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Abstract: In the present work, at first, density functional theory calculations were performed to 

investigate the molecular structure of the Chlorogenic, Ellagic, and Quisqualic acids by CAM-

B3LYP/MidiX level of theory. A detail of quantum molecular descriptors of the title compounds such 

as ionization potential (IP) and Electron Affinities (EA), Hardness (η), Softness (S), Electronegativity 

(μ), Electrophilic Index (ω), Electron Donating Power (ω-), Electron Accepting Power (ω+) and Energy 

Gap (Eg) have been calculated. Pharmacokinetic properties of the title compounds and their bioactivity 

were investigated. In the following, a molecular docking study was carried out to screen for an effective 

available compound that may work as a strong inhibitor for the SARS-CoV-2 main protease Mpro. The 

binding energy between SARS-CoV-2 main protease Mpro and title organic acids showed a good 

binding affinity. Therefore, the Chlorogenic, Ellagic, and Quisqualic acids can be used for potential 

application against the SARS-CoV-2 main protease Mpro. 
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1. Introduction 

The appearance of a severe acute respiratory syndrome (SARS-CoV-2) created a 

pandemic in the Wuhan city and more than 212 countries, resulting in over 27 million infections 

and about 900.000 deaths worldwide [1-4]. SARS-CoV-2 falls into the category of RNA 

viruses, which causes disorders in hepatic, pulmonary, central nervous, and gastrointestinal 

systems [5,6]. SARS-CoV-2 can encode cysteine proteases, including the chymotrypsin-like 

cysteine (3CLpro) or main protease (Mpro) and the papain-like cysteine protease (PLpro), which 

are responsible for catalyzing the proteolysis of polyproteins translated from the genome of the 

virus into nonstructural proteins required for packaging the nascent virion and replication of 

virus [7-10]. Therefore, inhibition of the activity of these proteases would prevent the virus 
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replication. Mpro hydrolyzes the Gln-Ser peptide bond in the Leu-Gln-Ser-Ala-Gly sequence, 

which is different from the peptide sequence identified by other human cysteine proteases [11]. 

Therefore, Mpro is considered a promising site for designing anti-SARS-CoV-2 drugs. 

Chlorogenic acid (CGA) is an important biologically active phenolic compound, being 

the main component of coffee and tea produced by the plant's special species [12-14]. It is 

recently receiving high attention due to its many promising useful effects related to its anti-

inflammatory and antioxidant properties, such as regulation of glucose and lipid metabolism in 

cardiovascular [15], diabetes [16], cancer [17], and fatty liver [18] diseases. Before absorption 

of CGA in the gastrointestinal system, it is hydrolyzed to caffeic acid and quinic acid through 

the functioning of certain microbial esterases in both small and large intestine, while after 

absorption, it is metabolized to glucuronide and sulfate as circulating species in plasma [19,20]. 

Based on Hoelzl et al.'s reports, the high levels of Chlorogenic acid in coffee decrease 8-

isoprostaglandin F2α and 3-nitrotyrosine about 15.3 and 16.1%, respectively, inducing a 

protective effect against the damage generated by free radicals [21]. Sapio et al. reported that 

Chlorogenic acid has an inhibitory effect on the proliferation of osteosarcoma (OS) cells, which 

provides promising novel strategies in OS treatment [22]. 

Ellagic acid (EA) is a natural polyphenol compound with great antioxidant and anti-

cancer activities [23-25]. Its antioxidant efficacy is exerted by stimulation of the activity of 

antioxidant enzyme systems, whereas the anti-cancer characteristic of Ellagic acid is related to 

its capability to inhibit growth and tumor diffusion as well as increasing the sensitivity of tumor 

cells to chemotherapy and radiotherapy [26-29]. Guptaa et al. showed the inhibitory potential 

of Ellagic acid towards SphK1 as a therapeutic method to control sphingosine kinase 1 

(SphK1)-dependent pathologies, such as cancer and diabetes [30]. Yousuf et al. demonstrated 

that Ellagic acid could be a potential inhibitor of Cyclin-Dependent Kinase 6 (CDK6) in breast 

cancer treatment [31]. Wang et al. suggested that Ellagic acid inhibits breast cancer metastasis 

via regulation of ACTN4 in vitro and in vivo [32]. 

