At zero temperature, there are no

thermoactivated contributions to the �ux, and

the only mechanism for the motion occurrence

is the e�ect of quantum tunneling. By the

semiclassical approximation, the tunneling �ux is

proportional to the rate constant of overcoming

the potential barrier and is determined by the

expression

J
(qm)
± = ±Ae−S±/~,

S± = 2

∣∣∣∣∣∣∣
x1,±∫
x0,±

dx
√

2m [U±(x)− U(x0,±)]

∣∣∣∣∣∣∣ , (10)

where A is the pre-exponential factor, ~ is the

Planck constant; the action S± is represented by

the Gamow formula, in which m is the particle

mass and the integration is carried out over the

sub-barrier region of the potential pro�le U±(x)
with the entry and exit points x0,± and x1,±,

respectively, and U±(x0,±) = U±(x1,±) (when

x0,± > x1,±, modulus is required). Unlike the
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FIG. 3. A family of dependencies of the function
f1/2(α, ξ) on α, describing force-dependent tunnel
�uxes of the adiabatic quantum rocking ratchet for
various values of the sawtooth-potential asymmetry
parameter ξ (indicated near the curves). The inset
shows schematically the thermoactivated �uxes of the
corresponding classical rocking ratchet for the same
values of the asymmetry parameter, in the order from
top to bottom.

expression (8) for the classical thermoactivated

�ux, for which its sign is obtained automatically

from the sign of the applied force, the sign

of the expression for the tunneling �ux (10)

is not automatically processed and must be

speci�ed explicitly. Represent the expression for

the average quantum �ux (5) in a form convenient

for analyzing its sign:

〈Jqm〉 = Ae−S+/~ {1− exp [−(S− − S+)/~]}
(11)

so the sign of J (qu) is the same as the sign of

the di�erence S−−S+. For a sawtooth potential,

the sub-barrier region is a triangle, so that, in

Eq. (10), the integral over its region can be taken

analytically. To understand the features of the

integration result, we consider a more general case

of the integrand: The piecewise linear function

y(x), describing the sides of the triangle, enters

the integrand to an arbitrary power ν. The result

of the integration can readily be written as:

Iν =

x1∫
x0

yν(x)dx =
1

ν + 1
hνa, (12)

where a = |x1 − x0| and h are the base and height
of the triangle, respectively. The values a and h

are di�erent in the states ′′+′′ and ′′−′′, so we

will use the notations a± and h± for them (see

the inset in Fig. 2). For the potential U+(x), the
subbarrier region is de�ned as follows. Tunneling

can occur from a potential minimum only to

the right (see the triangle in Fig. 2 depicted by

the solid thick lines). Then from the geometric

constructions in Fig. 2 it follows that h+ = V0−Fl
and a+ = V0L/[V0 + F (L− l)]. Similarly, for the

potential U−(x), tunneling can only occur to the

left (see the triangle in Fig. 2 depicted by the

dashed thick lines), so that h− = V0 − F (L − l)
and a− = V0L/(V0 + Fl). Let us introduce the

quantities convenient for further analysis

α ≡ FL/V0 , ξ ≡ l/L. (13)

They characterize the relative magnitude of

the rocking force (0 ≤ α < 1) and the asymmetry

coe�cient of the sawtooth potential. Then the

expressions for the quantities Iν,± de�ned by Eq.

(12) will take on the form:

Iν,±(α, ξ) =
V ν

0 L

ν + 1
×
{

ϕν(α, ξ),
ϕν(α, 1− ξ),

ϕν(α, ξ) ≡ (1− αξ)ν

1 + α(1− ξ)
. (14)

The desired expressions for the action S±
(10) and the di�erence S− − S+, which speci�es

the sign of the average tunneling �ux (11), are

expressed in terms of functions ϕν(α, ξ) as follows:

S±/~ =
4L
√

2mV0

3~
×
{

ϕ1/2(α, ξ),
ϕ1/2(α, 1− ξ),

(S− − S+)/~ =
4L
√

2mV0

3~
f1/2(α, ξ) , (15)

where we introduced the auxiliary function
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Force-Dependent �uxes of Adiabatic Classical and Quantum Rocking Ratchets 355

fν(α, ξ) ≡ ϕν(α, 1− ξ)− ϕν(α, ξ). (16)

