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Scalar boson stars and Dirac stars are solitonic solutions of the Einstein–Klein-Gordon and Einstein-Dirac 
classical equations, respectively. Despite the different bosonic vs. fermionic nature of the matter field, 
these solutions to the classical field equations have been shown to have qualitatively similar features [1]. 
In particular, for spinning stars the most fundamental configurations can be in both cases toroidal, unlike 
spinning Proca stars that are spheroidal [2]. In this paper we gauge the scalar and Dirac fields, by 
minimally coupling them to standard electromagnetism. We explore the impact of the gauge coupling 
on the resulting solutions. One of the most relevant difference concerns the gyromagnetic ratio, which 
for the scalar stars takes values around 1, whereas for Dirac stars takes values around 2.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction and motivation

In a recent paper [2], we have performed a comparative anal-
ysis of the spinning solitons arising in the Einstein-Klein-Gordon, 
Einstein-Dirac and Einstein-Proca models. Using numerical meth-
ods, particle-like solutions were found and their basic properties 
analysed. This analysis has indicated a, a priori non-obvious, high 
degree of universality between the different models, and in partic-
ular with some features holding for both bosonic and Dirac stars. 
Amongst these, we have noticed that both scalar and Dirac stars 
can present a distinctive toroidal morphology, contrasting with the 
spheroidal morphology of Proca stars [2].

Bosonic stars (scalar or vector) can in principle be macroscopic 
objects, corresponding to many bosons in the same quantum state, 
to justify the classical description. In fact these models have been 
widely considered in astrophysical contexts, for instance as black 
hole mimickers - see e.g . [3,4] for some recent discussions. The 
status of Dirac stars is less clear. Still, one may entertain the 
possibility that both models could be an approximate description 
for microscopic objects, eventually relevant in the early Universe. 
In such context, a differentiated phenomenology could arise, e.g.

from their interaction with electromagnetic fields.
With this physical motivation, besides the intrinsic interest in 

understanding self-gravitating solitons in simple physical models, 
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in this paper we extend the results in [1] to the case of gauged 
matter fields. We shall focus on the scalar and Dirac cases, and 
consider the Einstein–Klein-Gordon and Einstein–Dirac equations 
minimally coupled to an electromagnetic field. We shall construct 
the electrically charged, spinning particle-like solutions, which 
generalize the neutral solitons in [2], and describe some of their 
properties, in particular their gyromagnetic ratio.

Static, spherically symmetric neutral scalar (s = 0) boson stars 
have been known for more than half a century [5,6]. Their gauged 
generalization, on the other hand, were only discussed for the first 
time in [7], and more recently in [8]. Moreover, spinning boson 
stars were first constructed in [9,10] for free and in [11,12] for self-
interacting (with a Q -ball type potential) complex scalar fields. 
Finally, spinning gauged boson stars have also been constructed for 
free [13] and self-interacting (with a Q -ball type potential) com-
plex scalar fields [14,15].1

Spherical, neutral Dirac (s = 1/2) stars were first constructed 
in [17] and their gauged version in [18]. The latter are solutions of 
the Einstein-Maxwell-Dirac equations with two gauged fermions, 
with opposite spins, in order to satisfy spherical symmetry. Thus, 
both the neutral and the charged spherical solutions require at 
least two Dirac fields. Solutions with a single Dirac field were con-
structed as spinning (neutral) solutions in [2] for the first time, 

1 One should mention, however, the existence of a large literature on spinning 
gauged solitons in models with scalar field multiplets and non-Abelian gauge fields, 
see e.g . [16] and references therein.
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in a model that, therefore, does not admit static stars. So far, no 
construction of spinning gauged Dirac stars has appeared in the 
literature.

