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Methods of paradoxical games are used to construct a stochastic hopping model of
Brownian ratchets which extends the well-known analogous deterministic model. The
dependencies of the average displacements of a Brownian particle in a stochastic ratchet
system on a discrete time parameter are calculated, as well as the dependencies of the average
ratchet velocity on the average lifetimes of the states of the governing dichotomous process.
The results obtained are compared with both the results of modeling a similar deterministic
model and the results of a known analytic description. While for the hopping analogue of the
deterministic on-off ratchet, the time dependence of the displacement contains periodically
repeated hopping changes when the potential is switched on and plateau of the diffusion
stage of the motion when it is switched off, the stochastic dependencies, that are of an
averaged character, are monotonous and do not contain jumps. It is shown that, with other
things being equal, the difference in the results for the hopping ratchet model driven by the
stochastic and deterministic dichotomous process of switching the potential profiles (game
selection) is more pronounced at short lifetimes of the dichotomous states and vanishes with
their increase.

PACS numbers: 05.40.-a
Keywords: nanoparticle, nonequilibrium fluctuations, Brownian motors

DOT: https://doi.org/10.33581/1561-4085-2022-25-1-41-50

Introduction with numerous applications, in, for example,
design of nanoscale mechanisms of various
study of a controlled directed complexity [5-7], description of intracellular

nanoparticle transport along spatially periodic
structures is one of the topical problems of
modern nonequilibrium statistical physics [1-4],
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transport [8-10], etc. Here, it is worth to speak of
the ratchet effect (also termed the motor effect),
which can be defined as the phenomenon of the
appearance of a directed nanoparticle current as
a result of introducing nonequilibrium unbiased
fluctuations into a system, spatially and/or
temporally asymmetric. The theory of Brownian
motors describes this phenomenon, operates with
a large number of models, and includes various
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approximations that allow analytical descriptions
of both particular systems and general models
that are valid for large classes of motor systems
[1-3]. The motion of a Brownian particle in
the field created by a fluctuating spatially
periodic potential of a given shape is generally
described by the Klein—Kramers equation [11]
which is simplified to a description based on the
Smoluchowski equation, if the nanoparticle mass
can be considered negligibly small [3]. At low
temperatures (the predominance of the values
of potential barriers in comparison with the
thermal energy), the so-called kinetic approach
will be effective and rather simple. In it, the
consideration of the continuous nanoparticle
motion in the field of the spatially periodic
potential is replaced by accounting for particle
jumps between selected points (discrete “nodes”)
on the spatial period of the potential [12]. The
redistribution of the node populations (which
means the appearance of a directed hopping
motion) under the introduction of fluctuations
into the system can be calculated by solving the
Pauli kinetic equation [13]. In this approach,
the number of nodes normally corresponds
to the number of wells on the period of the
potential profile, in which the motion occurs,
while the characteristics of the barriers are set
using the rate constants of transitions between
nodes. Hopping models of diffusion processes
are of interest because they allow one to use
original approaches and nonstandard analogies
for modeling the ratchet effect, for example, the
methods of Parrondo’s paradoxical games [14].
In ratchet models, non-equilibrium fluctuations
are often introduced into a system using a
dichotomic process that switches two spatially
periodic asymmetric potential profiles or states
(here A and B). The switching can occur at
regular intervals (deterministic process) or in a
random manner (stochastic process characterized
by the average lifetimes of the potential profiles).
The first method is more typical for artificial
nanomechanisms (see, for example, [15, 16]);
the second one for natural protein motors, in
which fluctuations of the effective potential

