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We consider spherically symmetric U(1) gauged boson stars in the two-component

scalar Friedberg-Lee-Sirlin model with a symmetry breaking potential in 3+1 di-

mensional spacetime. Depending on the relative strength of gravity and the electro-

magnetic interaction, the resulting boson stars exhibit either the typical properties

of ungauged boson stars, or their behavior resembles the pattern found for gauged

Q-balls of the Friedberg-Lee-Sirlin model in flat spacetime, both for a finite and a

vanishing potential.

I. INTRODUCTION

Q-balls represent time-dependent non-topological solitons with a stationary oscillating

phase [1–3]. They may exist in models with a complex scalar field in Minkowski spacetime

possessing an unbroken, continuous global symmetry (for reviews, see, e.g. [4–6]). Q-balls

carry a Noether charge associated with this symmetry. This charge is proportional to the

angular frequency of the complex scalar field and can be interpreted as the particle number

of the Q-balls.

Q-balls arise in a variety of models. Important examples are theories with a sextic po-

tential [7–10], supersymmetric extensions of the Standard Model [11], and coupled two-

component systems of a complex scalar field and a real scalar field with symmetry breaking

potential (Friedberg-Lee-Sirlin (FLS) model) [2]. Further, there are gauged Q-balls in models

with local U(1) symmetry [12–19]. The presence of the electromagnetic interaction affects

the properties of the gauged Q-balls. In particular, they may exist only for a restricted range

of values of the gauge coupling.

When gravity is coupled to the stationary oscillating scalar field, the field configurations
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can be stabilized even in the simplest case of a massive Einstein-Klein-Gordon theory, and the

corresponding solutions are now commonly referred to as boson stars [20–24]. In models with

self-interacting potentials there are then solitonic boson stars [7, 9, 10], that are smoothly

linked to the corresponding Q-balls in Minkowski spacetime. Properties of charged boson

stars, including investigation of their stability and critical behavior were studied in [25–29].

Here we consider charged boson stars in the U(1)-gauged two-component model in (3+1)-

dimensional asymptotically flat spacetime, i.e., the Einstein-Maxwell-Friedberg-Lee-Sirlin

(EMFLS) model. The model thus describes a self-gravitating coupled system of a complex

scalar field, minimally coupled to the Maxwell field, and a real scalar field. This theory

may serve as a toy-model to study field configurations localized by gravity in more realistic

theories with with symmetry breaking potential, like the Standard Model. We investigate

the influence of the presence of the U(1) charge on the boson stars, obtained previously

within the Einstein-Friedberg-Lee-Sirlin (EFLS) model in [30]. We show that distinctive

new features of the gauged boson stars in the EMFLS model are related to the delicate force

balance between gravitational attraction, electrostatic repulsion and the short and long range

scalar interactions.

The paper is organized as follows: We introduce the model in section 2, where besides the

action and the equations of motion we also discuss the Ansatz for the metric and the fields

and the boundary conditions for the functions. In section 3 we present the results obtained

by solving the coupled system of equations numerically. We first address the limit without

gravity, i.e., the Q-ball limit, and demonstrate the influence of charge. We then couple

gravity and study the dependence on the strength of the gravitational coupling constant

as well as the dependence on the strength of electromagnetic coupling constant. Moreover

we address the limit when the mass of the real scalar field vanishes such that it becomes

long-ranged. We close with our conclusions in section 4.

II. THE MODEL

We now present the Einstein-Maxwell-Friedberg-Lee-Sirlin model, describing a self-

gravitating coupled system of a complex scalar field φ, minimally interacting with an Abelian

gauge field Aµ, and a real scalar field ψ. The corresponding action is given by

S =

∫

d4x
√−g

(

R

4α2
− Lm

)

, (1)

where the rescaled matter field Lagrangian is

Lm =
1

4
FµνF

µν +Dµφ
∗Dµφ+ ∂µψ∂

µψ +m2ψ2|φ|2 + µ2(ψ2 − v2)2 . (2)
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Here g is the determinant of the space-time metric gµν , α
2 = 4πG is the gravitational coupling

with Newton’s constant G, and R is the Ricci scalar. In the matter field Lagrangian the

U(1) field strength tensor is Fµν = ∂µAν−∂νAµ, and the covariant derivative of the complex

field φ is Dµφ = ∂µφ− igAµφ with the gauge coupling constant g.