The solutions reported below - the gauged generalizations of 
the spinning solitons with s = 0, 1/2 in [2] - possess a nonzero 
ADM mass, electric charge and a magnetic dipole moment, simi-
larly to the well known Kerr-Newman black hole of electrovacuum. 
The latter has a gyromagnetic ratio of g = 2 [19] so one may in-
quire about the gyromagnetic ratio of these solutions, which is an 
important quantity in particle physics. Indeed, the experimental 
value of the quantity g − 2, which is known with an incredible 
accuracy, is a very precise test of the Standard Model and possi-
ble deviations from the theoretical value may be a smoking gun 
for new physics. In fact, the recently discussed possible disagree-
ment between theory and experiment for (g − 2)muon is one of the 
most hotly debated topics in the particle physics community [20]. 
It has also been suggested that strong gravitational interaction may 
also play an important role in very precise calculations of the cor-
rections to the gyromagnetic ratio [21–24]. Concerning the solitons 
discussed herein, as we shall see there is a clear quantitative dif-
ference between g for scalar and Dirac gauged spinning stars.

This paper is organized as follows. In Section 2 we exhibit the 
models, discuss their equations of motion, relevant physical quan-
tities and the Ansatze that will be used to computed spinning 
gauged scalar and Dirac stars. Section 3 discusses the boundary 
conditions and the numerical method to obtain the solutions; then, 
the numerical results are presented. Besides the discussion on g , 
we find, for instance, that in both cases, the proportionality rela-
tion found in [2] between the angular momentum and the Noether 
charge (particle number) still holds. Moreover, the ratio between 
the electric charge and the Noether charge is equal to the gauge 
coupling constant. In fact, some basic features are similar to those 
of the ungauged stars. In particular, for a given value of the gauge 
coupling constant q, one finds again a limited range for the al-
lowed frequencies of the matter fields, which is bounded from 
above by the fields’ mass and from below by a minimal frequency 
whose value decreases with q. Finally, in Section 4 we provide a 
discussion of the results and some final remarks.

2. The general framework

2.1. The models and field equations

We consider Einstein’s gravity in 3+1 dimensions minimally 
coupled with a spin-s field (s = 0, 1/2):

S = 1

4π

∫
d4x

√−g

[
R

4G
− 1

4
F 2 +L(s)

]
. (2.1)

The notation and conventions used here follow closely those in [1,
2,25]: G is the gravitational constant, R is the Ricci scalar asso-
ciated with the spacetime metric gμν , Fμν = ∂μ Aν − ∂ν Aμ is the 
U (1) field strength tensor. For the matter Lagrangian L(s) we con-
sider two cases:

L(0) = −1

2
gαβ

[
(Dα�)∗Dβ� + (Dβ�)∗Dα�

]− μ2�∗� ,

with Dν� = (∂ν + iq Aν)�, (2.2)

L(1/2) = −i

[
1

2

(
{ /̂D�}� − � /̂D�

)
+ μ��

]
,

with D̂ν� = (∂ν − 	ν + iq Aν)� . (2.3)

Here, � is a complex scalar field; � is a Dirac spinor, with 
four complex components. For the scalar field, the asterisk de-
notes complex conjugation; � denotes the Dirac conjugate [26]. 
/̂D ≡ γ μ D̂μ , where γ μ are the curved spacetime gamma matri-
ces, and 	μ are the spinor connection matrices [26]. In both cases, 
2

μ > 0 corresponds to the mass of the field(s), while q is the gauge 
coupling constant.

Variation of (2.1) with respect to the metric leads to the Ein-
stein field equations

Gαβ = 2G Tαβ with Tαβ = T (M)
αβ + T (s)

αβ , (2.4)

where Gαβ is the Einstein tensor and the pieces of the stress-
energy tensor are

T (M)
αβ = Fαγ Fβδ gγ δ − 1

4
gαβ F 2 , (2.5)

for the Maxwell field, and the following T (s)
αβ for the (gauged) scalar 

and Dirac fields, respectively:

T (0)
αβ = (Dα�)∗Dβ� + (Dβ�)∗Dα�

− gαβ

[
1

2
gγ δ((Dγ �)∗Dδ� + (Dδ�)∗Dγ �) + μ2�∗�

]
,

(2.6)

