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Abstract 

We introduce diffraction-theory-inspired analytic description of the metasurface comprising an 

array of graphene subwavelength hemispheres. Our theory describes light interaction with the 

random metasurface, in which the periodicity is broken by accidentally damaged meta-atoms in 

the nodes of a two-dimensional periodic lattice. Both numerical modeling and experiment show 

that such a nm-thin metasurface possesses giant broadband absorption in the THz spectral range 

that remains intact even when a substantial portion of meta-atoms, i.e. graphene hemispheres, 

is damaged. Moreover, defective fabrication of graphene free-standing metasurface may 

enhance the absorptive properties. 
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1 Introduction 

Tailoring of the surface impedance gave birth to metasurfaces, two-dimensional subwavelength 
structures capable to control amplitude, phase, and polarization of electromagnetic waves [1-5]. 
Subwavelength thin metasurfaces outperform volumetric metamaterials heralding their 
potential use for beam steering and focusing via phase management of the reflected and 
transmitted waves. This enables numerous applications of metasurfaces including the bandpass 
and bandstop filters, narrowband perfect absorbers, polarizers, lenses, and holography [2]. The 
discovery of the phase gradient metasurfaces (also referred to as frequency selective surfaces) 
capable of control phase in the full range from 0 to 2𝜋 has led to the generalization of reflection 
and refraction laws [6], while metasurfaces comprising spatially varying orientations of 
subwavelength scatterers enables exploiting the effect of the Pancharatnam-Berry phase [7]. 
Metasurfaces with long-ranger order in the meta-atoms array can be described in terms of 
multipole moments (usually dipole moments) of unit cells or equivalent surface impedances. In 
particular, in so-called Huygens’ metasurface [8] the dielectric and magnetic dipole moments of 
the unit cell arrange in such a way that the reflected wave is suppressed.  
Graphene based metasurfaces have attracted attention because control of the graphene surface 
conductivity (change of the Fermi energy) by chemical or electrical doping may enable tunability 
in a wide spectral range [9]. Full control of the graphene metasurface can be achieved if the 
voltage is independently applied to individual unit cells [10]. A graphene metasurface designed 
to get a 0 − 2𝜋 phase shift due to interplay between plasmon and Fabry-Perot resonances can 
be employed for cloaking, illusion, and focusing [11]. Curiously, graphene ribbons may act as a 



platform for Moiré hyperbolic metasurfaces demonstrating topological transition at magic 
angles, field canalization, and plasmonic spin-Hall effect [12]. 
In spite of its negligible thickness the graphene can be used for designing effective absorbers in 
the THz domain. In Ref. [13], omega-shaped graphene patterns were designed for using as a 
wide-incident-angle absorber over more than 1 THz band. A wide absorption bandwidth is 
achievable in a multilayer system with embedded graphene sheet [14], with the perfect 
absorption for specific incident angle and layer thickness. The broadband absorption in the THz 
range can also be realized in the planar structures composed of five layers of graphene due to 
modulation of the graphene chemical potential [15], as well as in singular graphene gratings [16].  
Subwavelength periodicity of metasurfaces is advantageous from the fabrication and theoretical 
modelling perspectives, but not necessary. In this paper, we propose the method of closed-form 
description of metasurfaces comprising different unit cells randomly distributed on the plane. 
Such a two-dimensional structure can be called a ‘random’ metasurface. This term was proposed 
in Ref. [17] to describe a properties of randomly oriented nanoscale gold bars in the near-infrared 
frequency range.  
Here we investigate random graphene metasurfaces comprising different types of unit cells: 
hemispheres, volcanos and holes. Assuming that there is no electromagnetic coupling between 
unit cells we reduce the problem of light interaction with such random metasurfaces to the light 
scattering by unit cells. We employ the developed approach to the free-standing graphene 
metasurface and reveal that suppression of meta-atom’s dipole moment results in nearly perfect 
absorption in a wide THz frequency range. 
 
2 Graphene metasurfaces from Kirchhoff diffraction theory viewpoint 

We consider a two-dimensional square periodic structure with a period L on the dielectric surface 

coated with a graphene sheet, which is irradiated with a plane electromagnetic wave at normal 

incidence (see Fig. 1a for sketch and Figs. 1 b-e for samples experimental realization).  

 

Fig. 1. (a) Sketch of the diffraction by a sculptured graphene sheet separating media with 

refractive indices n1 and n2. (b), (c) SEM images of 3D printed polymer hemispheres on a silica 

substrate (polymer template). SEM images of the graphene-based metasurface (d), and 

hemisphere unit cell (e). 

Kirchgoff's diffraction theory allows us to present the electromagnetic field in the arbitrary point 

r by the following equation [18] 



𝐄(𝐫) = ∫ {[𝐧′ × 𝐄(𝐫′)] × ∇′𝐺(𝐫, 𝐫′) + (𝐧′ ∙ 𝐄(𝐫′))∇′𝐺(𝐫, 𝐫′) + 𝑖𝜔𝜇0[𝐧′ × 𝐇(𝐫′)]𝐺(𝐫, 𝐫′)}𝑑𝑠′
𝑆

, 

(1) 

where 𝜔 is the wave angular frequency, 𝜇0 is the vacuum permeability, 𝐧′ is the unit vector 

normal to the surface towards the observation region, and ∇′= 𝜕/𝜕𝐫′. Vectors 𝐄(𝐫′) and 𝐇(𝐫′) 

are the electric and magnetic field strengths at the graphene surface S respectively. The scalar 

Green function  

𝐺(𝐫, 𝐫′) =
1

4𝜋

exp(𝑖𝑘𝑎|𝐫 − 𝐫′|)

|𝐫 − 𝐫′|
 

is determined by the wavenumber 𝑘𝑎 = 𝑛𝑎𝜔/𝑐 , where subscript a = 1,2 labels the refractive 

index at the observation point r.   