The last two terms represent the symmetry breaking scalar field potential of the model

U(ψ, φ) = m2ψ2|φ|2 + µ2(ψ2 − v2)2 , (3)

where m and µ are positive constants. The global minimum of the potential (3) corresponds

to ψ = v, |φ| = 0. Here the fields assume their vacuum expectation values. Furthermore, in

vacuum Dµφ = 0, ∂µψ = 0, and Fµν = 0.

With such a choice of the potential, the parameter µ defines the mass of the excitations of

the real scalar component ψ, mψ =
√
8µv. The complex scalar φ becomes massive due to the

coupling with the real field ψ, mφ = mv. Note that, for any finite values of the parameter m,

the complex field becomes massless when the real component is zero. As the real component

becomes infinitely heavy, µ → ∞, it decouples, ψ = 1, and the EMFLS model (1) reduces to

the Einstein-Maxwell-Klein-Gordon theory. Therefore, one might expect that, for relatively

large values of the parameter µ, solutions of the EMFLS theory are similar to the mini boson

stars in the gauged EKG model.

The gauge field acquires a mass due to the coupling with the scalar field φ. The mass of

the gauge excitations Aµ turns to be zero as |φ| = 0. In this limit the gauge field becomes

long-ranged. Scaling relations allow to set v = 1 and m = 1, leaving us with the parameters

µ and α [30].

The model (1) is invariant with respect to local U(1) gauge transformations

φ→ φeigξ(x) ; Aµ → Aµ + ∂µξ . (4)

The system of the EMFLS field equations can be obtained via variation of the action (1)

with respect to the metric, the gauge potential and the scalar fields, respectively

Rµν −
1

2
Rgµν = 8πG

(

TEmµν + T scµν
)

,

∂µ(
√−gF µν) = g

√−gjν ,

(5)

where

jν = i(Dνφ
∗ φ− φ∗Dνφ) (6)

is the conserved Noether current associated with the local U(1) symmetry (4), and the
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components of the stress-energy tensor of the electromagnetic and the scalar fields are

TEmµν = F ρ
µFνρ −

1

4
gµνFρσF

ρσ ,

T Scµν = Dµφ
∗Dνφ+Dνφ

∗Dµφ+ ∂µψ∂νψ

− gµν

(

gρσ

2
(Dρφ

∗Dσφ+Dσφ
∗Dρφ+ ∂ρψ∂σψ) + U(φ, ψ)

)

.

(7)

The scalar field equations are

∂µ∂µψ = 2ψ(m2|φ|2 + 2µ2(1− ψ2)) ,

DµDµφ = m2ψ2φ .
(8)

We are interested in stationary spherically-symmetric solutions of the model (1). To

construct such solutions numerically we employ a Schwarzschild-like parametrization of the

metric

ds2 = gµνdx
µdxν = −σ2(r)N(r)dt2 +

dr2

N(r)
+ r2

(

dθ2 + sin2 θdϕ2
)

(9)

with N(r) = 1− 2M(r)
r

. The corresponding parametrization of the scalar fields is

ψ = X(r) , φ = Y (r)eiωt , (10)

where ω is the angular frequency of the complex field φ. Further, in the static gauge the

gauge potential can be written as

Aµdx
µ = A0(r)dt . (11)

The full system of the field equations (5)-(8) can be solved numerically using the

parametrization (9)-(11), where we impose the following set of the boundary conditions:

• at r = 0 : ∂rX = ∂rY = ∂rA0 = ∂rN(r) = ∂rσ(r) = 0 ,

• at r = ∞ : X = 1, Y = 0, A0 = 0, N(r) = σ(r) = 1 .