T (1/2)
αβ = − i

2

[
�γ(α D̂β)� −

{
D̂(α�

}
γβ)�

]
. (2.7)

The corresponding matter field equations are:

Dν Dν� − μ2� = 0 (s = 0) , (γ ν D̂ν − μ)� = 0 (s = 1/2) ,

(2.8)

and

∇αFαβ = q Jβ , with Jβ = iq
[
(Dβ�∗)� − �∗(Dβ�)

]
(s = 0) ,

or Jβ = �γ β� (s = 1/2), (2.9)

for the Maxwell field.
These models are invariant under the local U (1) gauge trans-

formation

(� → �e−iqα, � → �e−iqα), and Aμ → Aμ + ∂μα, (2.10)

with α a real function of spacetime coordinates. The current and 
the total energy-momentum tensor are covariantly conserved,

∇μ Jμ = 0 , ∇μT μν = 0 . (2.11)

Then, integrating the timelike component of the 4-current Jμ on 
a spacelike hypersurface � yields a conserved Noether charge (par-
ticle number):

Q =
∫
�

J t . (2.12)

2.2. The Ansatz

The employed metric Ansatz is similar to that used in the un-
gauged case [2], with a line-element possessing two Killing vectors 
∂ϕ and ∂t (with ϕ and t the azimuthal and time coordinate, respec-
tively):

ds2 = −e2F0dt2 + e2F1
(

dr2 + r2dθ2
)

+ e2F2 r2 sin2 θ

(
dϕ − W

r
dt

)2

. (2.13)

This metric contains four functions (Fi; W ), i = 0, 1, 2, which de-
pend on the spherical coordinates r and θ only. The Minkowski 
spacetime background is approached for r → ∞, where the asymp-
totic values are Fi = 0, W = 0.
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In the scalar case, one takes the following Ansatz in terms of a 
single real function φ(r, θ) and a complex phase (ϕ, t), with

� = ei(mϕ−wt)φ(r, θ) . (2.14)

In the case of a Dirac field, the Ansatz contains two complex func-
tions [2]:

� = ei(mϕ−wt)

⎛
⎜⎜⎝

ψ1(r, θ)

ψ2(r, θ)

−iψ∗
1 (r, θ)

−iψ∗
2 (r, θ)

⎞
⎟⎟⎠ , with

ψ1(r, θ) = P (r, θ) + iQ(r, θ) , ψ2(r, θ) = X(r, θ) + iY (r, θ) .

(2.15)

We shall employ the following orthonormal tetrad, as implied from 
the metric form (2.13)

e0
μdxμ = eF0dt , e1

μdxμ = eF1dr , e2
μdxμ = eF1 rdθ ,

e3
μdxμ = eF2 r sin θ

(
dϕ − W

r
dt

)
, (2.16)

such that ds2 = ηab(ea
μdxμ)(eb

νdxν), where ηab = diag(−1, +1, +1,

+1).
For a scalar field, the parameter m in an integer, while for the 

Dirac field m is a half-integer; w is the field’s frequency in both 
cases, which we shall take to be positive. A study of each of the 
matter field equations in the far field reveals that the solutions 
satisfy the bound state condition w < μ.

The Ansatz for the U (1) potential contains two real functions – 
an electric and a magnetic potential, with:

A = Aμdxμ = V (r, θ)dt + Aϕ(r, θ)r sin θdϕ . (2.17)

Note that, in contrast to the ungauged case, the (t, ϕ)-depend-
ence of the scalar field ψ can now be gauged away by applying 
the local U (1) symmetry (2.10) with α = (mϕ − ωt)/q. However, 
this would also change the gauge field as V → V − ω/q, Aϕ →
Aϕ + m/q, so that it would (formally) become singular in the q →
0 limit. Therefore, in order to be able to consider this limit, we 
prefer to keep the (t, ϕ)-dependence in the Ansatz and to fix the 
corresponding gauge freedom by setting V = Aϕ = 0 at infinity.

