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A B S T R A C T

The coding potential of RNA molecules can be estimated using algorithms that find open reading frames (ORFs).
However, previously developed algorithms show limited performance. We developed a computational approach
dedicated to the automatic identification of ORFs in a large set of human mRNA molecules. It is based on the
vectorization of nucleotide sequences followed by classification using a random forest. The predictive model
was validated on human mRNA molecules from the NCBI RefSeq and Ensembl databases and demonstrated
almost 95% accuracy in detecting true ORFs. Our method is implemented into a powerful R/Bioconductor
package ORFhunteR.
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1. Introduction

High-throughput technologies allow capturing sequence informa-
tion about whole transcriptomes with reasonable cost and time. Several
high-performance computational approaches have been developed to
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restore the structure of full-length RNA molecules (or transcripts) from
short RNA-Seq reads and to get qualitative and quantitative character-
istics of these molecules [1,2]. One of the most important properties of
transcripts is their coding potential, which can be assessed by various
algorithms. Many methods, including one implemented in ORFfinder
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Fig. 1. An interface of the online tool (https://orfhunter.bsu.by/), implementing ORFhunteR. The sample dataset from the corresponding GitHub repository was used here.

t NCBI [3], are based on the selection of the longest open reading
rame (ORF) from possible candidates. Other computational techniques,
or example, used for meta-genomics analysis [4,5], propose vector-
zation of sequence features of ORF-candidates, which is an efficient
onversion of nucleotide sequence into a vector of features. However,
hese algorithmic approaches have several limitations. First, they do
ot allow making a reasonable choice among ORFs in the case when
ultiple candidates are presented. Second, they do not provide auto-
ated computational tools for high-throughput analysis pipelines and

arge datasets. Third, they show low accuracy in predicting ORFs and
equire significant computing power. Finally, they lack integration with
oftware for the analysis of structural and functional characteristics
f RNA molecules. Here we present a computational approach and
ts implementation, an ORFhunteR – R/Bioconductor package, aimed
t automatic determination of true ORFs in mRNA molecules. The
roposed method is based on the vectorization of nucleotide sequences
ollowed by a random-forest classification. Our package also provides
utomatic annotation of the identified ORFs. In addition, a user-friendly
ersion of ORFhunteR, based on a pre-trained model, is implemented
s a web application (https://orfhunter.bsu.by/, Fig. 1). The approach
as validated on two large public datasets (NCBI RefSeq, Ensembl) and
pre-trained model is provided together with the package.

. Methods

The proposed computational approach for the automatic identifica-
ion of the true ORFs integrates algorithms for vectorization [6,7] and
andom forest-based classification [8]. Our pipeline includes the follow-
ng five steps: (i) building of a set of reference ORFs, (ii) vectorization of
eference ORFs into sequence features, (iii) training of the classification
odel, (iv) identification of the true ORFs in a set of mRNA molecules

nd (v, optionally) annotation of the identified ORFs (Fig. 2a).

.1. Feature extraction: vectorization of sequences

Nucleotide sequences are vectorized into 104 features. The first 84
eatures represent frequencies of mono-, di-, and trinucleotides. The

R/Bioconductor package Biostrings. Next, 6 features based on nu-
cleotide correlation factors are included [7]. The length of a candidate
ORF and its logarithm are both used, to preserve sensitivity to vari-
ability in short and long ORFs (2 features). Finally, 12 features of
the category-position-frequency (CPF) model [6] represent the local
frequency-based entropy values of sequences (see Methods in [9]).
Vectorization is implemented in C++ and R programming languages
using R/Bioconductor and CRAN packages. This provides a significant
performance improvement compared to pure R (C++ with Rpp package
increased the performance of the analysis by almost 100-fold).

2.2. Sequence classification and ORF identification

Classification of the sequences was done by a classical random forest
from the R-package randomForest (500 trees). In parallel, it assesses
the significance of the features by the Gini index. Discovery data were
separated into 75% training and 25% validation sub-sets, with the
latter, used to estimate the accuracy of the classifier.

2.3. ORFhunteR pipeline usage

The analysis pipeline includes several major steps, each with specific
functions (Fig. 2b). It starts with the loading of sequences from fasta-
, gtf- or gff-file using loadTrExper. In the uploaded transcripts, ORF
candidates are identified using the functions codonStartStop and find-
ORFs. These ORF candidates are vectorized into sequence features by
vectorizeORFs in conjunction with the C-based functions getBaoMetrics
and getCorrelationFactors. The vectorized ORF candidates are classified
into true ORFs and pseudo-ORFs by function predictORFs. If necessary,
the nucleotide sequence of the true ORFs can be obtained using the
function getSeqORFs. Finally, identified true ORFs can be annotated
by the function annotateORFs, together with the functions findPTCs
and translateORFs (provides transcript ID, length of 5’UTRs, type of
start codon, start coordinate of ORF, stop coordinate of ORF, type
of stop codon, PTC status of stop codon, length of ORF, length of
3’UTRs, molecular weight of in silico translated protein, isoelectric point
of a protein sequence and potential protein interaction index). Here-
with, the function findPTCs identifies premature termination codons in
transcripts of interest while function translateORFs translates ORFs to
requencies are calculated by the standard algorithms of proteins.
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Fig. 2. An overview of ORFhunteR pipeline (a) and dependencies of the main functions
(b).

