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1. Introduction

At present, almost all problems arising in

industry and industry go through the stage of

mathematical modeling. This allows us to predict

the results of activities and reduce the costs of

achieving our goals.

Usually deterministic models are used for

modeling, but now it is not enough to use models

of this kind in such industries as �nance, planning,

and modeling various kinds of di�usion processes.

It is necessary to propose models which take into

account the random nature of ongoing processes.

Moreover, problems arise not only with regard to

the in�uence of randomness in the construction

of a certain model, but also with the choice of

methods for solving an already posed problem.

The authors propose an approach based on the

introduction of a random term into the existing

deterministic model of the controlled sustainable

development of the region and using numerical

methods to approximate for the resulting system.

In this article, we will focus on speci�c

∗E-mail: zherelo@bsu.by

theoretical approaches to taking into account the

random nature of the simulated process, so we

present some preliminary data used below.

Let us de�ne stochastic or random process

as a family of random variables

{Xt ≡ X (t) ≡ X (ω, t) , ω ∈ Ω, t ∈ [0, T ]}

which we consider on the probability space

( Ω, A, {Ft} , P ), where Ω is a sample space, A

is an event space, P is a probability function, {Ft}
is a �ltration, i.e. Fs ⊆ Ft ⊆ A, s < t.

There are a large number of random

processes that correspond to this de�nition and

have various properties. So processes can be

continuous, discrete, stationary, with independent

increments, etc. But in this paper we will focus on

the consideration of random processes based on

a mathematical abstraction of Brownian motion,

which is also called the Wiener process.

Let us de�ne the Wiener process Wt, t ∈
[0, T ] as follows:

1. W0=0 almost surely,

2. Wt has independent increments,
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406 A. Zherelo, S. Chernogorsky, and K. Shvetsov

3. Wt is continuous on t,

4. The increments are normally

distributed, i.e. Wt − Ws ≡
N (0, t− s) , ∀t, s : t > s, here

N is normal random value with

mean 0 and variance t− s

The Wiener process is stationary and

Markovian. The last property means that the

conditional probability distribution of future

states depends only on the current state

(and not on past states). But the random

processes observed in reality depend on their

history, so using a Wiener-like process is not

enough to formally describe observed processes.

Should be considered dependence on the entire

process trajectory. To take into account such

a dependence, we can use the concept of a

stochastic integral. Currently, there are many

types of stochastic integrals, so in our research

we will consider stochastic Ito integral, which was

proposed in [13].

Formally, the integral is introduced

according to a scheme similar to the Riemann-

Stieltjes integral, but this is only an external

similarity, and the integral has a number of

properties that greatly complicate calculations

when working with it. For example, it should be

noted that ∫ t

0
WtdWt =

1
2
(
W 2
t − t

)
.

This small example shows us, that we can not use

well-known rules of integrating of deterministic

functions. In his work [14] It�o developed the

foundations of the theory of stochastic di�erential

equations (SDE). So stochastic di�erential

equation in Ito sense this is the equation of the

form:

dXt = α(Xt, t)dt+ β(Xt, t)dWt, (1)

but this is rather a formal description. In research

the corresponding integral representation is more

often used:

Xt = X0 +
∫ t

0
α(Xs, s)ds+

∫ t

0
β(Xs−, s)dWs.

Properties of the It�o integral and SDE are

described in detail in [4, 21].

One of the main questions is the question

of the existence of a solution. The conditions of

existence of strong solution are following:

‖α (x, t)− α(y, t)‖2 + ‖β (x, t)− β(y, t)‖2

≤ K1 ‖x− y‖2 ,

‖α (x, t)‖2 + ‖β (x, t)‖2 ≤ K2

(
1 + ‖x‖2

)
where x, y are elements of some space X , ‖ · ‖ is
a norm de�ned over space X , K1 <∞, K2 <∞.

