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The coding potential of RNA molecules can be estimated using algorithms that find open reading frames (ORFs).
However, previously developed algorithms show limited performance. We developed a computational approach
dedicated to the automatic identification of ORFs in a large set of human mRNA molecules. It is based on the
vectorization of nucleotide sequences followed by classification using a random forest. The predictive model
was validated on human mRNA molecules from the NCBI RefSeq and Ensembl databases and demonstrated

almost 95% accuracy in detecting true ORFs. Our method is implemented into a powerful R/Bioconductor

package ORFhunteR.
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1. Introduction

High-throughput technologies allow capturing sequence informa-
tion about whole transcriptomes with reasonable cost and time. Several
high-performance computational approaches have been developed to

restore the structure of full-length RNA molecules (or transcripts) from
short RNA-Seq reads and to get qualitative and quantitative character-
istics of these molecules [1,2]. One of the most important properties of
transcripts is their coding potential, which can be assessed by various
algorithms. Many methods, including one implemented in ORFfinder
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messenger RNA(protein-coding RNA); ORF, open reading frame
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ORFhunteR is a service that finds Open Reading Frames (ORFs) in RNA sequences and annotate them. The service utilizes the machine learning model based on vectorization of
nucleotide sequences and the random forest classification algorithm and offers acurate prediction of Open Reading Frames. Use ORFhunteR to search newly sequenced RNA for potential
protein encoding segments.
Load RNAs (.fasta file) ... Progress of calculations: Predicted ORFs:
Choose File | No file chosen Initialization of calculations... RNA transcript ID Start Stop Length  Prob
File Set trans_sequences.fasta has been successfully uploaded Waiting for resources to be released. ENST00000235453 279 1469 1191 1
Imported RNAs count: 50, splitted in 1 ENST00000246505 36 1397 1362 1
parts, 50 in a part ENST00000258105 21 359 339 0,948
Part: 1 (from 1) ENST00000278833 542 1597 1056 1
Concider splitting the loaded data in parts if you want to process a ORF candidates count: 50 ENST00000285021 216 3038 2823 1
Jarge number of RNAS. Identified ORFs count: 48 ENST00000302797 219 1187 969 1
Execution time: 4,15 s ENST00000304460 4229 5143 915 1
Fartscount ENST00000304895 31 1986 1956 1
1 Calculation is finished ENST00000315563 53 3646 3594 1
Processed RNA count: 50 ENST00000328631 196 1476 1281 1
N ORF candidates count: 50 ENST00000330942 226 639 414 0,982
Prediction;probability;threshold Identified ORFs count: 48 ENST00000343256 2 636 612 0,996
05 Total execution time: 7,31 s ENST00000354381 267 1370 1104 1
Done! Download file with results ENST00000359117 237 968 732 0,998
Type ENST00000360466 229 1008 780 1
ENST00000367433 103 3438 3336 1
ATG v ENST00000375581 36 1436 1401 1
ENST00000375911 826 1710 885 1
ENST00000376477 1291 2103 813 1
m ENST00000376583 1 2094 2094 1
ENQTANNNN272R7R 4 A11 A4 nam
About ORFhunteR Useful links:
+ ORFhunteR user manual « NCBI
* License + NCBI Reference Sequence Database
« About us « Ensembl
« Contact us + NCBI ORF Finder
© ORFhunteR - 2020-2021, Belarusian State University, Luxemburg Institute of Health

Fig. 1. An interface of the online tool (https://orfhunter.bsu.by/), implementing ORFhunteR. The sample dataset from the corresponding GitHub repository was used here.

at NCBI [3], are based on the selection of the longest open reading
frame (ORF) from possible candidates. Other computational techniques,
for example, used for meta-genomics analysis [4,5], propose vector-
ization of sequence features of ORF-candidates, which is an efficient
conversion of nucleotide sequence into a vector of features. However,
these algorithmic approaches have several limitations. First, they do
not allow making a reasonable choice among ORFs in the case when
multiple candidates are presented. Second, they do not provide auto-
mated computational tools for high-throughput analysis pipelines and
large datasets. Third, they show low accuracy in predicting ORFs and
require significant computing power. Finally, they lack integration with
software for the analysis of structural and functional characteristics
of RNA molecules. Here we present a computational approach and
its implementation, an ORFhunteR — R/Bioconductor package, aimed
at automatic determination of true ORFs in mRNA molecules. The
proposed method is based on the vectorization of nucleotide sequences
followed by a random-forest classification. Our package also provides
automatic annotation of the identified ORFs. In addition, a user-friendly
version of ORFhunteR, based on a pre-trained model, is implemented
as a web application (https://orfhunter.bsu.by/, Fig. 1). The approach
was validated on two large public datasets (NCBI RefSeq, Ensembl) and
a pre-trained model is provided together with the package.