Quisqualic acid (QA) is an amino acid isolated from the seeds of Quisqualis indica, 

which acts as an agonist of glutamate, kainate, and metabotropic receptors in the central 

nervous systems (CNS) of mammalians [33,34]. Since quisqualate has an uncertain effect on 

synaptic transmission, Quisqualic acid can induce an increased sensitivity of neurons to 

depolarization by analogs of phenyl glycine, homoibotenic (HIBO) acid, and 2-amino-4-

phosphonobutyric acid (AP4) [35]. Bitzer et al. concluded Quisqualic acid reduces ZENK 

expression, which causes myopia [36]. According to Rochford et al., Quisqualic acid affects 

the rabbit eye's standing potential through its functioning on the retinal pigment epithelium 

[37]. 

In silico and computational approaches are low-cost methods for predicting 

pharmacokinetics' pharmacokinetics properties before experimental procedures, which give us 

basic data in bioinformatics research [38-42]. In this study, computational/In silico methods 

are utilized to screen the potential inhibitory of Chlorogenic, Ellagic, and Quisqualic acids for 

SARS-CoV-2 main protease Mpro. ADMET characteristics are evaluated to represent selected 

inhibitors' compatibility for human administration, whereas molecular docking and DFT 

investigations are utilized to analyze their reactivity and binding with SARS-CoV-2 main 

protease Mpro.  
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2. Materials and Methods 

2.1. ADME analysis. 

  Lipinski's Rule of Five [43] was used to investigate organic acids that were selected for 

this study. Filters like Molecular weight of the ligand (<500 Da), high lipophilicity (LogP<5), 

number of hydrogen bonds donors (<5), number of hydrogen bond acceptors (<10), and Molar 

refractivity (40–130) (Ghose Rule) were used to carry out the further selection of the title 

organic acids. Violation of more than 2 of the above-stated parameters debarred further analysis 

of a particular molecule. Parameter details were calculated from using Molinspiration 

Cheminformatics software [44].  

2.2. Bioactivity score. 

The investigated acids' bioactivity was predicted by calculating the activity score 

toward G protein-coupled receptors (GPCR ligand), ion channel modulator, nuclear receptor 

ligand, a kinase inhibitor, protease inhibitor, and enzyme inhibitor with the help of online 

software Molinspiration (www.molinspiration.com). 

2.3. DFT investigation. 

A Pentium IV personal computer (CPU at 4.80 GHz) with the Windows 10 operating 

system was used. The initial geometry optimization of title compounds was performed with 

HyperChem (Version 8.0 Hypercube, Inc., Alberta, Canada). For all the ab initio calculations, 

Gaussian 16 was employed [45]. The molecular properties of the compounds were calculated 

by CAM-B3LYP/MidiX level of theory [46,47]. The lowest energy structures of the species 

were computed by conformational analysis. Geometry optimization was performed at the 

CAM-B3LYP level with the same basis set. The following formulas were applied to calculate 

the electronic properties of the title molecules [48]: 

IP = - EHOMO, (eV) (1) 

EA = - ELUMO, (eV) (2) 

η = (IP - EA)/2, (eV) (3) 

S = 1/2η, (eV) (4) 

μ = (IP + EA)/2, (eV) (5) 

ω = μ2/2η, (eV) (6) 

ω+ = (IP + 3EA)2/16(IP - EA), (eV) (7) 

ω- = (3IP + EA)2/16(IP - EA), (eV) (8) 

Eg = ELUMO - EHOMO, (eV) (9) 

The geometry optimization was performed in the gas phase. The optimized molecular  

structures, HOMO and LUMO surfaces, were visualized using GaussView 05 program [49].  

2.4. Molecular docking. 

The molecular docking studies were performed by using the AutoDock/Vina tool [50]. 

It is a reliable protein-ligand docking tool that uses the Broyden-Goldfarb-Shanno algorithm, 

which significantly improves the binding mode prediction's average accuracy. The crystal 

structure of the target protein (PDB ID: 7CBT) (Figure 1) was downloaded from the Protein 

Data Bank (http://www.rcsb.org/pdb) in PDB format and was prepared by AutoDock tools. 

Visualization of the docked pose has been done using CHIMERA (www.cgl.ucsf.edu/chimera) 

and Molegro Molecular Viewer 2.5 (www.clcbio.com/products/molegro/#molecular-viewer). 

https://doi.org/10.33263/BRIAC121.061073
https://biointerfaceresearch.com/


https://doi.org/10.33263/BRIAC121.061073  

 https://biointerfaceresearch.com/ 64 

Water molecules and amino acid that does not belong to the protein were removed by deleting 

the lines that start with "HETATM" and "CONNECT". The file structure was saved and ready 

for docking analysis. Manually initialized the protein molecule by adding hydrogen atoms and 

kolmen charges using the edit option and saved the protein molecule as write PDB. A grid box 

of 50 × 50 × 50 Å centered at (-27.325, 17.891, 76.447) Å for the SARS-CoV-2 main protease 

was used in the docking experiments. Biovia Discovery Studio Visualizer v19.1.0.18287 [51] 

was used to view the docking results and to convert the structures into pdb format. Binding 

energies (ΔG, kcal/mol) of the docked ligands were obtained by ΔG = -RTLnKi, where R = 

Gas constant (1.987∙10-3 kcal/mol); T = 298.15 K; Ki = Inhibition constant. PubChem 

repository ("PubChem") was used to obtain the structure of the title organic acids required for 

the analysis in pdb format (Figure 2).  