Here we need to remind, that existence of strong

solution means, that exists some process which

satis�es to equation (1). In what follows, we will

consider only those equations that satisfy the

above conditions.

There are few of stochastic equations can be

solved exactly. One of them is linear equation:

dXt = rXtdt+ σXtdWt, r, σ ∈ R.

The solution of this equation has the form:

Xt = X0 exp
{
rt− 1

2
σ2t+ σWt

}
.

The equations of this type have found wide

application in various �elds, for example, in

the construction of various models in economics

and �nance (see, e.g. [1�3, 7]). There are

many models for describing the behavior of the

�nancial market, e.g. the Vasicek model, the Cox�

Ingersoll�Ross model, and so on (e.g. [17, 18])

but separately we need to mention the works of

Black, Scholes and Merton [5, 19], who proposed

the asset �uctuation model and estimated the

price of a European option using this model.

In the 1997 Merton and Scholes received Nobel

Memorial Prize in Economic Sciences for this

result.

This work shows us that we are interested in

the values of the functionals on the trajectories

of solutions, and not in the trajectories

themselves, for example, functionals of the

form E
[
F
(
X(·), t

)]
. The most commonly used

examples of such functionals are the average value

of the process, its volatility, asymmetry, etc.
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2. Numerical methods for SDE

Since only a small class of SDEs can be

solved exactly, the use of numerical methods

is of particular importance, among which it

is necessary to distinguish two main classes

of methods: strong approximations and weak

approximations.

Strong approximations are simulation

methods. They are based on building a process,

that is in some sense close to solution of SDE.

Examples are the Euler�Maruyama method, the

Milstein method, the Runge�Kutta stochastic

method, etc. (see [12, 15, 16, 22]). One of the

most commonly used methods is the Milstein

method [20].

If it is necessary to calculate the value of the

functional on the solution, then it is necessary to

simulate the set of trajectories. In this case, the

discreteness in time and the size of the set depend

on the required accuracy of estimating the value

of the functional. Thus, the use of such methods

requires signi�cant computing power and large

amount of memory.

Weak approximations methods are based

on the construction of approximations of some

parameters of random processes, for example,

moments, distributions, characteristic functionals

of solution and so on. In our studies, we will use

approximations for the �rst three moments of the

solution of equation (1). The ideas behind this

method are described in [10, 11].

In the works [23, 24] was constructed the

following formula, which is approximatelly exact

for the �rst three moments of of the equation (1)

in the sentence about the existence of a strong

solution:

E
[
F
[
X(·)

]]
≈ J [F, Y ] =

1
2

2∑
j=1

Aj

×
∫ 1

0

∫ 1

0

∫ 1

−1
F [Yj(·, τ1, τ2, v)]dτ1dτ2dv (2)

where A1 +A2 = 1,
a1,1 = 1

2

(
1−

√
−A2
A1

)
, a1,2 = 1

2

(
1 +

√
−A2
A1

)
,

a2,1 = 1
2

(
1−

√
−A1
A2

)
, a2,2 = 1

2

(
1 +

√
−A1
A2

)
,

ρj,k (t, τk) = aj,k1[τk,1] (t), k = 1, 2, ρ (t, v) =
sign(v) 1[|v|,1](t), and

Yj (t, τ1, τ2, v) = X (0) + α

(
X(0) + α

(
X(0) + β (X (0)) sign (v) 1(|v|,1] (τ2)

)
aj,21(τ2,1] (τ1)

+β
(
X (0) + α (X (0)) aj,21(τ2,1] (|v|)

)
sign (v) 1(|v|,1] (τ1)

)
ρj,1(t, τ1)

+α
(
X (0) + α

(
X (0) + β (X(0)) sign(v) 1(|v|,1] (τ1)

)
aj,11(τ1,1] (τ2)

+β
(
X (0) + α (X(0)) aj,11(τ1,1] (|v|)

)
sign(v) 1(|v|,1] (τ2)

)
ρj,2(t, τ2)