2.3. Quantities of interest

Given the above general Ansatz, the computation of the explicit 
form of the field equations is straightforward. Although the result-
ing expressions are in general too complicated to include here, the 
angular momentum density is simple enough, with

(T (0))t
ϕ = 2e−2F0(m + q Aϕr sin θ)

×
(

w − qV − (m + q Aϕr sin θ)
W

r

)
φ2 , (2.18)

(T (1/2))t
ϕ = e−F0(m + q Aϕr sin θ)(P 2 +Q2 + X2 + Y 2)

+ e−F0−F1+F2 sin θ

{
(P X +QY )[1 + r(F2,r − F0,r)]

− 1

2
(P 2 +Q2 − X2 − Y 2)(cot θ + F2,θ − F0,θ )

+ 2e−F0+F1 r

(
w − qV − (m + q Aϕr sin θ)

W

r

)

× (QX − P Y )

}
, (2.19)
3

(T (M))t
ϕ = −e−2(F0+F1)

r

[
sin θ(r2 Aϕ,r V ,r + Aϕ,θ V ,θ )

+ sin2 θW (r2 A2
ϕ,r + A2

ϕ,θ ) + Aϕ

(
r sin θ V ,r + cos θ V ,θ

+ W
(

Aϕ + 2 sin θ(r sin θ Aϕ,r + cos θ Aϕ,θ )
))]

. (2.20)

Observe the presence of a U (1)-contribution in (T (s))t
ϕ . Of interest 

is also the temporal component of the current density:

J t
(0) = 2e−2F0

(
w − qV − (m + q Aϕr sin θ)

W

r

)
φ2 , (2.21)

J t
(1/2) = 2e−F0(P 2 +Q2 + X2 + Y 2) . (2.22)

The ADM mass M and the angular momentum J of the solu-
tions are read off from the asymptotic expansion:

gtt = −1 + 2M

r
+ . . . , gϕt = −2 J

r
sin2 θ + . . . . (2.23)

Of interest is also the asymptotic decay of the gauge field

V ∼ Q e

r
+ . . . , Aϕ ∼ μm sin θ

r2
+ . . . , (2.24)

where Q e and μm are the electric charge and the magnetic dipole 
moment, respectively.

The total angular momentum can also be computed as the in-
tegral of the corresponding density2

J = 2π

∞∫
0

dr

∞∫
0

dθr2eF0+2F1+F2
(
(T (s))t

ϕ + (T (M))t
ϕ

)
. (2.25)

The explicit form of the Noether charge, as computed from (2.12), 
is

Q ≡ Q (s) = 2π

∞∫
0

dr

∞∫
0

dθr2eF0+2F1+F2 jt
(s) . (2.26)

For both a scalar field and a Dirac one, a straightforward computa-
tion shows that J , Q and Q e are proportional,

J = mQ = mQ e

q
. (2.27)

Note that the above relation is nontrivial, since the angular mo-
mentum density and Noether charge density are not proportional. 
Nonetheless, the proportionality still holds at the level of the inte-
grated quantities.

As with any spinning system with gauge fields, the solutions 
possess also a non-zero gyromagnetic ratio g , which defines how 
the magnetic dipole moment is induced by the total angular mo-
mentum and charge, for a given total mass:

μm = g
Q e

2M
J . (2.28)

3. The solutions

3.1. The boundary conditions and numerical method

The numerical treatment of the problem is simplified by using 
some symmetries of the equations of motion [1]. Firstly, the factor 

2 The ADM mass can also be computed as volume integral; however, this is less 
relevant in the context of this work.
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of G in the Einstein field equations is set to unity by a redefinition 
of the matter functions,

{�,�, A} → 1√
G

{�,�, A} . (3.29)

Secondly, one sets μ = 1 in the equations. This can be done with-
out any loss of generality, by noticing that the field equations 
remain invariant under the transformation

r → λr; W → λW , Fi → Fi; {w,μ,q} → 1

λ
{w,μ,q} ;

⎧⎨
⎩

� → �

� → 1√
λ
�

A → A

⎫⎬
⎭ , (3.30)

where λ is a positive constant. As for some quantities of interest, 
they transform as

M → λM, J → λ2 J , Q e → λQ e, Q → λ2 Q and μm → λμm .