Equation (1) can be presented in terms of superposition of electromagnetic waves produced by 

unit cells comprising the surface as 

𝐄(𝐫) =  ∑ 𝐄𝑗(𝐫) 𝑗 ,      (2) 

where  

𝐄𝑗(𝑟) = ∫ {[𝐧′ × 𝐄(𝐫′)] × ∇′𝐺(𝐫, 𝐫′) + (𝐧′ ∙ 𝐄(𝐫′))∇′𝐺(𝐫, 𝐫′)
𝜌′∈𝑆𝑗

+ 𝑖𝜔𝜇0[𝐧′ × 𝐇(𝐫′)]𝐺(𝐫, 𝐫′)}|
𝐫′=𝝆𝑗+𝝆′  𝑑2𝜌′. 

(3) 

Here integration is taken over area 𝑆𝑗 of the jth unit cell having the center situated at point 𝝆𝑗. 

In the Fraunhofer approximation, the distance from the center of the unit cell j to the observation 

point 𝑟𝑗 = |𝐫 −  𝛒𝑗| is much greater than the size of the unit cell 𝐿,  and the Green function and 

its gradient can be reduced down to  

𝐺(𝐫, 𝐫′)|𝒓′=𝝆𝒋+𝝆′ =
1

4𝜋

exp(𝑖𝑘𝑎𝑟𝑗)

𝑟𝑗
,       ∇′𝐺(𝐫, 𝐫′)|𝒓′=𝝆𝒋+𝝆′ = −

𝑖𝑘𝑎

4𝜋

exp(𝑖𝑘𝑎𝑟𝑗)

𝑟𝑗
𝐦𝑗 , 

where 𝐦𝑗 = 𝐫𝑗/𝑟𝑗. Electric field emitted by the unit cell j equals  

𝐄𝑗(𝐫) =
𝑖𝑘𝑎

4𝜋

exp(𝑖𝑘𝑎𝑟𝑗)

𝑟𝑗
∫ {−[𝐧′ × 𝐄(𝐫′)] × 𝐦𝒋 − (𝐧′ ∙ 𝐄(𝐫′))𝐦𝒋

𝜌′∈𝑆𝑗

+ 𝑍𝑎[𝐧′ × 𝐇(𝐫′)]}|𝒓′=𝝆𝒋+𝝆′𝑑2𝜌′,  

(4) 

where 𝑍𝑎 =
𝑍0

𝑛𝑎
 is the wave impedance in the ambient medium, 𝑍0 = √𝜇0/𝜀0 is the vacuum 

impedance, and 𝜀0 is the vacuum permittivity. 

In order to describe scattering by the metasurface we will assume: 

- a normal incidence. In such a case the amplitudes of the electric and magnetic fields at 

the surface are the same for each unit cell. 



- that there is no electromagnetic coupling between neighboring cells, i.e. collective 

excitations (e.g., surface plasmon-polaritons or surface guided modes) do not occur. In 

such a case, the light scattered to the medium “1” originates from the wave reflected 

from the metasurface, while the wave scattered into the medium “2” originates from the 

transmitted wave. In order to find the electric filed strength in media “1” (“2”), we can 

replace 𝐄(𝐫′) and 𝐇(𝐫′) in Eq. (4) with electric and magnetic fields, respectively, of the 

wave reflected from (transmitted through) metasurface at the point 𝐫′ of the unit cell. 

Therefore, by taking into account the geometry and material properties of individual cells 

and summing up contributions of all unit cells we will obtain the reflectance and 

transmittance of the metasurface. 

Equation (4) is valid for an arbitrary unit cell geometry, however it can be considerably simplified 

for unit cells of high symmetry. In particular, it can be shown that if the unit cell possesses a 

cylindrical symmetry with respect to the propagation direction of the incident wave, the 

following relationships hold: 

∫ (𝐧′ ∙ 𝐄(𝐫′))𝑑2𝑟′ 
𝑆𝑐

= 0,         𝑍𝑎 ∫ [𝐧′ × 𝐇(𝐫′)]𝑑2𝑟′
𝑆𝑐 

= 𝐞𝑧 × ∫ [𝐧′ × 𝐄(𝐫′)]
𝑆𝑐

𝑑2𝑟′,   (5) 

where 𝑆𝑐 is the unit cell area. In the absence of coherency between identical unit cells (no Bragg 

diffraction), the metasurface spectral properties can be described by the single unit cell with 

averaged characteristics and the normalized power scattered to the solid angle 𝑑𝑜 = sin 𝛽 𝑑𝛽𝑑𝛾 

towards the medium “1” (𝜋/2 < 𝛽 < 𝜋)  

𝑑𝑃(1)

𝑑𝑜
(𝑓, 𝛽, 𝛾) =

|𝐈(1)(𝑓,𝛽,𝛾)|
2

cos 𝛽

|𝐄𝒊|2 𝐿4      (6) 

and medium “2” (0 < 𝛽 < 𝜋/2) 

𝑑𝑃(2)

𝑑𝑜
(𝑓, 𝛽, 𝛾) =

𝑛2|𝐈(2)(𝑓,𝛽,𝛾)|
2

| cos 𝛽|

𝑛1|𝐄𝒊|2 𝐿4     (7) 

where 𝑓 is the wave frequency. Angles 𝛽 and 𝛾 are introduced in Fig. 1a. Vectors 

𝐈(1) = ∫ [𝐧′ × 𝐄𝑟(𝐫′)]
𝑆𝑐

𝑑2𝑟′,          𝐈(2) = ∫ [𝐧′ × 𝐄𝑡(𝐫′)]
𝑆𝑐

𝑑2𝑟′   (8) 

are determined by the distribution of the reflected 𝐄𝑟(𝐫′) and transmitted 𝐄𝑡(𝐫′) electric field 

over the unit cell area.   