+β
(
X (0) + α

(
X (0) + α (X(0)) aj,21(τ2,1] (τ1)

)
aj,11(τ1,1] (|v|)

+α
(
X (0) + α (X (0)) aj,11(τ1,1] (τ2)

)
aj,21(τ2,1] (|v|)

)
ρ(t, v).
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Yj (t, τ1, τ2, v) = X (0) + α

(
X(0) + α

(
X(0) + β (X (0)) sign (v) 1(|v|,1] (τ2)

)
aj,21(τ2,1] (τ1)

+β
(
X (0) + α (X (0)) aj,21(τ2,1] (|v|)

)
sign (v) 1(|v|,1] (τ1)

)
ρj,1(t, τ1)

+α
(
X (0) + α

(
X (0) + β (X(0)) sign(v) 1(|v|,1] (τ1)

)
aj,11(τ1,1] (τ2)

+β
(
X (0) + α (X(0)) aj,11(τ1,1] (|v|)

)
sign(v) 1(|v|,1] (τ2)

)
ρj,2(t, τ2)

+β
(
X (0) + α

(
X (0) + α (X(0)) aj,21(τ2,1] (τ1)

)
aj,11(τ1,1] (|v|)

+α
(
X (0) + α (X (0)) aj,11(τ1,1] (τ2)

)
aj,21(τ2,1] (|v|)

)
ρ(t, v).

3. A mathematical model of the

controlled sustainable development of

the region

The formula (2) can be applied to study the

behavior of economic models containing a chaotic

component. Let us consider the the model of the

controlled sustainable development of the region.

The model was proposed in [8] and has the form

ds1(t) = (u1s1(t)− u2s1(t)s2(t)

−u3s1(t)s3(t)) dt,

ds2(t) = (−u4s2(t) + u5s1(t)s2(t)

+u6s2(t)s3(t)) dt, (3)

ds3(t) = (u7s3(t)− u8s1(t)s3(t)

−u9s2(t)s3(t)) dt

where s1 is the regional population, s2 is number

of jobs in the real sector of the regional economy,

s3 is the indicator of the regional energy supply,

with following parameters:

• u1 is the demographic activity coe�cient,

• u2 is the coe�cient of people's anti-

motivation to childbearing,

• u3 is the energy supply coe�cient,

• u4 is the coe�cient of people's interest in

economic development,

• u5 is the coe�cient of the real sector

economic development,

• u6 is the coe�cient of energy supply per

workplace,

• u7 is the energy supply coe�cient of the

region,

• u8 is the conformity ratio of the population

with the energy supply,

• u9 is the conformity ratio of the economic

development with the energy supply.

Of particular interest are the values of the

parameters at which a stable behavior of the

solution of the system is observed, so in work

[9] this model was examined for the presence of

stability points (or close to them). One of these

points is given by the parameters u1 = 0.087,
u2 = 0.087, u3 = 0.087, u4 = 0.049, u5 = 1.02,
u6 = 1.02, u7 = 7.7, u8 = 0.095, u9 = 3.9.

Fig. 1 shows the trajectory of the solution of

the system under the speci�ed initial conditions

(s1(0), s2(0), s3(0)) = (1, 1, 1). At the �gure we

denotes s1, s2, s3 as x, y, z correspondingly.
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FIG. 1: The solution of the model (3).

The proposed deterministic model takes into

account the change in the population of the region

and the indicator of energy supply per number

of jobs, but it is obvious that such an impact

has a random nature. To assess the impact of

randomness on behavior, the following changes

were made to the model [6]:

ds1(t) = (u1s1(t)− u2s1(t)s2(t)− u3s1(t)s3(t)) dt,

ds2(t) = (−u4s2(t) + u5s1(t)s2(t) + u6s2(t)s3(t)) dt

+
(

a

b+ cs21(t)

)(
d

e+ fs23(t)

)
dW (t),

ds3(t) = (u7s3(t)− u8s1(t)s3(t)− u9s2(t)s3(t)) dt,

where a, b, c , d, e, f are calibration coe�cients

that can be obtained from statistical data

processing later. Since the purpose of this work

is to evaluate the in�uence of the stochastic term

on the behavior of the model as a whole, we added

randomness to only one equation.