(3.31)

This invariance is used to do the numerical work in units set by 
the field’s mass, i.e. one takes λ = 1/μ. Let us remark that only 
quantities which are invariant under the transformation (3.30) (like 
w/μ, q/μ, J/M2 or Mμ) are relevant.

Given the Ansatz (2.14), (2.15), (2.17), all components of the en-
ergy momentum tensor are zero, except for Trr, Trθ , Tϕϕ, Ttt and 
Tϕt , which possess a (r, θ)-dependence only (although the scalar 
and spinor fields are not time independent).

Then, the Einstein field equations with the energy momentum-
tensors (2.5), (2.6), (2.7), plus the matter field equations (2.8), (2.9)
together with the Ansatz (2.13) (2.14), (2.15), (2.17), lead to a sys-
tem of seven (ten) coupled partial differential equations for the 
gauged scalar (Dirac) models. There are four equations for the met-
ric functions Fi, W ; together with three (six) equations for the 
matter functions. Apart from these, there are two constraint Ein-
stein equations which are not solved in practice, being used the 
monitor the accuracy of the numerical results.

The boundary conditions are found by considering an approx-
imate construction of the solutions on the boundary of the do-
main of integration together with the assumption of regularity and 
asymptotic flatness. The metric functions are subject to the follow-
ing boundary conditions:

∂r Fi
∣∣
r=0 = W

∣∣
r=0 = 0 , Fi

∣∣
r=∞ = W

∣∣
r=∞ = 0 ,

∂θ Fi
∣∣
θ=0,π

= ∂θ W
∣∣
θ=0,π

= 0 . (3.32)

The scalar field amplitude vanishes on the boundary of the domain 
of integration,

φ
∣∣
r=0 = φ

∣∣
r=∞ = φ

∣∣
θ=0,π

= 0 . (3.33)

For a Dirac field, all solutions considered so far have m = 1/2, and 
satisfy the following boundary conditions

P
∣∣
r=0 = Q

∣∣
r=0 = X

∣∣
r=0 = Y

∣∣
r=0 = 0 ,

P
∣∣
r=∞ = Q

∣∣
r=∞ = X

∣∣
r=∞ = Y

∣∣
r=∞ = 0 ,

∂θ P
∣∣
θ=0 = ∂θQ

∣∣
θ=0 = X

∣∣
θ=0 = Y

∣∣
θ=0 = 0 ,

P
∣∣
θ=π

= Q
∣∣
θ=π

= ∂θ X
∣∣
θ=π

= ∂θ Y
∣∣
θ=π

= 0 . (3.34)

Finally, for both s = 0, 1/2, the Maxwell potentials satisfy the 
boundary conditions:

∂r V
∣∣
r=0 = Aϕ

∣∣
r=0 = 0 , V

∣∣
r=∞ = Aϕ

∣∣
r=∞ = 0 ,

∂θ V
∣∣ = ∂θ Aϕ

∣∣ = 0 . (3.35)

θ=0,π θ=0,π

4

After setting μ = 1, the problem has still three input param-
eters: {w, m; q} – the field frequency, the azimuthal number and 
the gauge coupling constant. The reported results in this work have 
m = 1 for the scalar field and m = 1/2 for a Dirac one.

The solutions are found by using a fourth order finite difference 
scheme. The system of seven/ten equations is discretised on a grid 
with Nr × Nθ points; typically Nr ∼ 200, Nθ ∼ 50. We introduce a 
new radial coordinate x = r/(r + c), which maps the semi-infinite 
region [0, ∞) onto the unit interval [0, 1], where c is a constant of 
order one.

The gauged boson stars were constructed by using the pro-
fessional package FIDISOL/CADSOL [27] which uses a Newton-
Raphson method. The Einstein-Dirac-Maxwell equations are solved 
with the Intel MKL PARDISO sparse direct solver [28], and using 
the CESDSOL library. In all cases, the typical errors are of order of 
10−4.

