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THE INFLUENCE OF DISTORTIONS OF THE PRIOR

DISTRIBUTION ON THE CHARACTERISTICS OF

THE SEQUENTIAL TEST FOR COMPOSITE

HYPOTHESES

A.Yu. Kharin1,2

This study reports the influence of contamination-type distortions of the prior distribution density
of the parameters on the conditional probabilities of erroneous decisions and the expected number
of observations for sequential testing composite parametric hypotheses. Asymptotic expansions are
constructed for the characteristics mentioned above that make it possible to estimate the deviations
from the hypothetical values under distortions.

1. Introduction

Problems of statistical testing composite parametric hypotheses are relevant in many applied fields,
e.g., engineering, medicine, and financial analysis. Since the cost of each observation may be high, the
sequential approach introduced by A. Wald [1] is often used for solving these problems. Within this
approach, the number of observations required to provide the desired accuracy of decisions (small error
probabilities) is not fixed, but depends on available observations and is random. On average, this makes
it possible to use fewer observations than are required by methods based on samples with fixed sizes to
guarantee the prescribed accuracy [2–4].

In practice, the probability model often describes the phenomenon under study with some distortions
[5]. Therefore the study of robustness (stability) of sequential statistical tests for parametric hypotheses
is relevant. In [6-8] this problem is solved in the case where the tested hypotheses are simple. In [9],
for the case of composite hypotheses, the robustness analysis of sequential tests was undertaken under
outlier-type distortions [5] in observations.

In the present paper we study the influence of distortions of the prior distribution on the character-
istics of the sequential test for testing composite hypotheses.

2. The mathematical model. Distortions of prior density

Consider a measurable space (Ω,F) with a random sequence x1, x2, . . . ∈ R being observed having
the n-dimensional probability density px1,...,xn|θ(· | ·) = pn(· | ·), n ∈ N, θ ∈ Θ ⊆ R

k, be the unknown
value of the random vector of parameters whose distribution density p(θ) is assumed known. There are
two composite hypotheses concerning the value of θ:

H0 : θ ∈ Θ0, H1 : θ ∈ Θ1; Θ0 ∪Θ1 = Θ, Θ0 ∩Θ1 = ∅. (1)

Let

1S(s) =

{

1, s ∈ S,

0, s 6∈ S,

be the indicator function,

Wi =

∫

Θi

p(θ)dθ, wi(θ) =
1

Wi

· p(θ) · 1Θi
(θ), θ ∈ Θ, i = 0, 1.
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Let Λn be the logarithm of the generalized likelihood ratio calculated from n observations,

Λn = Λn(x1, . . . , xn) = ln

∫

Θ

w1(θ)pn(x1, . . . , xn | θ)dθ

∫

Θ

w0(θ)pn(x1, . . . , xn | θ)dθ
. (2)

In the paper, for testing hypotheses (1), the following parametric family of sequential tests is used:

N = min{n ∈ N : Λn 6∈ (C−, C+)}, (3)

d = 1[C+,+∞)(ΛN ), (4)

where N is the random number of observation (stopping time), upon which a decision d is made in
accordance with the rule (4). The decision d = i means that the hypothesis Hi is accepted, i = 0, 1;
C− < 0 and C+ > 0 are the parameters of the test (3), (4). To choose the values of C−, C+, the
expressions C− = ln(β0/(1 − α0)) and C+ = ln((1 − β0)/α0) can be used, where α0, β0 ∈ (0, 12) are
quantities close to maximum admissible probabilities of errors of the first and second kinds [1]. Actual
values α, β of error probabilities may differ from α0, β0 [10].

To calculate the values α, β and conditional expectations of the random variable N defined by
(3), use the approximation for the statistic Λn, n ∈ N. Let m ∈ N be the approximation parameter,
h = (C+ − C−)/m. Let pΛn

(u) be the probability density of statistic (2); pΛn+1|Λn
(u | y) be the

conditional density, n ∈ N; [x] be the integer part of x (the least integer no greater than x). Construct
the discrete random sequence Zm

n , n = 0, 1, 2, . . . , taking values in the set V = {0, 1, . . . ,m+1} so that
Zm
0 = 0, and for n ∈ N

Zm
n =











0, Zm
n−1 = 0,

m+ 1, Zm
n−1 = m+ 1,

([Λn−C
−

h
] + 1) · 1(C

−
,C+)(Λn) + (m+ 1) · 1[C+,+∞)(Λn), otherwise.

(5)

For this sequence consider the (m+ 2)× (m+ 2) matrix of conditional probabilities

P (n)(θ) = (p
(n)
ij (θ)) = (P{Zm

n+1 = j | Zm
n = i}), i, j ∈ V, n ∈ N.