Reflection and transmission coefficients for the TE and TM (with respect to the element of the 

unit cell surface) polarized components of the incident wave are equal to 

𝑟𝑇𝐸(𝛼1) =
𝑛1 cos 𝛼2−(𝑛2+𝜎𝑍0 cos 𝛼2) cos 𝛼1  

𝑛1 cos 𝛼2+(𝑛2+𝜎𝑍0 cos 𝛼2) cos 𝛼1
,         𝑟𝑇𝑀(𝛼1) =

𝑛1 cos 𝛼1−(𝑛2 cos 𝛼2+𝜎𝑍0)

𝑛1 cos 𝛼1+(𝑛2 cos 𝛼2+𝜎𝑍0)
,   

𝑡𝑇𝐸(𝛼1) =
2𝑛1 cos 𝛼2

𝑛1 cos 𝛼2+(𝑛2+𝜎𝑍0 cos 𝛼2) cos 𝛼1
,         𝑡𝑇𝑀(𝛼1) =

2𝑛1 cos 𝛼1

𝑛1 cos 𝛼1+(𝑛2 cos 𝛼2+𝜎𝑍0)
,          (9) 

where 𝜎 is the graphene surface conductivity, while 𝛼1 and 𝛼2 = arcsin(𝑛1 sin 𝛼1 /𝑛2) are the 

local angle of incidence and refraction, respectively. The transmissivity and reflectivity of the 

metasurface can be obtained by calculating the total energy diffracted into media “1” and “2”, 

respectively, as 



𝑇(𝑓) = ∫ ∫
𝑑𝑃(2)

𝑑𝑜
(𝑓, 𝛽, 𝛾) sin 𝛽 𝑑𝛽 𝑑𝛾

2𝜋

0

𝜋

2
0

,       𝑅(𝑓) = ∫ ∫
𝑑𝑃(1)

𝑑𝑜
(𝑓, 𝛽, 𝛾) sin 𝛽 𝑑𝛽 𝑑𝛾

2𝜋

0

𝜋

𝜋/2
.   (10) 

 

3 Unit cells of cylindrical symmetry 

We have demonstrated [19] that a complex fabrication procedure of graphene metasurface 

involving 3D printing, electroplating, graphene synthesis and transfer allows a plenty of room for 

introducing imperfections to the meta-atoms structure. In particular, in the fabricated array of 

graphene hemispheres with the characteristic size of 200-600 microns, a considerable proportion 

of hemispheres may be completely or partially damaged being either holes or volcano-like 

structures, respectively (see Figs. 1d-e for fabricated samples and Fig.2 for sketch). Below we will 

calculate the reflectance and transmittance of the metasurface comprising such cylindrically 

symmetric unit cells assuming normal incidence. 

3.1 Hole-type unit cell 

The hole-type unit cell, i.e. a hole of radius R in the center of the flat graphene sheet of size L  

L, is shown in Fig. 2a. For the reflected (transmitted) wave, the normal vector of the flat sheet 

reads  𝐧′ = −𝐞𝑧 (𝐧′ = 𝐞𝑧). In order to calculate 𝑰(1) in Eq. (8) we need to take into account that 

the graphene-covered and graphene free areas of the unit cell are 𝑆𝑔𝑟 = 𝐿2 − 𝜋𝑅2 and 𝑆ℎ =

𝜋𝑅2, respectively, and there is a phase shift owing to the oblique propagation of the diffracted 

wave propagating in the direction defined by the spherical angles (β,γ). For the wave diffracted 

to the medium “1” this gives  𝐈ℎ𝑜𝑙𝑒
(1)

= 𝐈(1,ℎ𝑙) + 𝐈(1,𝑓𝑙), where   

𝐈(1,ℎ𝑙)(𝛽) = −𝑟0

2𝜋𝑅

𝑛1𝑘0 sin 𝛽
𝐽1(𝑛1𝑘0𝑅 sin 𝛽)[𝐞𝑧 × 𝐄𝒊], 

𝐈(1,𝑓𝑙)(𝛽, 𝛾) = −𝑟𝑔 {
8 sin(

𝑛1𝑘0𝐿

2
cos 𝛾 sin 𝛽) sin(

𝑛1𝑘0𝐿

2
sin 𝛾 sin 𝛽)

(𝑛1𝑘0 sin 𝛽)2 sin 2𝛾
−

2𝜋𝑅

𝑛1𝑘0 sin 𝛽
𝐽1(𝑛1𝑘0𝑅 sin 𝛽)} [𝐞𝑧 × 𝐄𝒊].