profile occur due to the cyclic occurrence of
the chemical reaction of ATP hydrolysis [8-10,
17], or for nanomechanisms, in which a random
number generator, chemical reactions, or laser
pumping are used to switch the states (as,
e.g., in photomotors [18]). Consideration of the
high-temperature ratchets [19] showed that,
all other things being equal, the manner in
which the potentials are switched significantly
affects the characteristics of the ratchet effect:
Its intensity (the maximum motor velocity) is
higher for deterministic ratchet systems, while
for stochastic ratchet systems, the fluctuation
frequency range is wider, allowing, obviously,
more degree of freedom in controlling the
motor motion. In previous works [20, 21|, we
used the game-theory techniques to construct
hopping models of deterministic Brownian
motors with a double-well potential profile.
There we have also studied the conditions
under which controlling the direction of the
particle current becomes possible. Stochastic
game models with a discrete time parameter
were then not involved. Since the comparison
of deterministic and stochastic ratchet systems
frequently give general theoretically interesting
results (allowing to expand the understanding
the mechanisms of generation of directed motion
at the level of elementary acts of the diffusion
process), which, in addition, has predictive value
for future experimental applications, in this
article we have filled this gap. Moreover, the
method of theoretical research proposed here
can be used as an alternative quick way to
obtain the main characteristics of a Brownian
motor without analytical calculations in cases
where conditions arise under which the kinetic
description is valid. The structure of the paper
is the following. In Section 2, a theory of a
stochastic dichotomic process with a discrete
time variable is presented, on the basis of
which, in Section 3, the relations for the average
velocity of a hopping Brownian motor with an
asymmetric double-well potential are obtained,
and their deterministic analogs are also given.
Section 4 presents the algorithm and the results
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of numerical modeling of the Brownian motor in
the deterministic and stochastic description; the
obtained results are summarized in Section 5.

2. Stochastic dichotomous process
with a discrete time variable

Consider a system the state of which
randomly alternates between A and B (see Fig.
la). A time variable can be considered discrete,
so it will be convenient to define it as the product
t = kAt, where At is the time step, and the
integer variable k can take values 0, 1, 2, ....
Assume that at ¢ = 0 (corresponds to k = 0)
the system was in the state A, and denote the
probabilities of finding the system at arbitrary ¢ in
states A and B as P4(t) and Pp(t), respectively;
P4(t) + Pp(t) = 1 and P4(0) = 1. Additionally,
let P4_.p and Pg_, 4 be the probabilities of A —
B (direct) and B — A (inverse) transitions;
the corresponding probabilities for the system to
remain in these states will then be (1— P4, p) and
(1 — Pg—4). We will apply the master equation
for the probability that the system is in the state
A at t 4+ At,

Ps(t+ At)=Pp_aPp(t)+(1 — Pa—p)Pa(t).(1)

Equation (1) can be treated as a recurrent
equation of the form xx 1 = a + bxy, the solution
of which can be readily obtained algebraically.
Since P4(0) = 1, the solution to Equation (1)
is as following;:

PA(t) _ PB%A PA%B
PB*)A—FPAHB PB—)A+PA—)B
X (1 —Ppa— PA—)B)k- (2)

In Section 3, we will use this solution
obtained for the stochastic dichotomous process
to check the quality of the numerical simulation
results for the stochastic ratchet effect. Next, let
us show that in the limit of continuous time
variable (At — 0), Equation (1) and its solution
(2) tend, respectively, to the known equation and
solution. Subtraction of Equation (2) for Pa(t)

from Equation (1) and subsequent division of the
result by the increment At gives the following
equation:

Py(t + At) — Py(t)
At

= BPp(t) —vaPa(t), (3)

in which the quantities yp = Pp_,4/At and
v4 = Ps,p/At are interpreted as the rate
constants for transitions between the states (the
average frequencies of potential switching), and
ta = 1/y4 and tp = 1/vyp are the average
lifetimes of the states A and B, respectively. In the
limit At — 0, Equation (3) becomes the master
equation for the probability P4(t) as a function
of continuous time variable

dPa(t)
dt

= vpPp(t) —vaPa(t), (4)

the solution of which takes on the following form
[22, 23|

B YA _1¢
Pyt) = —+—= . 5
alt) = + e (5)
Here I' = ~4 + B is the inverse correlation

time of the dichotomous process. Let us show
that the solution (5) follows from its discrete
analogue (2). The deriving will include the
relations Pp_,4 + P4,p = I'At and k = t/At;
then in the limit At — 0, we obtain the relation
(1—Ppoa—Pap)f =01~ FAt)t/AtAt—;O e !t

which, being substituted into (4), gives the result
(5).