As usual, they follow from conditions of regularity of the fields at the origin, from the

definition of the vacuum reached at spatial infinity, and from the asymptotic flatness of the

metric.

In the following we present our numerical results, where we first discuss gauged Q-balls

in the FLS model in flat space and the turn to the gauged boson stars in the EMFLS model.



5

 0

 50

 100

 150

 200

 250

 300

 350

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

M

ω

g=0
g=0.03
g=0.05
g=0.07
g=0.10

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A0(0)

ω

g=0.01
g=0.03
g=0.05
g=0.07
g=0.10

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 0.4  0.5  0.6  0.7  0.8  0.9  1

X(0)

ω

g=0
g=0.03
g=0.05
g=0.07
g=0.10

 0

 1

 2

 3

 4

 5

 6

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Y(0)

ω

g=0
g=0.03
g=0.05
g=0.07
g=0.10

FIG. 1: Gauged FLS Q-balls in Minkowski spacetime. The total energy of the configuration in

units of 8π (upper left plot), the values of the gauge potential A0 (upper right plot) and the

scalar profile functions X and Y at r = 0 (lower plots) are displayed as functions of the angular

frequency ω for µ = 0.25, m = 1 and a set of values of the gauge coupling g.

III. GAUGED Q-BALLS

We begin by recalling some basic properties of Q-balls in Minkowski spacetime. Ungauged

FLS Q-balls exist for all non-zero values of the frequency 0 < ω < ωmax [2, 31, 32], where

the upper bound of the angular frequency ωmax = 1 corresponds to the mass m = 1 of

the complex scalar field. This upper bound also holds for the corresponding solutions of the

non-renormalizable flat space model with a single complex field and a sextic potential [8–10].

However, the lower bounds differ for both models, since the sextic potential leads to a finite

minimal value ωmin of the frequency, that is determined by the self-interaction of the scalar

field.

In both models the energy and the charge of Q-balls typically diverge as the limiting

values of the frequency ωmin and ωmax are approached. Toward the upper limit, the config-

urations approach an unbound system of free bosons, whereas toward the lower limit the

configurations become more and more strongly bound. Consequently, there exists a critical
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value of the frequency, where both energy and charge assume their minimal value. Only for

the case of Q-balls in the FLS model with vanishing mass parameter µ, the energy and the

charge tend to zero for ω → ωmax [31, 32].

We now address the influence of the presence of the U(1) field on the Q-balls in the FLS

model and consider the dependence of the Q-ball properties on the strength of the gauge

coupling g, choosing a finite value of the mass parameter µ. When the angular frequency

is decreased below the maximal value of the frequency ωmax = 1 gauged FLS Q-balls arise.

Notably, both the energy and the charge of the gauged flat space Q-balls remain finite in

the limit ω → ωmax [16–19].

These gauged Q-balls form a branch of solutions which extends backward as ω decreases.

Along this branch the properties of the gauged Q-balls are not very different from the

corresponding solitons in the ungauged limit. The size of the Q-balls increases as ω decreases.

However, the angular frequency then approaches a finite minimal value ωmin, where also the

energy and the charge are finite. In fact, at the finite ωmin the derivative of the energy with

respect to the frequency ω diverges. This indicates that a bifurcation occurs at ωmin, and a

second branch of gauged Q-balls is encountered.

When studying the behavior of the scalar fields close to ωmin, we note that the value of

the real scalar φ component at the center of the Q-ball approaches zero. This corresponds to

the massless limit for the complex component ψ, which becomes long-ranged in this region.

Furthermore we note, that the energy of the electrostatic repulsion dominates over the scalar

interactions, when the bifurcation with the second higher energy branch is approached.