2. Methods

The proposed computational approach for the automatic identifica-
tion of the true ORFs integrates algorithms for vectorization [6,7] and
random forest-based classification [8]. Our pipeline includes the follow-
ing five steps: (i) building of a set of reference ORFs, (ii) vectorization of
reference ORFs into sequence features, (iii) training of the classification
model, (iv) identification of the true ORFs in a set of mRNA molecules
and (v, optionally) annotation of the identified ORFs (Fig. 2a).

2.1. Feature extraction: vectorization of sequences
Nucleotide sequences are vectorized into 104 features. The first 84

features represent frequencies of mono-, di-, and trinucleotides. The
frequencies are calculated by the standard algorithms of

R/Bioconductor package Biostrings. Next, 6 features based on nu-
cleotide correlation factors are included [7]. The length of a candidate
ORF and its logarithm are both used, to preserve sensitivity to vari-
ability in short and long ORFs (2 features). Finally, 12 features of
the category-position-frequency (CPF) model [6] represent the local
frequency-based entropy values of sequences (see Methods in [9]).
Vectorization is implemented in C++4 and R programming languages
using R/Bioconductor and CRAN packages. This provides a significant
performance improvement compared to pure R (C++ with Rpp package
increased the performance of the analysis by almost 100-fold).

2.2. Sequence classification and ORF identification

Classification of the sequences was done by a classical random forest
from the R-package randomForest (500 trees). In parallel, it assesses
the significance of the features by the Gini index. Discovery data were
separated into 75% training and 25% validation sub-sets, with the
latter, used to estimate the accuracy of the classifier.

2.3. ORFhunteR pipeline usage

The analysis pipeline includes several major steps, each with specific
functions (Fig. 2b). It starts with the loading of sequences from fasta-
, gtf- or gff-file using loadTrExper. In the uploaded transcripts, ORF
candidates are identified using the functions codonStartStop and find-
ORFs. These ORF candidates are vectorized into sequence features by
vectorizeORFs in conjunction with the C-based functions getBaoMetrics
and getCorrelationFactors. The vectorized ORF candidates are classified
into true ORFs and pseudo-ORFs by function predictORFs. If necessary,
the nucleotide sequence of the true ORFs can be obtained using the
function getSeqORFs. Finally, identified true ORFs can be annotated
by the function annotateORFs, together with the functions findPTCs
and translateORFs (provides transcript ID, length of 5’UTRs, type of
start codon, start coordinate of ORF, stop coordinate of ORF, type
of stop codon, PTC status of stop codon, length of ORF, length of
3’UTRs, molecular weight of in silico translated protein, isoelectric point
of a protein sequence and potential protein interaction index). Here-
with, the function findPTCs identifies premature termination codons in
transcripts of interest while function translateORFs translates ORFs to
proteins.
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Fig. 2. An overview of ORFhunteR pipeline (a) and dependencies of the main functions

(b).