2.4. Data and method validation setup

The approach was applied to two large datasets. A discovery
ataset included 128161 well-annotated mRNA molecules of protein-
oding genes and 4235 long non-coding RNA (lncRNA) molecules from
he manually curated NCBI RefSeq database (release 109, GRCh38.p12
eference assembly of the human genome). Coordinates and extracted
equences of highly confident true ORFs in mRNA molecules were
ollected, resulting in 113085 records in total. Additionally, we cal-
ulated coordinates and extracted 108800 sequences of pseudo-ORFs
rom lncRNA molecules. Similar to real ORFs, pseudo-ORFs begin with
TG start codon and end in-frame with one of the stop codons, but are
ot translated into proteins. These two sets of ORFs were combined
nto a single well-balanced reference or training set of true ORFs and
seudo-ORFs (imbalance index of 1.04) and used in random forest
lassification to construct the trained model to be applied further for
he ORF identification in discovery and test datasets. As a test dataset,
RNA and lncRNA sequences from Ensembl (release 97, GRCh38.p12

eference assembly of the human genome) were used. To avoid ar-
ifacts, we excluded: (i) mitochondrial transcripts, (ii) 5’ incomplete
ranscripts, containing canonical stop codon but lacking a start codon
nside the sequence, (iii) 3’ incomplete transcripts containing canonical
tart codon ATG but lacking a stop codon inside the sequence, (iv) both
’ and 3’ incomplete transcripts lacking start and stop codons inside
he sequence, (v) and transcripts with non-canonical start codons CTG,
TG or TTG. We combined filtered Ensembl mRNAs (56765 records in

otal) and lncRNAs (74980 records in total) into a single test set of RNA
olecules.

. Results of validation

We started by applying the method to the discovery dataset (NCBI
efSeq), where the accuracy in detecting true ORFs on the valida-

ion sub-set reached 98.3%. We identified some CPFs (ℎSS, ℎMK , ℎKK ,
ee [6]) and the length as the most important features for the determi-
ation of ORFs.

In the prevention of overfitting, we tested the trained model on
ndependent Ensembl RNA data. On this dataset, the approach allowed
dentifying the true ORFs with an accuracy of 94.9%. In fact, 91.9%
f ORFs that were identified in Ensembl human mRNA molecules
emonstrated a probability of 0.9 or higher to be coding. At the same
ime, probability values (to be coding ORF) for ORFs from various
ncRNAs strongly differed (Fig. 3). All mRNAs are properly classified,
hile only a minor part of lncRNAs could be misclassified due to
volutionary-caused structural similarities with coding mRNA.

Fig. 3. Distribution of probability values for identification of pseudo-ORFs and true
ORFs in different human RNA molecules. (a) Empirical cumulative distribution of
frequency (ECDF) values for ORFs that were identified in protein-coding mRNAs and
various non-coding RNAs. (b) Frequency of probability values for ORFs that were
identified in mRNAs and lncRNAs encoded by lncRNA genes. (c) Boxplot demonstrating
the distribution of probability values for ORFs that were identified in mRNAs and
lncRNAs different gene biotypes.

4. Potential and existing impact

Our package automatically detects open reading frames in large
collections of human mRNA molecules with high accuracy. It provides
a systematic, automated, and high-throughput approach to sequencing
data analysis. Moreover, it automatically annotates identified open
reading frames. These properties distinguish our tool from alternative
solutions. Our software is applicable for solving fundamental tasks
linked to genomic aberrations in cancers as was recently reported in
high-impact journals [10–12]. It also can be applied to more prac-
tical tasks: the differential diagnostics of human diseases and the
development of predictive models for disease progression and clinical
outcomes. An additional asset of the tool is linked to its potential
applicability for studies related to personalized medicine.

5. Limitations and future development

The ORFhunteR software package has several limitations: it depends
on third-party R-libraries, has a slow initialization, and has non-optimal
processing of large data files. An automatic update of model files
should also be implemented. These disadvantages will be eliminated by
building specialized C/C++ libraries, optimizing the codes for working
with big data [13], and enabling an automatic update of prediction
models. In the future, we are planning to implement classification
models to identify open reading frames starting from alternative start
codons CTG, GTG, and TTG. In addition, it is planned to develop
predictive models based on mixed data from NCBI RefSeq and En-
sembl/GENCODE databases. Moreover, the list of annotations will be
significantly expanded.

6. Conclusions

The efficient computational approach for the identification of un-
known ORFs in mRNA molecules was developed and integrated into
the corresponding R/Bioconductor package ORFhunteR. It is based

on vectorization of the sequence features of ORFs candidates and
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predicting the most evident by a random forest classifier. Our numerical
tests resulted in the accuracy of ORFs identification of 98.3% and
94.9% on the verification and validation datasets.

Finally, it is important to mention that the developed approach
has three advantages over the competing modern strategies [4,14]:
(i) it requires less computing resources and works much faster than
neural nets; (ii) it is less prone to overfitting and uses a limited
set of vectorized features (unlike the statistical approaches utilizing
thousands of features); (iii) random forest classifiers show much better
interpretability compared to deep learning or boosting models.
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