Approximate the random sequence Zm
n by the Markov chain zmn ∈ V , n ∈ N, with the same probability

distribution for n = 1 (initial distribution) and matrices of transition probabilities P (n)(θ) at the nth
step. After the states are re-enumerated V := {{0}, {m + 1}, {1}, . . . , {m}}, the matrix P (n)(θ) is
representable as

P (n)(θ) =





I2 | 02×m

−−−− −|− − −−−

R(n)(θ) | Q(n)(θ)



 , θ ∈ Θ,

where R(n)(θ) and Q(n)(θ) are correspondingly (m × 2) and (m × m) blocks, Ik is the unity matrix of
size k, 0(2×m) is the (2 × m) matrix whose elements are equal to 0. Let π(θ) = (πi(θ)) be the vector
of initial state probabilities of the sequence (5); π0(θ), πm+1(θ) be the initial probabilities of absorbing
states 0 and m+ 1; 1m be the m-dimensional vector whose components are all equal to 1. Denote

S(θ) = Im +

∞
∑

i=1

i
∏

j=1

Q(j)(θ);

B(θ) = R(1)(θ) +

∞
∑

i=1

i
∏

j=1

Q(j)(θ)R(i+1)(θ).
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Let B(j)(θ) be the jth column of the matrix B(θ), j = 1, 2; ti = E{N | θ ∈ Θi}, i = 0, 1; t = E{N}.
Assume that the hypothetical probability model described above is distorted, so that when the

sequential test (3), (4) constructed on the basis of the hypothetical prior distribution density p(θ) is
used, the parameter vector θ actually has the probability density

p̄(θ) = (1− ε) · p(θ) + ε · p̃(θ), θ ∈ Θ, (6)

where ε ∈ [0, 12) is the probability that contamination appears and p̃(θ) is the contaminating density
different from p(θ).

3. Asymptotic expansions for the sequential test characteristics

Theorem 1. Let the random sequence (2) be Markovian, for all θ ∈ Θ, n ∈ N, the densities pΛ1
(u),

pΛn+1|Λn
(u | y) be differentiable with respect to u ∈ [C−, C+], and there exists C ∈ (0,+∞) such that

∣

∣

∣

∣

dpΛ1
(u)

du

∣

∣

∣

∣

6 C,

∣

∣

∣

∣

dpΛn+1|Λn
(u | y)

du

∣

∣

∣

∣

6 C, u, y ∈ [C−, C+], n ∈ N.

Then under the distortions (6), as ε → 0, h → 0, the probabilities ᾱ, β̄ of the errors of the first and

second kinds admit the asymptotic expansions

ᾱ =α+
ε

W0

∫

Θ0

((π(θ))′B(2)(θ) + πm+1(θ)− α)(p̃(θ)− p(θ))dθ +O(ε2) +O(h), (7)

β̄ = β +
ε

W1

∫

Θ1

((π(θ))′B(1)(θ) + π0(θ)− β)(p̃(θ)− p(θ))dθ +O(ε2) +O(h). (8)

Proof. The probability measure of the set Θ0 under the distortions (6) is given by

W̄0 =

∫

Θ0

p̄(θ)dθ = (1− ε) ·W0 + ε ·

∫

Θ0

p̃(θ)dθ = W0 + ε ·

∫

Θ0

(p̃(θ)− p(θ))dθ. (9)

In [9], the following asymptotic expansion was obtained for the probability of the error of the first kind
under no distortions (h → 0):

α =

∫

Θ

((π(θ))′B(2)(θ) + πm+1(θ))w0(θ)dθ +O(h).

Using this result, (6) and (9), under the distortions we obtain

ᾱ =
1

W̄0
·

∫

Θ0

(p(θ) + ε · (p̃(θ)− p(θ)))((π(θ))′B(2)(θ) + πm+1(θ))dθ +O(h) =

=
1

W0 + ε ·
∫

Θ0

(p̃(θ)− p(θ))dθ
· (α ·W0 + ε ·

∫

Θ0

((π(θ))′B(2)(θ) + πm+1(θ))(p̃(θ)− p(θ))dθ) +O(h). (10)

Now make use of the asymptotic expansion (ε → 0)

1

W0 + ε ·
∫

Θ0

(p̃(θ)− p(θ))dθ
=

1

W0
·



1 +
ε

W0
·

∫

Θ0

(p(θ)− p̃(θ))dθ +O(ε2)



 .