The expansion of functions ϕν(α, ξ) and

fν(α, ξ) in small parameter α, the values ν being

arbitrary, can be written as:

ϕν(α, ξ) ≈ 1− α[1 + (ν − 1)ξ]

+ α2[1 + (ν − 2)ξ + (ν − 2)(ν − 1)ξ2/2],

fν(α, ξ) ≈ (2ξ − 1)α [ν − 1 + (ν − 2)(ν + 1)α/2].
(17)

For the value of interest ν = 1/2, we obtain
the important result

f1/2(α, ξ) ≈ −(2ξ − 1)(α/2) (1− 9α/4), (18)

from which it follows that the contribution to the

average �ux, which is linear in the force modulus

(α), is not only nonzero, but also opposite in

sign to the analogous contribution to the �ux

for the classical rocking ratchet (compare with

the expression (7)). The nonzero value of the

linear contribution is a consequence of the absence

of reverse tunneling �uxes, with respect to the

direction of the applied force, as well as of the

root dependence of the integrand in the Gamow

formula (10). The root dependence, in turn, is a

consequence of the quadratic dependence of the

kinetic energy of particles on their velocities. Note

that at ν = 1, the linear term of the expansion

of fν(α, ξ) in small α (polarizability) is absent,

while at ν > 1, it becomes positive. The result

of the integration in formula (12) says that, at

ν < 1, the dependence a(α) will predominate

over the dependence h(α). Since, at ξ > 1/2, the
bases of the triangles in Fig. 2 in the state ′′+′′

greater than those in the state ′′−′′ (a+ > a−),

then the �ux in the state ′′+′′ is less than that

in the state ′′−′′; hence, the resulting �ux will be

in the direction opposite to the direction of the

classical �ux with the same asymmetry. At ξ <

1/2, the motion directions of both the classical

and quantum ratchets reverse, but the resulting

�ux will again be in the direction opposite to

the direction of the classical �ux. The family

of dependencies of the function f1/2(α, ξ) on α

corresponding di�erent values ξ > 1/2 illustrates

this result (Fig. 3). While the approximate Eq.

(18) predicts the �ux reversal at α = 4/9 ≈
0.44, the exact values of the parameter α, at

which the �ux reverses, depend on the asymmetry

parameter ξ and lie in the region of values

exceeding 0.6. The family of functions f1/2(α, ξ)
for various α is shown in Fig. 4. For small α values,

the function f1/2(α, ξ) is negative, while for large
α values, it is positive. The smallest α value, at

which, for ξ 6= 1/2, f1/2(α, ξ) = 0, is achieved

for the extremely asymmetric sawtooth potential

(ξ = 1). The inequality f1/2(α, 1) = 0 takes place

at α2 + α − 1 = 0; hence, the root of the last

equation α1 = (
√

5−1)/2 ≈ 0.618 is precisely the

desired minimum value. Note that the boundary

value F ≈ 0.618 V0/L was given in the review

[1] under the semiclassical consideration of the

rocking ratchet in the extremely asymmetric

potential case. The largest α value, at which, for

ξ 6= 1/2, it will be obtained f1/2(α, ξ) = 0, is
determined from the condition of the zero �rst

derivative of the function f1/2(α, ξ) at the point

ξ = 1/2 (f ′α(1/2) = α(1− 3α/2)(1− α/2)−5/2 =
0), which yields α2 = 2/3 ≈ 0.667. Therefore,
in the range of values α1 < α < α2, the sign

of f1/2(α, ξ) depends on the asymmetry of the

sawtooth potential (parameter ξ).

Note that the dependence of the motion

direction of a quantum rocking ratchet on the

applied force is an attribute not only of the

sawtooth shape of the potential. In Ref. [13], the

periodic potential pro�le was chosen as the sum

of two sinusoids

V (x) = Ṽ0[sin(2πx/L)− 0.22 sin(2πx/L)], (19)

and the only force value F corresponded to

the modi�ed parameter α̃ ≈ FL/Ṽ0 = 0.4π. It
can be readily shown that the best approximation

of the function (19) by a sawtooth potential is

realized at V0 ≈ 2.50 Ṽ0 and ξ ≈ 0.655 (see

the inset in Fig. 5). Since α ≡ FL/V0 ≈ 0.4 α̃,
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FIG. 4. A family of dependencies of the function
f1/2(α, ξ) on the asymmetry parameter ξ for various
values of the force parameter α.