    (11) 

Here 𝑟𝑔 =
𝑛1−(𝑛2+𝜎𝑍0)  

𝑛1+(𝑛2+𝜎𝑍0)
 and 𝑟0 =

𝑛1−𝑛2  

𝑛1+𝑛2
 are reflection coefficients of the graphene-covered and 

graphene-free areas, respectively, at normal incidence and 𝐽1(𝑥) is the Bessel function of the 1st 

order.  

Similarly, for the wave diffracted to the medium “2” we arrive at  

𝐈(2,ℎ𝑙)(𝛽) = 𝑡0

2𝜋𝑅

𝑛2𝑘0 sin 𝛽
𝐽1(𝑛2𝑘0𝑅 sin 𝛽)[𝐞𝑧 × 𝐄𝒊] 

𝐈(2,𝑓𝑙)(𝛽, 𝛾) = 𝑡𝑔 {
8 sin(

𝑛2𝑘0𝐿

2
cos 𝛾 sin 𝛽) sin(

𝑛2𝑘0𝐿

2
sin 𝛾 sin 𝛽)

(𝑛2𝑘0 sin 𝛽)2 sin 2𝛾
−

2𝜋𝑅

𝑛2𝑘0 sin 𝛽
𝐽1(𝑛2𝑘0𝑅 sin 𝛽)} [𝐞𝑧 × 𝐄𝒊], 

(12) 

where 𝑡𝑔 =
2𝑛1  

𝑛1+(𝑛2+𝜎𝑍0)
 and 𝑡0 =

2𝑛1  

𝑛1+𝑛2
 are transmission coefficients of the graphene-covered 

and graphene-free areas, respectively, at normal incidence. 

Equations (11,12) allow us to obtain the reflectance 𝑅𝑛 and transmittance 𝑇𝑛 in the direction 

normal to the graphene sheet as  



𝑅𝑛(𝑓) =
𝑑𝑃(1)

𝑑𝑜
(𝑓, 𝜋, 0) =  |𝑟𝑔 + (𝑟0 − 𝑟𝑔)

𝜋𝑅2

𝐿2
|

2

 

𝑇𝑛(𝑓) =
𝑑𝑃(2)

𝑑𝑜
(𝑓, 0,0) = |𝑡𝑔 + (𝑡0 − 𝑡𝑔)

𝜋𝑅2

𝐿2
|

2

   (13) 

 

When 𝜎𝑍0 ≪ 𝑛1 = 𝑛2, the reflectivity coefficient 𝑟0 = 0, while 𝑟𝑔 ≈ 𝜎𝑍0/2𝑛1 is low and shows 

a weak frequency dispersion determined by the Drude-like formula for graphene surface 

conductivity [20]  

𝜎 =
𝜎0

1+𝑖𝜔𝜏
 ,       (14) 

where 𝜎0 = 𝑒2𝐸𝐹𝜏/𝜋ℏ2 is the static conductivity, 𝜏 = 𝜇ℏ√𝑛𝑠𝜋/𝑒𝑣𝐹 is the carrier relaxation 

time, 𝑛𝑠 = 𝐸𝐹
2/𝜋ℏ2𝑣𝐹

2, 𝜇 is the carrier mobility, 𝐸𝐹 is the Fermi energy, and  𝑣𝐹 is the Fermi 

velocity. Figure 2g shows that reflected power is small, while the transmitted power maximizes 

for normally diffracted wave at 𝛽 = 0. 

 

Fig. 2. Power scattered by the metasurface per solid angle 
𝑑𝑃

𝑑𝑜
(𝑓, 𝛽, 0) for (a,d,g) hole-type, (b,e,h) 

hemisphere-type, and (c,f,i) volcanic-type unit cells. Drude-model parameters of graphene are 

𝜇 = 1 m2/V, 𝐸𝐹 = 0.1 eV, 𝑣𝐹 = 106 m/s; geometrical parameters of the metasurface are 𝐿 =



611 𝜇m and 𝑅 = 250 𝜇m; refractive indices of the ambient media are 𝑛1 = 𝑛2 = 1; frequency 

𝑓0 = 0.5 THz. Unit cell cross-sections are shown in the lower parts of figures (a-c). 

 

3.2 Hemisphere-type unit cell 

Hemisphere-type unit cell comprises a graphene hemisphere of radius R in the center of the flat 

graphene square L  L (see Fig. 2b). The wave diffracted into medium “1” is described by 𝐈ℎ𝑒𝑚𝑖
(1)

=

𝐈(1,𝑓𝑙) + 𝐈(1,ℎ𝑠), where 𝐈(1,𝑓𝑙) was introduced in Eq. (11) and  

𝐈(1,ℎ𝑠)(𝛽) = −𝑅2 ∫ ∫ [𝐞𝑟(𝜃, 𝜑) × �̂�(𝜋 − 𝜃)𝐄𝒊]𝑒𝑖𝜓1(𝜃,𝛽) sin 𝜃 𝑑𝜃𝑑𝜑
2π

0

π
π

2

,   (15) 

Here 
𝜋

2
≤ 𝜃 ≤ 𝜋 and 0 ≤ 𝜑 < 2𝜋 describe the surface of the hemisphere with radius R as 

illustrated in Fig. 2b, 𝐧′ = 𝐞𝑟(𝜃, 𝜑) is the unit vector of the outward normal of the hemisphere, 

and �̂�(𝜃) = diag{𝑟𝑇𝐸(𝜃), 𝑟𝑇𝑀(𝜃)} is the reflection coefficient matrix. 𝜓1(𝜃, 𝛽) = 𝑛1𝑘0𝑅[cos 𝜃 +

cos(𝜃 − 𝛽)] accounts for a phase of the wave diffracted at the azimuthal angle 𝛽 with respect to 

the plane z=0. Owing to the rotational symmetry, the integral 𝐈(1,ℎ𝑠) is 𝛾 independent.  