When ω is increased again along the second branch the characteristic size of the gauged

Q-balls continues to increase. The strong electrostatic interaction then forms a compact

domain with a wall that is separating the vacuum with φ = 1 on the exterior and confining

the massless complex component ψ in the interior. This compact domain is blowing up

rapidly as the angular frequency approaches its upper critical value, which corresponds

again to ωmax = 1.

Thus, in the gauged FLS model the Q-balls experience an additional repulsive interaction

arising from the gauge sector, that increases with increasing coupling constant g. The

minimal angular frequency ωmin 6= 0 of the gauged FLS Q-balls therefore increases as the

gauge coupling increases, and the solutions cease to exist at some maximal critical value of

the gauge coupling g. We demonstrate this behavior of the gauged FLS Q-balls in Fig. 1,

where we exhibit the energy M of the configurations for a fixed value of µ and increasing

gauge coupling constant g (upper left), as well as the values of the gauge field (upper right)

and scalar field functions (lower panels) at the origin. We emphasize that both the energy

and the charge of the U(1) gauged Q-balls remain finite at both ends of the allowed range

of angular frequencies, and in particular, at ωmax for both branches (see also [16–19]).
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FIG. 2: Gauged EKG boson stars. The total charge of the gauged boson star in units of 8π

(upper left plot), the values of the gauge potential A0 (upper right plot), the scalar profile

function Y and the metric component g00 at r = 0 (lower plots) are displayed as functions of the

angular frequency ω for m = 1 for a set of values of the gauge coupling g.

When the mass parameter µ is set to zero, the model (2) has a vanishing potential term.

The resulting Q-balls then carry a long range massless real scalar field with a Coulomb-type

asymptotic decay [31–33]. A peculiar feature of these Q-balls is that there is only one branch

of solutions which, as noted above, for the ungauged solitons exists for the whole range of

values of the angular frequency ω ∈ [0, 1]. The mass and the charge of these configurations

increase monotonically as ω decreases. In this case an increase of the gauge coupling g does

not yield a second branch of solutions. Instead only the minimal frequency ωmin increases so

that the allowed frequency range becomes smaller.

IV. GAUGED BOSON STARS

When gravity is coupled to Q-balls boson stars arise. Now the additional attractive

interaction changes the pattern observed in flat space. Boson stars arise smoothly from the
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vacuum when the angular frequency ω is decreased below its maximal value ωmax = 1, that

corresponds to the mass of the complex scalar field as in flat space. However, in this limit

the mass and charge of the boson stars go to zero. With decreasing ω the mass and charge of

the boson stars increase, until a maximum is reached. For mini-boson stars with a mass term

only this corresponds to the global maximum, whereas for soliton boson stars with a sextic

potential the global maximum is only reached beyond a local minimum. But in both cases

the mass and charge of the boson stars enter a spiraling phase after the global maximum

[7, 9, 10, 34].

Here we are interested in the additional effect provided by the coupling to a U(1) gauge

field. We therefore start by recalling the properties of gauged boson stars in the simpler

Einstein-Klein-Gordon (EKG) model. We demonstrate the dependence of the charge on

the frequency for gauged EKG boson stars in Fig. 2 (upper left), where we vary the gauge

coupling g. The spiral structure is clearly visible, although we have only included the first

few turns of the spirals. The figure also shows the values at the origin of the functions A0

(upper right) and Y (lower left), and of the metric component g00 (lower right). The latter

two exhibit oscillations as the mass and the charge spiral.

When the gauge coupling g is increased from zero, the additional repulsion leads to larger

values of the mass and the charge of the boson stars. At the same time the minimal frequency

ωmin increases, thus reducing the frequency interval where gauged boson stars exist. As noted

before [27], there is a maximal value of the gauge coupling beyond which no further gauged

boson stars exist.

We now turn to gauged boson stars in the FLS model. Since the scenario for the evolution

of gauged boson stars with two long-range fields can be very different from the evolution

with only a massless U(1) field, we consider these two cases of finite and vanishing mass

parameter µ subsequently in the following, discussing first the more general case of a finite

mass parameter µ.