then the value α̃ ≈ 0.4π from [13] corresponds to

α ≈ 0.503 < α1, so that f1/2(α, ξ) < 0 and the

direction of the quantum �ux is indeed opposite to

the direction of the classical one. For the average

quantum �ux de�ned by the relations (11) and

(15), the dependence f1/2 on α with the potential

pro�le (19) is calculated by numerical evaluating

the integrals in (10). Comparison of the numerical

result with the analytical result based on the

sawtooth approximation to the potential (the

solid and dashed curves in Fig. 5) shows that both

dependencies behave in a similar way, and the

boundary value α at which f1/2 changes its sign

is approximately equal to 0.81 for the potential of

two sinusoids and 0.66 for the sawtooth one.

4. Discussion and conclusions

The reversal of the direction of the rocking-

ratchet motion with decreasing temperature when

the assumption of classical character of the

motion is replaced by the quantum one lies in

di�erent dependencies of �uxes on the barrier

parameters and the probability of particle transfer

in the thermally activated and tunneling cases.

In the �rst case, only the value of the barrier to

be overcome becomes important; in the second

FIG. 5. The dependence of the function f1/2,
describing the tunneling �ux for the potential pro�les
(19) (solid curve) and (3) (dashed curve), on the
parameter α. In the inset, the corresponding curves
show the potential of two sinusoids (19), which is
approximated, using the least squares method, by the
sawtooth potential (3) with parameters V0 ≈ 2.50 Ṽ0

and ξ ≈ 0.655.

case, the value of the tunneling path in the

sub-barrier region also does. The use of a

sawtooth potential as a model for explaining the

occurrence of the motion in a certain direction

turned out to be very useful, since it allowed

to obtain analytical dependencies of the �uxes

on the applied �uctuating force, to visualize

and explain under which conditions a decrease

in the tunneling path can dominate over a

decrease in the barrier value. The result of

competition of these two factors is determined

by the symmetry of the periodic potential pro�le

and the magnitude of the applied �uctuating force

which perturbs this pro�le. The analysis of the

obtained expressions showed that, in the region of

small values of the �uctuating applied force F , the

quantum rocking ratchet moves in the direction

opposite to the classical one (in full accordance

with the results of Ref. [13]). A new result of our

work is that this behavior changes in the region of

large F : The quantum ratchet moves in the same

direction as the classical one. This result can be

understood if we take into account that, at large

F , one of the potential barriers becomes small;
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this increases not only the thermally activated

�ux, but also the tunneling �ux in the same

direction. To analyze the results being obtained, a

more general case of the integrand in the Gamow

formula was considered, in which the potential

energy enters to an arbitrary power ν (instead

of the root dependence with ν = 1/2). It has

been shown that the contribution to the �ux,

which is linear in absolute value of the rocking

force, occurs from the absence of tunneling �uxes,

which are inverse to the direction of the applied

force, and occurs only at ν < 1, that is, just in
the case of the root dependence of the integrand

on the potential energy in the Gamow formula.

In this case, the main contribution to the �ux

comes from the force dependence of the tunneling-

path length compared to the force dependence of

the barrier height. The analysis of the lengths of

tunneling paths in sawtooth potentials of various

asymmetries, when the rocking force is applied in

the forward and reverse directions, does lead to

the conclusion that the quantum rocking ratchet

moves in the direction opposite to the classical

one.

It has been found that for the interval of

values of the asymmetry parameter ξ ≡ l/L of

the sawtooth potential (l is the width of one of

its linear sections), corresponding to the positive

thermoactivation �ux (1/2 < ξ ≤ 1), there exists
such an interval of values of α ≡ FL/V0 (V0 is

the energy barrier of the periodic potential with

the period L), 0.618 < α < 0.667, in which the

sign of the tunneling �ux changes with changes in

the asymmetry parameter ξ. The tunneling �ux

is also numerically calculated for the potential of

two sinusoids, which can be approximated with

a high accuracy by a sawtooth potential. The

results obtained for the potential of two sinusoids

also con�rm the conclusion that the e�ect of

reversal of the motion of the quantum rocking

ratchet with respect to the classical one (motion

reversal with decreasing temperature) takes place

only for small α values, α < 0.81. This allows

one to state that the regularities established in

this paper do not depend on the speci�c type of

an asymmetric periodic pro�le perturbed by an

external �uctuating force, and are of a general

nature. This conclusion can be con�rmed by

the experimentally observed dependence of the

tunneling �ux on the applied force (see Fig. 2

(B) in [14]): At su�ciently low temperatures, the

nonmonotonic function J(F ) changes its sign at a
certain value of F , while at higher temperatures,

the function J(F ) becomes monotonic and of

constant sign.