Electric field of the wave diffracted into medium “2” is provides a relationship 𝐈ℎ𝑒𝑚𝑖
(2)

= 𝐈(2,𝑓𝑙) +

𝐈(2,ℎ𝑠), where 𝐈(2,𝑓𝑙) was introduced in Eq. (12) and  

𝐈1
(2,ℎ𝑠)(𝛽) = 𝑅2 ∫ ∫ [𝐞𝑟(𝜃, 𝜑) × �̂�(𝜋 − 𝜃)𝐄𝒊]𝑒𝑖𝜓2(𝜃,𝛽) sin 𝜃 𝑑𝜃𝑑𝜑

2π

0

π

𝜋/2
.   (16) 

Here we take into account that for the transmitted wave 𝐧′ = −𝐞𝑟(𝜃, 𝜑), �̂�(𝜃) =

diag{𝑡𝑇𝐸(𝜃), 𝑡𝑇𝑀(𝜃)}, and the phase shift 𝜓2(𝜃, 𝛽) = 𝑘0𝑅[𝑛2 cos(𝜃 − 𝛽) − 𝑛1 cos 𝜃] . 

One can see from Fig. 2(e) that at 𝛽 = 0 both normal reflectance 𝑅𝑛(𝑓) =
𝑑𝑃(1)

𝑑𝑜
(𝑓, 0,0) and 

normal transmittance 𝑇𝑛(𝑓) =
𝑑𝑃(2)

𝑑𝑜
(𝑓, 0,0) of the hemisphere unit cell are very small. The 

negligible normal transmissivity can be understood, if one considers that the diffracted field 

along z-axis originates from the projection 𝐩∥ on the XY-plane of the net dipole moment induced 

in the graphene by the incident wave. The effective in-plane dipole moment of the unit cell can 

be presented in the following form:  

𝐩𝑐 = ∫ 𝐩∥ 𝑒𝑖Δ𝜓(𝑥′,𝑦′) 𝑑𝑥′𝑑𝑦′

𝐿2𝐿×𝐿
,      (17) 

where the phase shift Δ𝜓 takes into account the distance between the hemisphere surface and 

plane z=0. By introducing amplitude of the surface current density 𝐣s = −𝑖𝜔𝐩∥ oscillating at 

frequency 𝜔 and taking into account that 𝐣s = 𝜎𝐄(𝑥′, 𝑦′), the dipole moment of the unit cell can 

be presented in terms of the incident light filed as  

𝐩𝑐 =
𝑖𝜎𝑠

𝜔𝐿2 ∫ �̂�(𝑥′, 𝑦′)𝐄𝒊 𝑒
𝑖Δ𝜓(𝑥′,𝑦′) 𝑑𝑥′𝑑𝑦′

𝐿×𝐿
.    (18) 

Here �̂�(𝑥′, 𝑦′) = diag{tTE(𝑥′, 𝑦′), tTM(𝑥′, 𝑦′)} is the transmission coefficient of the graphene at 

point (𝑥′, 𝑦′) of the unit cell.  

Figure 3a shows the dependence of |𝐩𝑐| on the radius R of holes (black solid line) and 

hemispheres (red solid line). At small R, the effective dipole moments of both types of unit cells 

are approximately equal and close to the dipole moment of the flat graphene. Dipole moments 



decrease with radius, the dependence being not monotonous for hemispheres. Specifically, for 

the graphene hemisphere, the dipole moment is minimal at R=265 μm. In such a hemisphere, 

|𝐩𝑐| does not exceed ten percent of the dipole moment generated in the hole-type unit cells with 

the same hole radius. This is because the surface current density in the flat graphene area and 

projection of the current density on the hemisphere surface to the plane z=0 are anti-parallel as 

demonstrated in Fig. 3b. If we further increase the radius R, then the dipole moment of the 

hemisphere prevails and the absolute value of the net dipole moment increases again as it can 

be seen from Fig. 3a. 

 

Figure 3. (a) Absolute value of unit cell’s dipole moment |𝐩𝑐| as function of the radius R of 

either holes or hemispheres. Distribution of the current density 𝑗s projected onto the plane z=0 

for (b) hemispherical and (c) volcanic unit cells. Parameters are as in Fig. 2. 

 

Hemisphere inverted with respect to the plane z=0 exhibits dramatically different properties. In 

this case, the hemisphere is described by 0 ≤ 𝜃 ≤ 𝜋/2, while the normal vector 𝐧′ = −𝐞𝑟(𝜃, 𝜑) 

corresponds to the wave diffracted into the medium “1” yielding 

𝐈𝑖𝑛𝑣
(1,ℎ𝑠)

(𝛽) = −𝑅2 ∫ ∫ [𝐞𝑟(𝜃, 𝜑) × �̂�(𝜃)𝐄𝒊]𝑒𝑖𝜓1(𝜃,𝛽) sin 𝜃 𝑑𝜃𝑑𝜑
2π

0

π

2
0

.   (19) 

It worth mentioning that the phase function 𝜓1(𝜃, 𝛽) does not change.  