 
Figure 1. The crystal structure of target protein (PDB ID: 7CBT). 

CGA              

EA                             

QA             

Figure 2. The chemical structures of the title organic acids. 
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3. Results and Discussion 

3.1. Pharmacokinetic properties. 

Drug-likeness estimated using the Lipinski rule of five, which is including of four 

simple physicochemical parameter ranges (MWT ≤ 500, log P ≤ 5, H-bond donors ≤ 5, H-bond 

acceptors ≤ 10) related to 90% of drugs with good oral bioavailability that have passed phase 

II clinical trial. miLogP values of these compounds are observed to be < 5 (from -4.40 to 0.94) 

showed their good permeability across the cell membrane. These compounds (Ellagic acid and 

Quisqualic acid) were observed to have TPSA will be below 160 Å, molecular weight < 500, 

No. of hydrogen bond donors ≤ 5, No. of hydrogen acceptor ≤ 10, n-violations 0, number of 

rotatable flexible bonds >5. Solubility (logS) property of a drug in an aqueous solution affects 

absorption and distribution characteristics. A compound's solubility is predicted using 

ChemBioOffice 2018 software to identify the low solubility behavior and eliminate it from the 

study based on logS value [52]. The preferred value is greater than -4. Solubility in water can 

be considered as the number of hydrogen donors in molecules. A higher amount of hydrogen 

bond donor translates a higher amount of water solubility, leading to high absorption into the 

blood and action. The molecular weight of all compounds was found to be less than five 

hundred, and thereby these compounds are predicted to be easily transported, diffused, and 

absorbed than compared with the large molecules. Several hydrogen bond acceptors (notably 

O and N atoms) and a number of hydrogen bond donors of the Ellagic and Quisqualic acids 

were in agreement with Lipinski's rules (less 10 and 5, respectively). The numbers of rotatable 

bands are important for conformational changes of the molecules. The oral bioavailability 

criteria, the number of rotatable bands, should be less or equal to ten. All studied acids have a 

number of rotatable bands between 0 and 5, consequently showing large conformational 

flexibility. Topological polar surface area (TPSA) is correlated with the hydrogen bonding of 

a drug molecule. Topological polar surface area is a very good indicator of the bioavailability 

of the drug molecules. TPSA of the Ellagic and Quisqualic acids were observed in the range of 

131.33 to 141.33 Å. The results of the calculations are presented in Table 1.  

Table 1. Pharmacokinetic properties of the title compounds 
Compound miLogP TPSA natoms MW nHBA nHBD nviolations nrotb LogS 

CGA -0.45 164.74 25 354.31 9 6 1 5 -2.00 

EA 0.94 141.33 22 302.19 8 4 0 0 -2.65 

QA -4.40 131.33 13 189.13 8 4 0 3 1.69 

*_mLogP: lipophilicity; TPSA: Total Polar Surface Area; MW: Molecular Weight; nHBA: number of 

hydrogen bond acceptors; nHBD: number of hydrogen bond donors; n violations: number of violated 

drug-likeness rules; nrotb: number of rotating bonds; LogS: solubility 

3.2. Bioactivity 

These bioactivity scores for organic molecules can be interpreted as active (when the 

bioactivity score is > 0), moderately active (when the bioactivity score lies between − 5.0 and 

0.0), and inactive (when the bioactivity score < −5.0). That means that Quisqualic acid can be 

considered bioactive as a GPCR ligand, Ion channel modulator, Nuclear receptor ligand, 

Protease inhibitor, Enzyme inhibitor, and moderately active as a Kinase inhibitor. The Ellagic 

acid can be considered bioactive as a Nuclear receptor ligand, Enzyme inhibitor, and 

moderately active as a GPCR ligand, Ion channel modulator, Kinase inhibitor, Protease 

inhibitor, and Enzyme inhibitor. The Chlorogenic acid can be considered bioactive as a GPCR 
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ligand, Ion channel modulator, Nuclear receptor ligand, Protease inhibitor, Enzyme inhibitor, 

and moderately active as a Kinase inhibitor. The bioactivity score profile of all structures is 

given in Table 2. 