Summarizing, the master equation (1) and
its solution (2) are discrete analogues of the
Equation (4) and its solution (5) for the
continuous time variable, respectively. At small
values of At or long lifetimes t4(tp), the
probabilities P4 p(t) corresponding the discrete
and continuous time variable will be close to each
other. Hence, the features of a Brownian motor
with discrete lifetimes can be distinguished at
sufficiently small values t4(tp).
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FIG. 1. Schematic representation of (a) two states of a dichotomic process, characterized by the lifetimes 74, 75
and the average frequencies 74, vp at deterministic and stochastic switching of the states, respectively, and (b)
a jumping model of a Brownian motor with a periodic double-well potential.

3. Hopping model of a Brownian
motor with a double-well potential

A Brownian motor is a nanosystem in
which a particle directed motion, translational
or rotational, is induced by introducing
nonequilibrium fluctuations into the system
provided that it is spatially and (or) temporally
asymmetric. Let us consider a model in which a
nanosystem is alternately in two states, A and
B. State A corresponds to a spatially periodic
(with period L) asymmetric double-well potential
profile while the state B corresponds either to
free diffusion (when considering the so-called
on-off ratchet) or to another spatially periodic
(with the same period L) potential profile (if
we talk about a more general pulsating-ratchet
model). The alternation of the states is either
a dichotomous deterministic or dichotomous
stochastic process. In the state A, we choose the

locations of potential wells in the interval (0, L)
at nodes 1 and 2 (see Fig. 1b); 1911(2)14 and pq(Q)A
will notate the probabilities that a particle, being
initially located at the node 1 (2), makes a jump
to the nearest leftward and rightward potential
well, respectively. These probabilities mean the
escape probabilities over the potential barrier
AV and are proportional to the exponential
factors of the Arrhenius law, exp[—SAV], where
B = (kgT)™'. In the state B, we similarly
associate the particle escape probabilities pll(g)) B
with the same nodes 1 and 2; in the case of free
diffusion the probabilities pl(r) can be defined

1(2)B
as [21]

pl113 =pip = c1/2, pl2B = pyp = C2/2, (6)

the ratio c¢1/co being determined by the
geometrical arrangement of nodes 1 and 2.
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In addition, the wvalues of the probabilities
must satisfy the detailed-balance condition (the
condition for the equilibrium in each state),
imposed on the kinetic characteristics:

Plas)Paas) = PiasyPhacs): (7)

For a deterministic dichotomous process, the
states A and B being characterized by the

J

2[pia/p1a — pip/P1B] R
TA+ TB
. P2A(B)

B PrA(B) + P2aB)

< Vg >=

Ry 4By

For a continuous time wvariable, the average
velocity of a Brownian motor (the average rate
of change in population of the nodes) can be
found by using the electroconformational model
[25], within which the velocity in case of a
deterministic (index d) and stochastic (index
s) dichotomous governing process takes on the
following form:

U (D25 _ Do,
T XB YA ’
YA(B) = P1A(B) T P2A(B) »
-1
0 = (1 taet ;’;) ,
oy — 2siT1h[ZA/(2’yA) |sinh[¥5/(2v8) |
sinh[¥4/(2v4) +25/(2vB) ]

In the next chapter, we will use Eqs. (8)
and (9) to analyze the accuracy of the values of
the motor average velocity obtained by numerical
modeling.