Normal transmittance 𝑇𝑛 and reflectance 𝑅𝑛 of the metasurface with inverted hemispheres are 

demonstrated in Fig. 2e with dashed lines. The magnitudes of 𝑅𝑛 are comparable for 

hemispheres and their inverted counterparts, but the maxima and minima change over. At the 

same time the value 𝑇𝑛 significantly increases, more than 100 times compared to the case of 

normal hemispheres.  

Although normal transmittance 𝑇𝑛 is very low for hemispheres, the scattered power to the 

medium “2” can be quite large. From Fig. 2h one can observe that the scattered power is maximal 

near 𝛽 = 40∘ indicating that considerable light energy can be diffracted at nonzero angles, while 

the reflected power, which is determined by the graphene surface conductivity, remains small 

for all diffraction angles. 

 

3.3 Volcanic-type unit cell 

The third type of the unit cell we consider is a broken hemisphere, in which upper segment falls 

down forming a sort of volcano crater as shown in Fig. 2c. The volcano-like shape is composed of 



two segments. The first one, 𝜋/2 ≤ 𝜃 ≤ 2𝜋/3, is a remainder of the initial hemisphere 

characterized by the normal vector 𝐧′ = 𝐞𝑟 for the waves diffracted to the medium “1”. The 

second segment, 0 ≤ 𝜃 ≤ 𝜋/3, is a part of the sphere centered at 𝑧 = −𝑅, its normal vector is 

𝐧′ = −𝐞𝑟. Thus, the integral describing diffraction to the medium “1” reads 𝐈𝑣𝑜𝑙𝑐𝑎𝑛𝑜
(1)

= 𝐈(1,𝑓𝑙) +

𝐈(1,𝑣𝑜𝑙), where 

𝐈(1,𝑣𝑜𝑙)(𝛽) = 𝑅2 ∫ ∫ [𝐞𝑟(𝜃, 𝜑) × �̂�(𝜋 − 𝜃)𝐄𝒊]𝑒𝑖𝜓1(𝜃,𝛽) sin 𝜃 𝑑𝜃𝑑𝜑
2𝜋

0

2𝜋/3

𝜋/2

− 𝑅2 ∫ ∫ [𝐞𝑟(𝜃, 𝜑) × �̂�(𝜃)𝐄𝒊]𝑒𝑖𝜓1(𝜃,𝛽)−2𝑖𝑘𝑅 sin 𝜃 𝑑𝜃𝑑𝜑
2𝜋

0

𝜋
3

0

. 

(20) 

For calculation of the transmittance, we need to reverse the normal vector 𝐞𝑟(𝜃, 𝜑) →

−𝐞𝑟(𝜃, 𝜑) and replace 𝜓1(𝜃, 𝛽) and 𝜓1(𝜃, 𝛽) − 2𝑘𝑅 with 𝜓2(𝜃, 𝛽). 

Dependences of the scattered power on the frequency and diffraction angle are quite similar to 

those for the hole-type metasurface, compare Fig. 2d and Fig. 2f, and Fig. 2g and Fig.2i. However, 

the magnitudes of the scattered power are lower for volcano craters. Distribution of the forward 

scattered power in Fig. 2i has an intensive tail for 𝛽 > 40∘. The enhanced scattering of volcanic-

type metasurfaces are supported by the distribution of the current density in Fig. 3c showing that 

in this case, the dipole moment of the unit cell gives rise to the high transmissivity. 

4 Random metasurfaces 

Inevitable fabrication defects break long-range order in the 2D array of meta-atoms and may 

essentially affect the performance of the metasurface. In this section, we will estimate at what 

extent the hole- and volcano-type defects are capable to affect the diffracted field. Specifically, 

we assume that the probabilities of finding the undamaged hemisphere, hole-type defect and 

volcano-type defect in particular position of the meta-atoms array are 𝑤1, 𝑤2, and 𝑤3, 

respectively, where 𝑤1 + 𝑤2 + 𝑤3 = 1. In such a case the reflectivity can be found by averaging 

electric field scattered by the meta-atoms into the medium “1”, i.e. by replacing  𝐈(1)(𝑓, 𝛽, 𝛾) in 

Eq. (6) with  

〈𝐈(1)〉 = 𝑤1𝐈ℎ𝑒𝑚𝑖
(1)

+ 𝑤2𝐈ℎ𝑜𝑙𝑒
(1)

+ 𝑤3𝐈𝑣𝑜𝑙𝑐𝑎𝑛𝑜
(1)

.   (21) 

Since each unit cell also includes flat graphene-covered substrate, we can present the energy 

diffracted into medium “1” in terms of the integrals introduced in the previous section as 

〈𝐈(1)〉 = 𝑤1[𝐈(1,𝑓𝑙) + 𝐈(1,ℎ𝑠)] + 𝑤2[𝐈(1,𝑓𝑙) + 𝐈(1,ℎ𝑙)] + 𝑤3[𝐈(1,𝑓𝑙) + 𝐈(1,𝑣𝑜𝑙)]

= 𝑤1𝐈(1,ℎ𝑠) + 𝑤2𝐈(1,ℎ𝑙) + 𝑤3𝐈(1,𝑣𝑜𝑙) + 𝐈(1,𝑓𝑙). 

(22) 

 In order to find the power diffracted into medium “2” we should change the superscript 1 to 2, 

i.e.  𝐈(1,ℎ𝑠) → 𝐈(2,ℎ𝑠) and so on. 