A. Finite mass parameter µ 6= 0

We expect that the evolution of the gauged boson stars in the model (1) depends crucially

on the ratio of the effective gravitational coupling α and the gauge coupling constant g. In

particular, for small values of the effective gravitational coupling α and large values of the

gauge coupling g, the two-branch structure observed in flat space should persist. Whereas for

large values of the effective gravitational coupling α and small values of the gauge coupling

g, the spiraling pattern should be present. Thus, when gravity becomes strong enough,

the correspondence with the usual scenario of the evolution of the boson stars should be

recovered.
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FIG. 3: Gauged Einstein-FLS boson stars. The total charge of the solutions (upper left plot), the

values of the gauge potential A0 (upper right plot), the scalar functions X, Y (middle plots), and

the metric component g00 at r = 0 (lower plot) are displayed as functions of the angular frequency

ω for α = 0.3 for a set of values of the gauge coupling g.

Moreover, as the value of the mass parameter µ increases, the real component ψ tends to

its vacuum value everywhere in space, and the decoupled massive complex field φ satisfies

the Einstein-Klein-Gordon equations. In this case the dependence of the mass and the

charge of the gauged boson star on the angular frequency then possesses an infinite number

of branches, representing the inspiraling of the solutions towards a limiting configuration
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FIG. 4: Compact gauged Einstein-FLS boson stars on the second branch. The profile functions of

the scalar fields X(r) and Y (r) (upper plots), the gauge potential A0(r) (lower right plot), and

the metric component g00(r) (lower left plot) are displayed as functions of the angular frequency

ω for α = 0.3, ω = 0.6 for a set of values of the gauge coupling g.

[7, 9, 10, 34].

Indeed, when we perform the calculations and scan the parameter space of the solutions

we note that our observations agree with our expectations. In particular, in these calculations

we vary either the gauge coupling g or the gravitational coupling α, while we keep all other

parameters fixed. We start our presentation of the results for the case obtained by fixing the

value of gravitational coupling α = 0.3 and varying the gauge coupling g, as demonstrated

in Figs. 3 and 4.

Fig. 3 shows, that for relatively small gauge coupling g the gauged boson stars show

a spiraling behavior. With increasing gauge coupling g, the mass and the charge of the

gauged boson stars grow, including the respective values of the limiting (presumably singular)

solution. This pattern changes as the electrostatic repulsion becomes still stronger. The

gauged boson stars then show some intermediate behavior, reminiscent of the soliton boson

stars with two maxima and a minimum in between, and the upper global maximum followed

by a spiral. However, now the second bifurcation point arises as the forward branch merges
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FIG. 5: Gauged Einstein-FLS boson stars. The total charge of the solutions in units of 8π (upper

left plot), the values of the gauge potential A0 (upper right plot), the scalar profile functions X,

Y and the metric component g00 at r = 0 (lower plots) are displayed as functions of the angular

frequency ω for g = 0.15 for a set of values of the gravitational coupling α.

with the backward branch of radially excited boson stars [35]. At still larger values of the

gauge coupling g the branch pattern approaches the one of gauged Q-balls with basically

two branches.

In all cases there is a minimal frequency ωmin, which increases with increasing gauge

coupling g. But the character of the second branch that bifurcates with the first one at ωmin
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FIG. 6: Compact gauged Einstein-FLS boson stars on the second branch. The profile functions of

the scalar fields X(r) and Y (r) (upper plots), the gauge potential A0(r) (lower left), and the

metric component g00(r) (lower right) are displayed as functions of the angular frequency ω for

g = 0.15, ω = 0.75 for a set of values of the gravitational coupling α.

is very different, and strongly depends on the value of the gauge coupling g. In particular,

mass and charge can either decrease or they can increase beyond the bifurcation point.