< 1757(1 >=

9)

4. Modeling within the game
theory approach

Modeling the hopping diffusion motion in
terms of the game theory has been carried out by

lifetimes 74 At and 75 At (74 and 7p are integers),
the average rate of change in population of nodes
1 and 2 in the adiabatic mode is given by the
following relation [24]

1B — Rial[ll = (1 — p1a —p2a)™][1 — (1 — p1B — p2B) ™"},

DP1(2)A(B) = pll(Q)A(B) + pg(z)A(B)' ®)

(

using the approach described in [20]. According
to it, a particle displacement relative to its initial
position at time ¢ = 0 is associated with a
change (increase or decrease) in the capital n(t)
of a player, and a single act of particle hopping
motion in the state A or B is interpreted as
tossing a dice when playing game A or B and,
accordingly, a possible win or loss. It is logical
to partition the modeling procedure into two
subprocedures (units): (i) capital change within
one of the states A or B (Fig. 1b), according to
the rules of the game A (B), and (ii) switching
the states (games) (Fig. la). Further we will
consider each of the subprocedures. When a game
is selected (the index A (B) is known), each step
is simulated using a random variable generating
procedure: Having uniformly distributed values
over the interval (0,1), a random variable, &, is
created at each step. Depending on the values
which ¢ takes, there exists three possibilities:
(i) the capital increases by unity (£ values are
within the interval (0’p§(2)A(B)D’ (ii) the capital
decreases by unity (£ values are within the interval
(P 2yam)y Piam) + Pieam)), and (i) the
capital remains unchanged (£ values are within
the interval (pq(z)A(B) + pll(Q)A(B), 1)). Which set
of probabilities for nodes numbered 1 or 2 will be
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valid in each specific case is determined through
the parity of the current (integer) value of the
capital n(t) (or, in the case of a large number
of wells per period, of the function of the division
remainder, n(t) mod N). Which game, A or B, is
being played at current time is determined in the
second subprocedure which simulates the game
alternating. In the model of the deterministic
dichotomous process, in each of the games, the
number of steps (the number of tossing the dice),
equal to the integer lifetime 74(p) of the state is
simulated; after the system passes this number
of steps, the games are switched. When modeling
the stochastic dichotomous process, before each
tossing the dice and changing the capital, an
additional procedure determines whether there
will be a change in the current game. Namely,
an auxiliary random variable 7 is generated,
its values 7, are uniformly distributed over the
unit interval, (0,1). If n, falls into the interval
(0,74(m)), the games are switched, otherwise (the
value 7, is in the interval [y4(p),1)), we play
the same game. Thus, the dichotomous switching
of the games is realized by means of a simple
loop counter, while the stochastic one — by
means of the auxiliary random variable 7 at
each step of the loop. The correct functioning
of this part of the algorithm can be checked
by comparing the averaged modeled dependence
of the probability of finding the system in the
states (games) A and B on ¢t with analytical
formula (2). In the review |[26]|, one can find
a systematic analysis of different factors which
the ratchet motion direction depends on. For
an on-off ratchet, one of the ways to affect the
ratchet motion direction is to use a double-well
potential, its minima being located at different
distances from the location its highest barrier [27].
Parametrization of such a potential in terms of
probabilities of transitions between the potential
wells was performed in [21] (using the Arrhenius
law, the values of transition probabilities are
assign to the values of minima and maxima of
the potential profile), the results of [21] were used
here to construct the computational model. In
the state B, which describes the free diffusion,