Substituting this expansion in (10), after some algebra we obtain (7). The validity of expansion (8) is
proved in the same way.
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Corollary 1. If under the conditions of Theorem 1 the distortions (6) satisfy the additional condition

∫

Θ0

p̃(θ)dθ =

∫

Θ0

p(θ)dθ, (11)

then, as h → 0, we have

ᾱ = α+
ε

W0
·

∫

Θ0

((π(θ))′B(2)(θ) + πm+1(θ))(p̃(θ)− p(θ))dθ +O(h),

β̄ = β +
ε

W1
·

∫

Θ1

((π(θ))′B(1)(θ) + π0(θ))(p̃(θ)− p(θ))dθ +O(h).

Proof. If in (9) we take account of (11), then we arrive at W̄0 = W0. Substituting this in (10) we
obtain the desired asymptotic relation for ᾱ. The result for β̄ is proved in the same way.

Note that the meaning of the additional condition (11) consists in that under this condition the
distortions (6) do not change the prior probabilities of hypotheses H0 and H1 and only re-distribute the
probability measure within each of the sets Θ0, Θ1.

Let t̄i, i = 0, 1, denote the conditional expectation of the random number N of observations under
the hypothesis Hi, given the model is distorted in accordance with (6).

Theorem 2. Under the conditions of Theorem 1, under the distortions (6), the conditional expec-

tations t̄i admit the asymptotic expansions (ε → 0, h → 0) :

t̄i = ti +
ε

Wi

·

∫

Θi

(1 + (π(θ))′S(θ)1m − ti)(p̃(θ)− p(θ))dθ +O(ε2) +O(h), i = 0, 1. (12)

Proof. Use the asymptotic expansions for the random number N of observations as h → 0 [9] within
the framework of the hypothetical model:

ti = 1 +

∫

Θ

(π(θ))′ · S(θ) · 1m · wi(θ)dθ +O(h), i = 0, 1. (13)

Under the distortions (6) we obtain

t̄i = 1 +

∫

Θi

(π(θ))′ · S(θ) · 1m ·
1

Wi + ε ·
∫

Θi

(p̃(u)− p(u))du
· p̄(θ)dθ +O(h) =

= 1 +
1

Wi

·



1 +
ε

Wi

·

∫

Θi

(p(θ)− p̃(θ))dθ +O(ε2)



×

×



Wi(ti − 1) + ε ·

∫

Θi

(π(θ))′ · S(θ) · 1m · (p̃(θ)− p(θ))dθ



+O(h).

Collecting similar terms we obtain (12).

Corollary 2. If under the conditions of Theorem 1 the distortions (6) satisfy condition (11), then,
as h → 0,

t̄i = ti +
ε

Wi

·

∫

Θi

(π(θ))′ · S(θ) · 1m · (p̃(θ)− p(θ))dθ +O(h), i = 0, 1. (14)
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Proof. Under the condition (11) we have the equalities W̄i = Wi, i = 0, 1. Taking this and
expansions (13) into account, under the distortions (6) we arrive at (14).

Theorem 3. Under the conditions of Theorem 1, under the distortions (6) of the prior density p(θ),
as h → 0, the unconditional mathematical expectation t̄ of the random number N of observations admits

the expansion

t̄ = t+ ε ·

∫

Θ

(π(θ))′ · S(θ) · 1m · (p̃(θ)− p(θ))dθ +O(h).

Proof. Taking account of the expansion (see [9])

t = 1 +

∫

Θ

(π(θ))′ · S(θ) · 1m · p(θ)dθ +O(h),

which holds within the framework of the hypothetical model, and the distortions (6), we obtain

t̄ = 1 +

∫

Θ

(π(θ))′ · S(θ) · 1m · (p(θ) + ε · (p̃(θ)− p(θ))dθ +O(h) =

= t+ ε ·

∫

Θ

(π(θ))′ · S(θ) · 1m · (p̃(θ)− p(θ))dθ +O(h).

4. Conclusion

The presented results make it possible to estimate the influence of contamination-type distortions of
the prior probability distribution of the parameter vector θ on the conditional probabilities of erroneous
decisions and expectations of the random number of observations for the sequential test of composite
hypotheses. It is demonstrated that under these distortions, the deviations of the characteristics under
consideration have the first order of smallness with respect to the level ε of distortions. The asymptotic
expansion with respect to ε of the mathematical expectation t̄ does not contain terms of greater order
of smallness than the first. The same property is inherent in conditional characteristics ᾱ, β̄, t̄i, i = 0, 1,
under an additional condition (11) which means that the distortions have no influence on the prior
probabilities of hypotheses.

The obtained results make it possible to find the extreme contaminating distribution and to construct
robust (stable) sequential tests by the principle of minimax of the risk of decision rule using the methods
developed in [7] for the case of simple hypotheses.
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