Moreover the second branch can either end at a second bifurcation point, or it can extend

all the way to ωmax.

When we inspect the fields along the second branch we note that similarly to the corre-

sponding solutions in Minkowski spacetime, the real field is vanishing in the interior region

of the gauged boson star. Therefore the complex scalar field is massless there. Moreover,

the electric potential is almost constant in the interior region. The fields are displayed in

Fig. 4 for configurations on the second branch for several values of the gauge coupling g, and

constant values of the frequency ω and the gravitational coupling α. One clearly notes in

the figure that configurations on the higher electrostatic branch (as illustrated in the figure

for g = 0.1) represent self-gravitating charged compactons.

For large values of the gauge coupling g, the characteristic size of the boson stars decreases

slowly along the second branch. The gravitational interaction makes them more compact.
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For the intermediate range of values of g, the size of compact boson stars continues to

decrease also along the third branch. The minimum of the metric function N(r) is then no

longer located at the origin. Instead it becomes associated with the position of the domain

wall separating the interior of the configuration and its exterior.

Of course, the corresponding pattern is observed when we fix the gauge coupling g and

scan the parameter space by varying the gravitational coupling α. This is illustrated in

Figs. 5 and 6. Now for relatively small values of α the two-branch scenario is recovered.

However, when the gravitational coupling increases, first the second bifurcation point arises

as the forward branch merges with the backward branch of radially excited boson stars, as

seen in Fig. 5 for g = 0.15 and α = 0.35. (Furthermore, various multiboson star configuration

may be linked to these excited branches [36, 37].) Finally, at large values of the gravitational

coupling gravity takes over and the mini-boson star pattern is recovered. We note that, as

demonstrated in Fig. 5, here the minimal frequency ωmin first decreases with increasing

gravitational coupling and then decreases again.

B. Massless limit µ = 0

We now turn to the U(1) gauged boson stars in the limiting case µ = 0. Like the Q-balls

they possess a long range massless real scalar field [31–33]. But the coupling to gravity

yields another long range attractive interaction. Since the gauged Q-balls exhibit very dif-

ferent properties in the case µ = 0, we expect to encounter corresponding differences also

in the gravitating case, when constructing gauged boson stars in this limit. Apart from

that we expect again that the patterns found will be either dominated by the electromag-

netic interaction or by gravity, depending on the relative strength of the respective coupling

constants.

We start with a demonstration of the effect of the gauge coupling on boson stars by

keeping the gravitational constant fixed at α = 0.4 and increasing the gauge coupling g. We

display in Fig. 7 the main characteristics of the self-gravitating charged boson stars obtained.

Note that in this case there still is only a single branch of solutions, which terminates at

a minimal value of the angular frequency ωmin. Along the branch the mass and the charge

of the configurations increase monotonically as ω decreases. Since the minimal frequency

ωmin increases with increasing gauge coupling g, the solutions will stop to exist beyond a

maximal value of g. Clearly, for α = 0.4 gravity is not yet sufficiently strong to dominate

the properties of the gauged boson stars. Consequently the pattern of the gauged Q-balls is

retained.

We now inspect the behavior of the fields in Fig. 7 to gain a better understanding of

the behavior of the solutions as the minimal frequency ωmin is approached. We note that



14

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

M

ω

g=0.50
g=0.40
g=0.25
g=0.15
g=0.10
g=0.05

g=0

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A0(0)

ω

g=0.50
g=0.40
g=0.25
g=0.15
g=0.10
g=0.05

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

X(0)

ω

g=0.50
g=0.40
g=0.25
g=0.15
g=0.10
g=0.05

g=0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Y(0)

ω

g=0.50
g=0.40
g=0.25
g=0.15
g=0.10
g=0.05

g=0

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

g00(0)