the geometric arrangement of nodes 1 and 2
(determining motion direction) is characterized
by different probabilities of the jump of particles
from these nodes (in Eq. (6)). Let us denote
by (a) and (b) the sets of parameter values
associated, respectively, with the low-temperature
(BAV = 2) and high-temperature (BAV =
0.5) ratchet operation modes. Then, according to
[21], the parameterization of the corresponding
potential profiles makes it possible to operate
in the hopping model with the following sets
of transition probabilities: (a) pt, = 0, p, =
0.1353, pb, = 0.0183, ph, = 0, ¢ = 1,
ca = 1/3; and (b) pt, = 0, pi, = 0.6065,
phy = 03679, phy = 0, c; = 1, ¢ = 1/3.
Figure 2 shows the averaged, over 3 million
realizations (experiments), trajectories of capital
accumulation for the deterministic (the solid
curves with square markers) and stochastic (the
dotted curves with round markers) dichotomous
process. Figures 2a and 2b are related to the
lifetimes values 74 = 78 = 2 and 74 =
78 = b (for deterministic dependencies) and
the corresponding frequencies 74 = vy =
1/2 and 74 = v = 1/5 (for stochastic
dependencies); below we will indicate these sets
of the time parameters as [2; 2| and [5; 5]. The
obtained graphical results supplement the known
deterministic results [21] with dependencies
characteristic of ratchets with the stochastic
alternating the states. In both figures, the upper
pairs of the trajectories (calculated with the
set (a) of the probability values and marked
with open markers) demonstrate the increase in
capital, or, in terms of the theory of Brownian
motors, a rightward shift of particles. The lower
pairs of trajectories (the set (b), filled markers),
in their turn, demonstrate the decrease in capital
and hence the corresponding particle motion to
the left. From the Fig. 2, one can see that the
periodic switching of the potentials at chosen
times on the time period strictly reflects the
directed motion mechanism: One can observe the
periodic (steady-state) structure of the curves, the
points at which the potential A is switched on
(a jump) and the plateau — the diffusion stage
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FIG. 2. Averaged (over 3 million realizations)
trajectories of capital accumulation for the
deterministic (solid curves with square markers)
and stochastic (dotted curves with round markers)
dichotomous process with time parameters [2; 2]
(a) and [5; 5] (b). The curves with open and filled
markers correspond to the low-temperature (a) and
high-temperature (b) sets of parameters, respectively,
in the model of nanoparticle motion in the double-well
potential associated with each of the games.

B. Stochastic trajectories are averaged because of
the random switching of the potentials In Figs. 3
and 4 we present the comparative dependencies of
the average velocities on the lifetimes of the states
A (B) [for the case of the deterministic switching
the states (with 74 = 75)| and on the reciprocal
rate constants of transitions [for the case of
stochastic switching the states (with y4 = v =
1/74)], obtained by numerical simulations and
analytical formulas (8) and (9). Figure 3 compares
features in high- and low-temperature behavior
of deterministic and stochastic hopping-ratchet
model of an arbitrary pulsating type. Figure 4
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FIG. 3. Dependencies of the average motor velocity
on the lifetime of the states 74 = 75 (Y4 = 7vB)
obtained by simulating games (solid curves with
square and round markers) and calculated by formulas
(8) (dashed curves with square markers) and (9)
(dashed curves with triangular and rhombic markers).
The curves with open and filled markers relate to
the low-temperature parameter set (a) and the high-
temperature parameter set (b); square and triangular
markers mark dependencies arising at deterministic
potential switching, round and rhombic markers at
stochastic one. The insert details the behavior at small
values of 74(1/74).

relates to the high-temperature deterministic and
stochastic ratchets with equal probabilities of the
state B (being somewhat a hopping analogue of
an on-off ratchet with continuous time variable).
Figures. 3a and 3b correspond, respectively, to
the set (a) and (b) of the probability values.
The curve calculated by formula (8) for discrete
lifetimes of the states perfectly repeats the curve
obtained by the simulation procedure. In the high-
temperature operation mode of the Brownian
motor (Fig.3b), the deterministic and stochastic
dependencies (solid lines) differ only at small
T4 values and coincide as 74 increases to 10,
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FIG. 4. Dependencies of the average motor velocity
on the lifetime of the states 74 = 75 (ya = vB)
obtained by simulating games (solid curves with
square and round markers) and calculated by formulas
(8) (dashed curves with square markers) and (9)
(dashed curves with triangular and rhombic markers);
the A-state probabilities are given in the set (b),
all the B-state probabilities are chosen 0.5. Square
and triangular markers mark dependencies arising at
deterministic potential switching, round and rhombic
markers at stochastic one.

while in the low-temperature mode (Fig. 3a) these
dependencies approach each other much more
slowly (see the inset in Fig.3a). The performed
simulation thus validates the conclusion made in
Section 3 about the coincidence of the results of
the both descriptions, continuous and discrete, at
large 74 values. The coincidence of the average-
velocity values for stochastic and deterministic
processes of the state switching at the point 74 =
1 follows from the fact that, at this 74 value,
the random scheme of the switching the states
is impossible to be realized, because the equality
v4 = v = 1 means that, with each tossing the
dice, the switching reliably occurs.