Finally, we remark that the solutions shown here are funda-
mental states, with all matter functions being nodeless. However, 
we predict the existence of a discrete set of solutions, indexed by 
the number of nodes, n, of (some of) the matter function(s).

3.2. Numerical results

In our approach, we start with the ungauged solution in [2] (i.e
q = 0 and Aϕ = V = 0). Then one can smoothly turn on the gauge 
field by increasing (from zero) the value of the gauge coupling con-
stant q, while keeping fixed the other input constants (in particular 
the parameters w, m). The basic properties of the gravitating spin-
ning gauged boson and Dirac stars solutions so constructed can be 
summarized as follows:

For a given values of w , spinning solutions appear to exist up to 
a maximal value of the gauge coupling constant only, qmax, where 
the numerical process stops to converge. We remark that all global 
charges stay finite in that limit. The physical mechanism behind 
this behaviour is likely similar to that discussed for the spherically 
symmetric case [7,18]: the electric charge repulsion becomes too 
strong and localized solutions cease to exist. A precise determina-
tion of qmax is challenging; all solutions found so far have q/μ < 1.

Given a value of q, the full spectrum of solutions is constructed 
by varying the field frequency w . The gauged spinning stars exist 
for a limited range of frequencies 0 < wmin < w < wmax = μ, see 
Figs. 1, 2. Observe that the minimal frequency increases with q.

A backbending towards larger values of w is observed as 
w → wmin , for both s = 0, 1.2. One may expect that, similar to 
the spherically symmetric case, this backbending would lead to 
an inspiraling of the solutions towards a limiting configuration 
with wc > wmin. However, the construction of these secondary 
branched is a complicated numerical task, which we do not at-
tempt in this work. Also, the numerical accuracy decreases as 
w/μ → 1, with a delocalization of the profiles for the scalar 
and spinor functions, a different approach being necessary for the 
study of this limit.

As seen in Figs. 1, 2 for any q, the (w, M) looks qualitatively 
similar to that found in the ungauged case (q = 0). The observed 
trend is that the maximal value of M increases with q. Note that 
a similar behaviour is found for the (w, J )-dependence. Also, the 
minimal value of the reduced angular momentum j = J/M2 de-
creases with q.

The shape of the metric functions and of the s = 0, 1/2 matter 
functions is rather similar to the ungauged case. Concerning the 
gauge field, the electric potential V does not possess a strong an-
gular dependence; however, the magnetic potential Aϕ exhibits an 
involved angular dependence.

Also, as seen in Fig. 3 the energy density −T t
t of the s = 0

solutions is localized in a finite region in the equatorial plane 
and decreases monotonically along the symmetry axis, such that 
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Fig. 1. The ADM mass M (left panel) and the reduced angular momentum j = J/M2 and the gyromagnetic ratio g (right panel) are shown for the families of spinning gauged 
boson stars with illustrative value of the gauged coupled constant q. The quantities are given in units set by the field mass μ.

Fig. 2. Same as Fig. 1 for spinning gauged Dirac stars.
the typical energy density isosurfaces have a toroidal shape. At 
the same time, the angular momentum density (which equals the 
Noether charge density) has a strong peak in the equatorial plane. 
Note that while T t

ϕ vanishes on the symmetry axis, this is not the 
case for T t

t . The energy density distribution is still toroidal for typ-
ical Dirac stars, although becoming more spheroidal than in the 
scalar case - see Fig. 4.

The gyromagnetic ratio g of the solutions has a nontrivial de-
pendence on both frequency and gauge coupling constant, taking 
values around 1 (for s = 0 stars) and 2 for (for s = 1/2 stars), the 
larger deviations being found along the secondary branches of so-
lutions (see the insets in Figs. 1, 2, right panels). Interestingly, the 
extrapolation of the numerical results towards the Newtonian limit 
w/μ → 1 suggest that g → 1 (s = 0) and g → 2 (s = 1/2), inde-
pendently of the value of the gauge coupling constant q.