Fig. 2 show us one single trajectory of the

solution of the equation. Here we use Milstein

method. Parameters a = b = c = d = f = 1,

FIG. 2: Single trajectory of SDE solution.

FIG. 3. The result of Monte Carlo simulations vs
proposed method.

other parameters and initial conditions are the

same as for model 3.

The main conclusion of the simulation

results, that the random component signi�cantly

changes the behavior of the trajectory. And this
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FIG. 4. The result of Monte Carlo simulations vs
proposed method for s1.
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s2

FIG. 5. The result of Monte Carlo simulations vs
proposed method for s2.

is only one trajectory, and the calculation of the

creation of the average value will require modeling

a signi�cant number of trajectories.

Using the formula (2) will signi�cantly

reduce the calculation time. First, we write the

0.02 0.04 0.06 0.08 0.10
t

1.0

1.1

1.2

1.3

1.4

s3(

FIG. 6. The result of Monte Carlo simulations vs
proposed method for s3.

equation in appropriate integral form as follows

X(t) = X(0)+

t∫
0

α(X(s))ds+

t∫
0

β (X(s−)) dW (s)

(4)

where W (t) is the Wiener process, X(t) =
(s1(t), s2(t), s3(t)),

α(X(t))

=

 u1s1(t)− u2s1(t)s2(t)− u3s1(t)s3(t)
−u4s2(t) + u5s1(t)s2(t) + u6s2(t)s3(t)
u7s3(t)− u8s1(t)s3(t)− u9s2(t)s3(t)

 ,

β (X (t)) =

β1

β2

β3

 =

 0(
a

b+cs21(t)

)(
d

e+fs23(t)

)
0

 .

We suppose that the integrals∫ t
0 βk (X (s−)) dW(s), k = 1, 2, 3 are It�o's

integrals.

Now we can apply the proposed formula

to the equation (4). We use parameters same
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FIG. 7. The result of Monte Carlo simulations vs
proposed method in 3D.

as for previous calculations. Calculated fuctional

is average of trajectories, i.e. E [X (t)] =
(E[s1 (t)], E[s2 (t)], E[s3 (t)]). The approximation
has the form:

E[s1(t)] ≈ 1− 0.087 t− 0.233213 t2

+3.58739× 10−6 t3,

E[s2(t)] ≈ 1 + 1.991 t+ 5.6641 t2 − 0.0845331 t3,

E[s3(t)] ≈ 1 + 3.705 t− 4.19939 t2 + 0.315994 t3.

The calculation performed at the interval [0, 0.05]
with step of discretization ∆t = 0.01.

Fig. 3 demonstrate results of calculations.

Here and below the blue line denotes the

value, calculated by composition Monte Carlo

method and Milstein scheme, red lines are

simulated trajectories, which were used in Monte

Carlo method. At this �gure we show only

100 trajectories, but in calculations 1000 of

trajectories were used.

Figures 4, 5, 6 show the dynamics

of coordinates E[s1 (t)], E[s2 (t)], E[s3 (t)], and

Fig. 7 shows the relative position of the averaged

trajectory in 3D.

W need to note, that the values, calculated

by both methods are close, but weak method is

much faster.

4. Conclusion

This paper shows that the addition of a

random component can lead to a signi�cant

change in the behavior of the model used. In

some cases, when researchers are interested not

so much in the shape of the trajectories of

individual solutions as in the values of some given

functionals, weak methods can be used.

Weak methods provide the speci�ed

accuracy and minimize the requirements for

computing systems used in modeling. To

calculate the moments of random processes at

relatively large values, the approach proposed in

[25].
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