In the following analysis we assume 𝑤1 = 0.6, 𝑤2 = 0.35, and 𝑤3 = 0.05, which corresponds to 

the metasurface studied in [19]. Comparing the results of modeling presented in Fig. 4a with 



those in Figs. 2d-f one may conclude that, at 𝛽 = 0∘,  the hemisphere-type unit cells dominate 

the transmittance and reflectance of the random metasurface. Our analysis shows that relative 

contribution of volcano- and hole-type unit cells essentially depends on frequency. The angular 

dependences in Fig. 4b allow one to notice characteristic peaks featuring contributions of a 

particular type of unit cell, which responses are given in Figs. 2g-i. At 𝑓0 = 0.5 THz, we see the 

contribution of the volcano-type unit cell as a maximum at 𝛽 = 0∘ and the contribution of the 

hemisphere-type unit cell as a feeble peak near 𝛽 = 40∘. 

Spectra of the reflectivity and transmissivity calculated using Eq. (10), i.e. the total relative power 

scattered to the medium "1" and "2", are illustrated in Fig. 5. While the reflectivity is low in the 

whole frequency range, the transmissivity increases up to 18% at 0.1 THz because 
𝑑𝑃(2)

𝑑𝑜
(𝑓, 𝛽, 𝛾) 

increases when frequency decreases (see Fig. 4b). The absorptivity 𝐴 = 1 − 𝑅 − 𝑇 of the 

graphene metasurface exceeds 80% in the spectral range from 0.1 to 1 THz and 90% from 0.5 to 

1 THz being as high as 94% at 1 THz. Such a strong absorption performance is surprising 

accounting for a noticeable proportion of the damaged meta-atoms that destroys the low-range 

order in the array. It is important that the considered random metasurface is a broadband 

absorber due to the suppressed dipole moment and, therefore, transmissivity.  

It is worth noting that transmittance and reflectance for the wave diffracted normally to the 

metasurface, 𝑇𝑛(𝑓) =
𝑑𝑃(2)

𝑑𝑜
(𝑓, 0,0) and 𝑅𝑛(𝑓) =

𝑑𝑃(1)

𝑑𝑜
(𝑓, 0,0), respectively, can be used for a 

reasonable estimation of the absorptivity according to  𝐴 ≈ 1 − 𝑇𝑛 − 𝑅𝑛 (see Fig. 5). In the case 

of oblique incidence, the reflectivity stays small due to low graphene’s conductivity, while the 

transmissivity may significantly increase owing to essential dipole moment of the unit cell, thus 

ruining high absorptivity of the graphene random metasurface. 

 

Figure 4. (a) Power scattered normally to the metasurface in the forward 𝑇𝑛 and backward 𝑅𝑛 

directions. (b) Power 
𝑑𝑃

𝑑𝑜
 scattered by the metasurface over the whole range of diffraction angles 

for 3 frequencies 𝑓0 = 0.1; 0.5; 1 THz. Parameters of the unit cells are given in Fig. 2, while the 

weight factors are 𝑤1 = 0.6, 𝑤2 = 0.35, and 𝑤3 = 0.05. 

 



 

Figure 5. Reflectivity, transmissivity, and absorptivity of the random metasurface in Fig. 4. The 

dashed line demonstrates the absorptivity calculated as 𝐴𝑛 = 1 − 𝑇𝑛 − 𝑅𝑛. 

 

5  Results and Discussion 

5.1. Comparison to experiment 

The samples of free-standing metasurface composed of graphene hemispheres have been 

fabricated as described in [19], see Figs. 1b-e. Briefly, 3D printed array of the polymer 

hemispheres was sputtered by nm-thick Ni layer for further electroplating to fabricate nickel 

pattern used for CVD synthesis of multilayered graphene. Graphene metasurface was then 

coated with 200 nm of polymethylmethacrylate (PMMA) for safe transfer to the membrane 

holder.  

The metasurface is typically composed of 55-60% of ideal hemisphere (𝑤1 = 0.6), 30-40 % of 

volcano (𝑤2 = 0.35), and 5-10% of hole (𝑤3 = 0.05) meta-atoms.  

The details of the THz time domain set-up and THz measurements can be found in [22].  

In order to compare results of the experiment with predictions of the developed model we take 

into account that the PMMA film thickness is much smaller than the wavelength, i.e. we may 

consider graphene metasurface in the free space (𝑛1 = 𝑛2 = 1). In order to account piecewise  

nature of multi-layered graphene made on electroplated Ni template [19], comprising single and 

two-layers graphene domains, we will modify Eq. (14) for the surface conductivity as follows 

𝜎𝑠
𝑒𝑓𝑓

= 𝑌
𝜎0

1+𝑖𝜔𝜏
 ,      (23) 

where 𝑌 = 𝛼1 + 2𝛼2, 𝛼1 and 𝛼2 are the weight factors of the single-layer and two-layers 

graphene areas (𝛼1 + 𝛼2 = 1).  

Figure 6 shows measured and calculated dependences of the diffracted power on the frequency 

and diffraction angle. One can observe from Fig. 6a that theory reproduces the measured 

transmittivity with about 20% accuracy in the whole spectrum range. Figures 6b-d demonstrate 



that the modelling catches a general trend in the dependence of 
𝑑𝑃(2)

𝑑𝑜
(𝛽) on the diffraction angle 

𝛽, what can serve as a validation of the applied averaging procedure on the geometry of unit 

cells.  