Table 2. Bioactivity scores against different drug targets of the title compounds 

Compound GPCR 

ligand 

Ion channel 

modulator 

Kinase 

inhibitor 

Nuclear receptor 

ligand 

Protease 

inhibitor 

Enzyme 

inhibitor 

CGA 0.29 0.14 0.00 0.74 0.27 0.62 

EA -0.29 -0.27 -0.01 0.11 -0.18 0.17 

QA 0.52 1.26 -0.55 0.22 0.81 1.18 

3.3. DFT calculations. 

The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular 

orbital (LUMO) are known as the frontier molecule orbitals (FMOs) (Figure 3) that participate 

in electronic properties, optical properties, UV/Vis spectrum, and chemical reactions [36]. We 

used FMO analysis and the title organic acids' electronic properties by CAM-B3LYP/MidiX 

level of theory. The calculated results are reported in Table 3. A detail of quantum molecular 

descriptors of the title compounds such as Ionization Potential (IP) and Electron Affinities 

(EA), Hardness (η), Softness (S), Electronegativity (μ), Electrophilic Index (ω), Electron 

Donating Power (ω-), Electron Accepting Power (ω+) and Energy Gap (Eg) have been 

calculated. The energy of HOMO is directly related to the ionization potential (IP), while the 

energy of LUMO is related to the electron affinity (EA) [53]. The nucleophilicity of the studied 

organic acids can be expressed by the potential ionization value, which is calculated as the 

necessary energy for an electron's abstractions in the molecule. IP shows the easiness of the 

title molecules' electron-donating due to electron abstraction is the first antioxidant mechanism. 

Therefore, structures with low IP values can undergo oxidation more easily (Chlorogenic acid 

with IP = 0.2095 eV). The Electron Affinity (EA) of the Quisqualic acid is the lowest (0.0050 

eV).  The global Hardness (η) corresponds to the energy gap between LUMO and HOMO. A 

molecule with a small energy gap has high chemical reactivity, low kinetic stability, and a soft 

molecule, while a hard molecule has a large energy gap [54-56]. Quisqualic acid higher global 

Hardness, and it is a hard molecule. Electronegativity (μ) is a measure of the power of an atom 

or a group of atoms to attract electrons and the chemical softness (S). It describes the capacity 

of an atom or a group of atoms to receive electrons. The Electrophilic Index (ω) represents the 

systems' stabilization energy when it becomes saturated by electrons. The results show that 

Quisqualic acid has the lowest value ω and is nucleophilic in nature, whereas the Ellagic acid 

has the highest value ω and is strongly electrophilic. In addition, among the set of compounds, 

the Ellagic acid has the highest Electron Accepting Power (ω+) and Electron Donating Power 

(ω-) values (0.0661 and 0.2046 eV, respectively). As shown in Table 3, the value of Eg for the 

Chlorogenic acid (0.1522 eV) is the lowest. Thus, this structure can act better as an antioxidant.  

Table 3. The calculated electronic properties in eV of the title organic acids by CAM-B3LYP/MidiX level of 

theory. 

Structures IP EA η S μ ω ω+ ω- Eg 

CGA 0.2095 0.0573 0.0761 0.0381 0.1334 0.1169 0.0597 0.1932 0.1522 

EA 0.2149 0.0622 0.0763 0.0382 0.1386 0.1258 0.0661 0.2046 0.1527 

QA 0.2463 0.0050 0.1206 0.0603 0.1256 0.0654 0.0177 0.1433 0.2413 
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CGA 

93 HOMO (Е = - 0.20953 eV) 

 
CGA 

94 LUMO (Е = - 0.05731 eV) 

 
EA 

77 HOMO (Е = - 0.21490 eV) 

 
EA 

78 LUMO (Е = - 0.06225 eV) 

 
QA 

49 HOMO (Е = - 0.24526 eV) 

 
QA 

50 LUMO (Е = - 0.00501 eV) 

Figure 3. Calculated frontier molecule orbitals (FMOs) of the Chlorogenic, Ellagic, and Quisqualic acids by 

CAM-B3LYP/MidiX level of theory. 

3.4. Molecular docking analysis. 

To study potential inhibitor of SARS-CoV-2 Mpro, AutoDock/Vina (MGL tools – 

1.5.6), CHIMERA, Molegro Molecular Viewer 2.5, and Biovia Discovery Studio 4.5 were 

applied. The ligands were docked to the active site of the receptor protein molecule (Figure 4). 