2.4. Data and method validation setup

The approach was applied to two large datasets. A discovery
dataset included 128161 well-annotated mRNA molecules of protein-
coding genes and 4235 long non-coding RNA (IncRNA) molecules from
the manually curated NCBI RefSeq database (release 109, GRCh38.p12
reference assembly of the human genome). Coordinates and extracted
sequences of highly confident true ORFs in mRNA molecules were
collected, resulting in 113085 records in total. Additionally, we cal-
culated coordinates and extracted 108800 sequences of pseudo-ORFs
from IncRNA molecules. Similar to real ORFs, pseudo-ORFs begin with
ATG start codon and end in-frame with one of the stop codons, but are
not translated into proteins. These two sets of ORFs were combined
into a single well-balanced reference or training set of true ORFs and
pseudo-ORFs (imbalance index of 1.04) and used in random forest
classification to construct the trained model to be applied further for
the ORF identification in discovery and test datasets. As a test dataset,
mRNA and IncRNA sequences from Ensembl (release 97, GRCh38.p12
reference assembly of the human genome) were used. To avoid ar-
tifacts, we excluded: (i) mitochondrial transcripts, (ii) 5’ incomplete
transcripts, containing canonical stop codon but lacking a start codon
inside the sequence, (iii) 3’ incomplete transcripts containing canonical
start codon ATG but lacking a stop codon inside the sequence, (iv) both
5’ and 3’ incomplete transcripts lacking start and stop codons inside
the sequence, (v) and transcripts with non-canonical start codons CTG,
GTG or TTG. We combined filtered Ensembl mRNAs (56765 records in
total) and IncRNAs (74980 records in total) into a single test set of RNA
molecules.

3. Results of validation

We started by applying the method to the discovery dataset (NCBI
RefSeq), where the accuracy in detecting true ORFs on the valida-
tion sub-set reached 98.3%. We identified some CPFs (hgg, Ayk, Axk,
see [6]) and the length as the most important features for the determi-
nation of ORFs.

In the prevention of overfitting, we tested the trained model on
independent Ensembl RNA data. On this dataset, the approach allowed
identifying the true ORFs with an accuracy of 94.9%. In fact, 91.9%
of ORFs that were identified in Ensembl human mRNA molecules
demonstrated a probability of 0.9 or higher to be coding. At the same
time, probability values (to be coding ORF) for ORFs from various
IncRNAs strongly differed (Fig. 3). All mRNAs are properly classified,
while only a minor part of IncRNAs could be misclassified due to
evolutionary-caused structural similarities with coding mRNA.
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Fig. 3. Distribution of probability values for identification of pseudo-ORFs and true
ORFs in different human RNA molecules. (a) Empirical cumulative distribution of
frequency (ECDF) values for ORFs that were identified in protein-coding mRNAs and
various non-coding RNAs. (b) Frequency of probability values for ORFs that were
identified in mRNAs and IncRNAs encoded by IncRNA genes. (c) Boxplot demonstrating
the distribution of probability values for ORFs that were identified in mRNAs and
IncRNAs different gene biotypes.

4. Potential and existing impact

Our package automatically detects open reading frames in large
collections of human mRNA molecules with high accuracy. It provides
a systematic, automated, and high-throughput approach to sequencing
data analysis. Moreover, it automatically annotates identified open
reading frames. These properties distinguish our tool from alternative
solutions. Our software is applicable for solving fundamental tasks
linked to genomic aberrations in cancers as was recently reported in
high-impact journals [10-12]. It also can be applied to more prac-
tical tasks: the differential diagnostics of human diseases and the
development of predictive models for disease progression and clinical
outcomes. An additional asset of the tool is linked to its potential
applicability for studies related to personalized medicine.

5. Limitations and future development

The ORFhunteR software package has several limitations: it depends
on third-party R-libraries, has a slow initialization, and has non-optimal
processing of large data files. An automatic update of model files
should also be implemented. These disadvantages will be eliminated by
building specialized C/C++ libraries, optimizing the codes for working
with big data [13], and enabling an automatic update of prediction
models. In the future, we are planning to implement classification
models to identify open reading frames starting from alternative start
codons CTG, GTG, and TTG. In addition, it is planned to develop
predictive models based on mixed data from NCBI RefSeq and En-
sembl/GENCODE databases. Moreover, the list of annotations will be
significantly expanded.

6. Conclusions

The efficient computational approach for the identification of un-
known ORFs in mRNA molecules was developed and integrated into
the corresponding R/Bioconductor package ORFhunteR. It is based
on vectorization of the sequence features of ORFs candidates and
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predicting the most evident by a random forest classifier. Our numerical
tests resulted in the accuracy of ORFs identification of 98.3% and
94.9% on the verification and validation datasets.

Finally, it is important to mention that the developed approach
has three advantages over the competing modern strategies [4,14]:
(i) it requires less computing resources and works much faster than
neural nets; (ii) it is less prone to overfitting and uses a limited
set of vectorized features (unlike the statistical approaches utilizing
thousands of features); (iii) random forest classifiers show much better
interpretability compared to deep learning or boosting models.
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