ω

g=0.50
g=0.40
g=0.25
g=0.15
g=0.10
g=0.05

g=0

FIG. 7: Gauged Einstein-FLS boson stars in the massless limit µ = 0. The energy of the solutions

in units of 8π (upper left plot), the values of the gauge potential A0 (upper right plot), the scalar

profile functions X, Y (middle plots), and the metric component g00 at r = 0 (lower plot) are

displayed as functions of the angular frequency ω for α = 0.40 for a set of values of the gauge

coupling g.

toward this limit the massless real scalar field φ approaches zero within some region around

the center of the configuration, such that the complex scalar field ψ becomes also massless

there. Consequently, a minor decrease of the angular frequency leads to a rapid inflation

of the volume of the bubble. Then the balance between the volume energy and the surface
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FIG. 8: Gauged Einstein-FLS boson stars in the massless limit µ = 0. The energy of the solutions

in units of 8π (upper left plot), the values of the gauge potential A0 (upper right plot), the scalar

profile functions X, Y (middle plots), and the metric component g00 at r = 0 (bottom plots) are

displayed as functions of the angular frequency ω for g = 0.15 for a set of values of the

gravitational coupling α.

energy becomes shifted and the gravitational interaction cannot stabilize the boson star any

longer.

For larger values of the gravitational coupling α, the usual spiral evolution of the boson

stars is recovered, as long as the gauge coupling g remains sufficiently small. This is demon-
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strated in Fig. 8, where we have chosen a small value for g and increased the value of α. As

expected, for small α the gauged boson stars are dominated by the electromagnetic inter-

action, and the pattern resembles the one discussed above. However, as α becomes larger

gravity takes over, and the usual boson star behavior with spiraling respectively oscillating

behavior is indeed recovered.

V. CONCLUSION

We have considered Q-balls and boson stars in the Einstein-Maxwell-Friedberg-Lee-Sirlin

model, where in addition to the gauged complex scalar field a real scalar field is present.

The real scalar field has a finite vacuum expectation value due to its quartic self-interaction

potential. Consequently, the real scalar field carries a mass, that also depends on the strength

of the self-interaction µ. For vanishing parameter µ the real scalar becomes massless and

long-ranged. Independent of the value of µ, the complex scalar field acquires its mass via its

interaction with the real scalar field.

Gauged FLS Q-balls and boson stars possess quite distinct properties in the case of finite

or vanishing parameter µ, i.e., for short-ranged or long-ranged real scalar field [2, 31–33]. In

both cases an increase of the gauge coupling g entails an increase of the minimal frequency

ωmin from zero, its value without the gauge field. But for finite µ a bifurcation with a second

branch of gauged Q-balls arises at ωmin, that extends to larger values of the frequency all the

way to the maximal frequency ωmax, whereas for vanishing µ there is no such second branch.

When gravity is coupled, another attractive interaction is present, and one has to consider

the competition between gravity and electromagnetism. Depending on the relative strength

of the respective coupling constants, the resulting gauged boson stars exhibit distinct be-

havior. When gravity dominates, the typical spiraling and oscillating pattern of boson stars

is seen in their properties, when considered as functions of the frequency. When electro-

magnetism dominates, however, the simple two branch structure (µ > 0) or single branch

structure (µ = 0) of gauged FLS Q-balls is recovered.

Here we have only considered globally regular spherically symmetric configurations. In-

teresting next steps will be on the one hand to address the expected associated hairy black

holes and on the other hand to reduce the symmetry of the configurations and consider axi-

ally symmetric configurations as well as configurations with still less symmetry. Spherically

symmetric gauged FLS black holes are expected to exist in analogy to such black holes in

the Einstein-Maxwell-scalar models [38–40]. Rotating axially symmetric boson stars and

associated black holes have been constructed in the FLS model before [30]. Here the in-

clusion of the Maxwell field will provide new interesting aspects. The work here should be

taken further by considering boson stars in the extended U(1)×U(1) symmetric model [41].
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Moreover, the analogy to the states of the hydrogen atom observed in [37] would represent

a fascinating endeavour for the FLS model as well.
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