The docking and glide scores of the Chlorogenic, Ellagic, and Quisqualic acids were presented 

in Table 4, which has binding energy, glide score, number of hydrogen bonds, and steric 

interactions formed. The maximum number of hydrogen bonds and steric interactions validates 

the strong binding energy. 

It is seen from Table 4 that the binding energy of the Chlorogenic, Ellagic, and 

Quisqualic acids with SARS-CoV-2 main protease Mpro are -12.980, -15.955, -10.476 kcal/mol 

with an inhibition constant 1.206, 2.012.10-6 and 0.021 µM, respectively. It is observed that the 

studied organic acids are taken for the investigations exhibit better binding energy and various 

interactions involving hydrogen bonds and steric interactions with the SARS-CoV-2 main 

protease Mpro. The scoring function is a mathematical method predicting the strength of binding 

affinity between protein and ligand complex.  
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 4. (a) Chlorogenic acid; (b) Ellagic acid; (c) Quisqualic acid binding interactions with SARS-CoV-2 

main protease Mpro. 
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Table 4. Molecular docking analysis of the Chlorogenic, Ellagic, and Quisqualic acids with SARS- CoV-2 main 

protease Mpro. 

Ligands 

Binding 

Energy, 

kcal/mol 

Inhibition 

constant 

(ki), µM 

Glide 

Score, 

kcal/mol 

Number 

of H-

bonds 

Number of 

Steric 

Interactions 

7CBT Receptor 

amino acids forming 

H-bonds with ligands 

Steric 

Interactions  

CGA -12.980 1.206 -94.824 6 2 

Arg 4, Lys 5,  

Ser 284, Asn 214,  

Glu 288 

Ser 284, Glu 

288 

EA -15.955 
2.012 

.10-6 
-76.344 8 3 

Arg 4, Lys 5,  

Ser 284, Glu 288 
Lys 5 

QA -10.476 0.021 -65.758 6 6 
Ser 158, Asn 151, Asp 

153, Cys 156, Asp 155 

Ser 158, 

Asn 151, 

Asp 153, 

Cys 156, 

Lys 102, Lie 

152 

4. Conclusions 

 Density functional theory calculations were performed to investigate the Chlorogenic, 

Ellagic and Quisqualic acids' molecular structure by CAM-B3LYP/MidiX level of theory. The 

ionization Potential (IP) of the Chlorogenic acid is 0.2095 eV, and this structure can act better 

as an antioxidant. The global Hardness (η) of the Quisqualic acid is 0.1206 eV, and it is the 

hardest molecule. The Ellagic acid has the highest Electron Accepting Power (ω+) and Electron 

Donating Power (ω-) values (0.0661 and 0.2046 eV, respectively). miLogP values of these 

compounds are observed to be < 5 (from -4.40 to 0.94) showed their good permeability across 

the cell membrane. The Ellagic and Quisqualic acids were observed to have TPSA will be 

below 160 Å, molecular weight < 500, number of hydrogen bond donors ≤ 5, number of 

hydrogen acceptor ≤ 10, n-violations 0, number of rotatable flexible bonds >5. The Quisqualic 

acid can be considered bioactive as a GPCR ligand, Ion channel modulator, Nuclear receptor 

ligand, Protease inhibitor, Enzyme inhibitor, and moderately active as a Kinase inhibitor. The 

Ellagic acid can be considered bioactive as a Nuclear receptor ligand, Enzyme inhibitor, and 

moderately active as a GPCR ligand, Ion channel modulator, Kinase inhibitor, Protease 

inhibitor, and Enzyme inhibitor. The Chlorogenic acid can be considered bioactive as a GPCR 

ligand, Ion channel modulator, Nuclear receptor ligand, Protease inhibitor, Enzyme inhibitor, 

and moderately active as a Kinase inhibitor. 

It was found that the investigated ligands show good affinity towards of the SARS-

CoV-2 main protease Mpro compared to other known antiviral drugs: Colistin, Valrubicin, 

Icatibant, Bepotastine, Epirubicin, Epoprostenol, Vapreotide, Aprepitant in which the binding 

energy for SARS-CoV-2 main protease Mpro and them is -11.206, -10.934, -9.607, -10.273, -

9.091, 10.582, -9.892 and -11.376 kcal/mol. The binding energies for SARS-CoV-2 main 

protease Mpro and the Chlorogenic, Ellagic, and Quisqualic acids are -12.980, -15.955 and -

10.476 kcal/mol with an inhibition constant 1.206, 2.012.10-6 and 0.021 µM, respectively in 

which show the good binding affinity between them and SARS-CoV-2 main protease Mpro. 
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