Acknowledgments

The work was supported by a subsidy from

the Ministry of Education and Science RF for

FRC CP RAS within the framework of the State

Assignment No. 122040500071-0 and supported

by the Russian Foundation for Basic Research

(Project No. 21-57-52006_MNT_a).

References

[1] P. Reimann. Phys. Rep. 361, 57 (2002).
[2] P. Hanggi and F. Marchesoni. Rev. Mod. Phys.

81, 387 (2009).
[3] Yu. V. Gulyaev, A. S. Bugaev, V. M.

Rozenbaum, and L. I. Trakhtenberg. Phys. Usp.
63, 311 (2020).

[4] J. A. Fornes. Principles of Brownian and
Molecular Motors (Springer, Cham, 2021).

[5] P. Reimann. Phys. Rev. Lett. 86, 4992 (2001).
[6] S. Denisov, S. Flach, and P. Hanggi. Phys. Rep.

538, 77 (2014).
[7] D. Cubero and F. Renzoni. Phys. Rev. Lett. 116,

010602 (2016).
[8] V. M. Rozenbaum, I. V. Shapochkina, Y.

Teranishi, and L. I. Trakhtenberg. Phys. Rev. E
100, 022115 (2019).

Nonlinear Phenomena in Complex Systems Vol. 25, no. 4, 2022

Acc
ep

ted
 M

an
us

cri
pt



358 I. V. Shapochkina, V. M. Rozenbaum, N. G. Trusevich, and L. I. Trakhtenberg

[9] V. M. Rozenbaum, T. Ye. Korochkova, A. A.
Chernova, and M. L. Dekhtyar. Phys. Rev. E 83,
051120 (2011).

[10] H. Riskin. The Fokker-Plank Equation. Methods
of Solution and Applications (Springer-Verlag,
Berlin, 1989).

[11] V. I. Goldanskii, L. I. Trakhtenberg, V. N.
Fleurov. Tunneling Phenomena in Chemical
Physics (Gordon and Breach Science Publishers,
N.Y., L., 1989).

[12] Â. Prass, D. Stehlik, I. Y. Chan, L. I.
Trakhtenberg, V. L. Klochikhin. Ber. Bunsenges
Phys. Chem., 102, 498 (1998).

[13] P. Reimann, M. Grifoni, and P. H?nggi. Phys.
Rev. Lett. 79, 10 (1997)

[14] H. Linke, T.E. Humphrey, A. Lofgren, A.0.
Sushkov, R. Newbury, R.P. Taylor, P. Omling.

Science 286, 2314 (1999).
[15] R. L. Stratonovich. Radiotekh. Elektron. 3, 497

(1958).
[16] P. Reimann, C. Van den Broek, H. Linke, P.

Haanggi, J. M. Rubi, and A. Perez-Madrid. Phys.
Rev. Lett. 87, 010602 (2001).

[17] S. Lifson, J. L. Jackson. J. Chem. Phys. 36, 2410
(1962).

[18] M. O. Magnasco. Phys. Rev. Lett. 71, 1477
(1993).

[19] I. M. Sokolov. Phys. Rev. E 63, 021107 (2001).
[20] V. M. Rozenbaum, I. V. Shapochkina, and T. E.

Korochkova. Pis'ma Zh. Eksp. Teor. Fiz. 98, 637
(2013) [JETP Lett. 98, 568 (2013)].

[21] V. M. Rozenbaum, Yu. A. Makhnovskii, I. V.
Shapochkina, S.-Y. Sheu, D.-Y. Yang, and S. H.
Lin. Phys. Rev. E 89, 051131 (2014).

Íåëèíåéíûå ÿâëåíèÿ â ñëîæíûõ ñèñòåìàõ Ò. 25, � 4, 2022

Acc
ep

ted
 M

an
us

cri
pt