It is also of interest to study the strong energy condition

χ =
(

Tμν − 1

2
T gμν

)
Xμ Xν ≥ 0 (3.36)

(with the timelike vector Xμ , Xμ Xμ = −1). We have monitored 
this condition for a number of solutions and have found that χ > 0
5

in all cases (see Figure (5) where this quantity is shown for the 
same configurations as in Figures (3), (4)).

3.3. The one particle picture

The results above are found for a classical treatment of the 
fields. In particular, the particle number is arbitrary and results 
from the numerical output for some given physical parameters 
(w, μ, q). If one tries to go beyond the classical field theory anal-
ysis and impose the quantum nature of fermions, this requires 
Q = 1 for Dirac stars. This condition can also be imposed for 
boson stars, although in this case it is not a mandatory require-
ment.

As noticed in the original work [17], the one particle condition 
can be imposed by making use of a scaling symmetry of the equa-
tions. That is, given a numerical solution with Q (num) , one uses 
(3.30) with λ =

√
Q (num) , such that the scaled solution has Q = 1

and Q e = q. Then, as discussed in [1], the (w, M)-curves in Figs. 1, 
2 are not sequences of solutions with constant μ, q and varying M
(and Q ); rather, it is a sequence with constant Q = 1 and varying 



C. Herdeiro, I. Perapechka, E. Radu et al. Physics Letters B 824 (2022) 136811

Fig. 3. The components T t
ϕ and T t

t of the total energy momentum tensor, associated with angular momentum and energy densities and the J t -component of the current are 
shown as a function of the cylindrical coordinates (ρ, z) (with ρ = r sin θ , z = r cos θ ) for a typical spinning gauged boson star. The input parameters are m = 1, w = 0.75, 
μ = 1 and q = 0.5.

Fig. 4. Same as Fig. 3 for a spinning gauged Dirac stars with m = 1/2 and the same values of w,q and μ.

Fig. 5. The quantity χ = (Tμν − 1
2 T gμν

)
Xμ Xν (with the timelike vector Xμ , Xμ Xμ = −1) is shown for a spinning gauged boson (left panel) star and a Dirac (right panel) 

star, which correspond to the solutions in Figs. 3 and 4. The strong energy condition χ ≥ 0 is satisfied in both cases.

Fig. 6. (Left panel) The mass M vs. scalar field mass μ, in Planck units is shown for the three values of the invariant ratio q/M (where q is the gauge coupling constant). 
(Right panel) Same for the gauged Dirac case. In both cases, the single particle condition Q = 1 is imposed.
μ and q. Thus, since μ, q are parameters in the action, the curves 
would correspond to sequences of solutions of different models.

The resulting picture is shown in Fig. 6, where we plot the same 
data as in Fig. 1 but imposing the single particle condition. One can 
see that the maximal mass for both the solutions’ mass and field 
mass is of order of the Planck mass.
6

4. Conclusions

The main purpose of this work was to provide a compara-
tive analysis of two different types of solitonic solutions of GR-
matter systems, with matter fields of spin 0 and 1/2, respec-
tively. Here, and different from the previous study in [2], the 
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scalar and Dirac fields are gauged, with a local U (1) symme-
try.

We have confirmed that, as classical field theory solutions, 
gauging the fields still does not lead to a clear distinction between 
the fermionic/bosonic nature of the field, the configurations, which 
still possess a variety of similar features. Interestingly, the gyro-
magnetic ratio of the solutions appears as a distinguishing feature, 
with values around 1 for the scalar stars and 2 for the Dirac stars. 
It would be interesting to study also spinning gauged Proca stars 
and in particular consider their gyromagnetic ratio

Finally, let us remark on another difference between the mod-
els. The gauged spinning scalar boson stars can be in equilibrium 
with a black hole horizon [13]. This still does not seem to be pos-
sible for the Dirac case.
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