The results presented in Fig. 4 are calculated
with the set (b) of the state-A probability values
and for the probabilities of the state B all
chosen equal to 0.5 (that is, the state B was
the free diffusion state, characterized by equal
probabilities associated with all locations and
directions). Then, for the deterministic switching
the states characterized by equal lifetimes (74 =
7B), the form of the dependence of the average
velocity on 74 is nontrivial: For even 74 values,

the velocity is equal to zero (the ratchet effect
vanishes), while for odd 74 values, it is nonzero
(the ratchet effect can be observed). Moreover,
being not in the thermodynamic equilibrium, the
system demonstrates the zero average velocity;
the currents exist but they are balanced when
changing the states, such that the structures
somewhat similar to beats or standing waves
occur. Stochastic dependencies, for which the
probabilistic processes have already been taken
into account, are of a more standard form having
no stopping points.

Similar to the dependencies in Fig. 3, the
curves in Fig. 4 demonstrate perfect agreement
between the results of numerical and analytical
modeling for deterministic adiabatic switching
the states (the solid and dashes curves with
square markers). At the same time, the stochastic
calculated and analytical (according to (9), for
a continuous time variable) dependencies are
different (the curves with round and rhombic
markers), but they approach each other with the
increase of the value of 74. The same approaching
occurs with increase in 74 value between the
calculated curves obtained for the hopping model
with the deterministic state switching and the
curve by Eq. (9) of the deterministic ratchet
model with the continuous time variable (the
curves with square markers, oscillating, approach
the curve with triangular markers). Thus, the
simulation results are well confirmed by analytical
dependencies.

5. Discussion and conclusions

In this work, we have continued and
expanded the results of Refs. [20, 21] devoted to
the application of game-theory models to study
the nonequilibrium nanoparticle transport arising
due to the ratchet effect. Using the technique
proposed in Refs. [20,21|, which was developed
for modeling the hopping motion for deterministic
Brownian ratchet models, a stochastic model was
constructed that showed good agreement with
the analytical description in the limiting cases.
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The comparative description of the nanoparticle
motion characteristics for models assuming
the deterministic and stochastic switching the
states has been performed; it demonstrated
significant differences in dependencies of motion
characteristics on time parameters. In the
stochastic model, the process of switching the
states is of a probabilistic nature, which is also
reflected in the fundamentally different behavior
of the trajectories of capital accumulation and
the average ratchet velocity, if we compare
this behavior with those of the same-name
deterministic dependencies that have a periodic
structure (Figs. 2 and 4). This difference is
most pronounced at small values of the lifetimes
of states (high frequencies of state switching),
gradually decreases with their increase (see Fig.
3) and vanishes at large values of 74(py (values of
ta(p) corresponding to ¢ 4(p)). The reason for such
behavior of the average velocity is the transition
of the system to the adiabatic operation mode,
for which, as is well known, both models of
potential switching, stochastic and deterministic,
are actually equivalent. The proposed model
was illustrated on two sets of probabilities
of transitions between the nodes of the state
B. Low-temperature (Figure 2) and high-
temperature (Figure 3) dependencies, in addition
to demonstrating the difference in the behavior of

hopping ratchets with dichotomous stochastic and
dichotomous deterministic algorithms of potential
switching, confirm the predicted (see Ref. [21])
ability to control the direction of the nanoparticle
current by setting the temperature regime of the
ratchet operation. Analysis of the both models, in
which all the values of the transition probabilities
in the state B were chosen the same (14 = 75;
the case can be called the hopping analogue of
an on-off ratchet) (Figure 4), demonstrated the
appearance of stopping points of the deterministic
motor (zero average velocity) at even values of the
lifetimes of states, which, however, do not arise
for motors controlled by a stochastic dichotomous
process.
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