 

 

Figure 6. Frequency dependence of the metasurface normal transmittance (a) and scattered 

power 
𝑑𝑃(2)

𝑑𝑜
 vs. diffraction angle 𝛽 at (b) 0.4 THz, (c) 0.6 THz, and (d) 0.8 THz. Solid red lines 

represent predictions of the developed theory, while black solid line and black dots show 

experimental data. Metasurface parameters are shown in the caption of Fig. 4. Graphene surface 

conductivity was calculated from Eq.(23) assuming the layering weight factors 𝛼1 = 0.7 and 𝛼2 =

0.3. 

5.2 Absorptivity optimization 

In this subsection, we will investigate the influence of all parameters (graphene conductivity, 

metasurface geometry and perfectness) on the metasurface absorptivity A, which is of a 

paramount practical importance. One can see from Fig. 7a that in order to increase absorptivity 

one need to reduce the Fermi energy, i.e. the doping level of graphene should be moderate. In 

such a case, the surface conductivity and reflectivity will be low, whereas the transmissivity can 

be suppressed due to tailoring of the unit cells geometry. For higher Fermi energies, the 

conductivity and reflectivity increase, while the transmissivity decreases leading to suppressing 



of the absorptivity. Therefore, typical for CVD graphene/PMMA sandwich [22] Fermi energy of 

𝐸𝐹 = 0.1 eV, is appropriate to achieve a high absorptivity. 

The absorptivity as a function of the frequency demonstrated in Fig. 5 indicates the higher the 

frequency, the higher the absorptivity. Figure 7b shows that the absorptivity is very close to the 

perfect one at 𝑓 > 5 THz. At high frequencies the transmissivity peaks in the vicinity of 𝛽 = 0 

(geometrical optics limit), i.e. the transmittivity coincides with the transmittance at normal 

incidence, 𝑇 ≈ 𝑇𝑛, and, therefore,  the absorptivity is well estimated by 𝐴 ≈ 𝐴𝑛. Further, we fix 

the value of the frequency 𝑓0 = 0.5 THz and determine the maximal value of the absorptivity 

𝐴(𝑅, 𝑤1) as a function of these two parameters.  

Figure 7c presents a map of the absorptivity as a function of hemisphere radius R and proportion 

of the perfect hemispheres in the array, 𝑤1. At small radii R, the dipole moment of the meta-

atom does not vanish and, therefore, the transmissivity is noticeable. At bigger radii, the dipole 

moment and transmissivity can be minimized at some value of 𝑤1, thus maximizing the 

absorptivity. The default parameters (𝑤1 = 0.6 and 𝑅 = 250 𝜇m) marked with a circle in the 

figure are within the region of high absorptivity A>0.8 highlighted by the dashed line in Fig. 7c. 

Figure 7d shows the density plot of the absorptivity as a function f and 𝑤1at hemisphere radius 

𝑅 = 250 𝜇m. One can see that the absorptivity is high in a wide range of 𝑤1 and f and rapidly 

decreases at lower frequencies.  

There are no strict limitations on the spacing between unit cells L, because the effect of near-

perfect absorptivity is irrelevant to resonances. The frequency window, in which the metasurface 

absorber works, is restricted by the increase of graphene’s conductivity and, therefore, 

reflectivity at lower frequencies and influence of interband transitions at higher frequencies. 

According to Ref. [23] the intraband contribution dominates over the interband one for the 

wavelengths greater than approximately 30 μm, what is equivalent to frequencies 𝑓 < 10 THz. 

The Drude model for graphene can be applied only up to this frequency showing a high 

absorptivity in Fig. 7(b). 



 

Figure 7. (a) Transmissivity, reflectivity, and absorptivity as functions of the Fermi energy at 

𝑓0 = 0.5 THz. (b) Absorptivity A vs. frequency at 𝐸𝐹 = 0.1 eV. Absorptivity as a function of a 

couple of parameters: (c) 𝐴(𝑤1, 𝑅) and (d) 𝐴(𝑤1, 𝑓). We adopt parameters as in Fig. 4. In (c), 

the dashed lines distinguish the area of high absorptivity (A>0.8). The circle in (c) and vertical 

dashed line in (d) mark the experimental parameters. 

6 Conclusion 

In this paper, we present a novel approach for description of the random metasurfaces. The 

broken periodicity of meta-atoms array allows us to describe the diffraction problem in terms of 

the scattering of individual meta-atoms. The developed theory can be applied to any ‘random’ 

or non-perfect electromagnetic metasurfaces composed of isotropic, anisotropic, chiral and 

bianisotropic unit cells, acting in the wavelengths, where the Bragg resonances are suppressed.  

We apply this strategy for a random graphene metasurface containing three types of meta-atoms 

originated from the imperfection of fabrication process (perfect hemisphenes, and hole- and 

volcano-type defects).  Extraordinarily broadband absorbing random graphene metasurface was 

chosen as a good, experimentally realized, example to show the applicability of a developed 

diffraction theory and how efficient it might be for optimizing the fabrication / synthesis 

parameters. 



The theory well suits the experimental measurements as demonstrated in Fig. 6 provided that (i) 

there is no electromagnetic coupling between the meta-atoms and (ii) the number of meta-

atoms of each type is large enough to break the periodicity. The developed theory and 

experimental results show that the free-standing random graphene metasurface exhibits 

outstanding absorption ability.  

The close-to-perfect absorptivity is broadband and highly tolerant to variation of the geometric 

and material parameters. Thus, the defective fabrication may enhance the absorption 

performance of the metasurface providing researchers with a broadband absorber in the THz 

range. 
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