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A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is
developed. The obtained general quantum-mechanical solution of the relativistic paraxial equation
contains the commonly accepted result as a specific case of unstructured electron waves. Unlike
all precedent investigations, the present study describes structured electron states which are not
plane waves along the magnetic field direction. In the weak-field limit, our solution (unlike the
existing theory) is consistent with the well-known equation for free twisted electron beams. The
observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions
of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
Distinguishing features of the quantization of the velocity and the effective mass of the Laguerre-
Gauss and Landau electrons in the uniform magnetic field are analyzed.
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The discovery of twisted (vortex) electron states with
a nonzero intrinsic orbital angular momentum (OAM) [2]
has confirmed their theoretical prediction [1] and has cre-
ated new applications of electron beams. Twisted elec-
trons are successfully used in the electron microscopy
and in investigations of magnetic phenomena (see Refs.
[3–11] and references therein). Twisted electron beams
with large intrinsic OAMs (up to 1000~) have been re-
cently obtained [12]. Due to large magnetic moments of
twisted electrons, their above-mentioned applications are
very natural. This situation makes a correct and full de-
scription of twisted electrons in a magnetic field to be
very important.

In the present study, we use the system of units ~ =
1, c = 1. We include ~ and c explicitly when this inclu-
sion clarifies the problem.

Let us direct the z axis of the cylindrical coordinates
r, φ, z along the uniform magnetic field, B = Bez. It
is now generally accepted [13–18] that twisted electron
states in a uniform magnetic field are defined by the Lan-
dau wave function [19, 20] or its relativistic generaliza-
tions [16, 21–24]. This function being an eigenfunction
of the nonrelativistic Hamiltonian

H =
π2 − eσ ·B

2m
, π2 = −∇2 + ieB

∂

∂φ
+
e2B2r2

4
(1)

reads

ψ = A exp (i`φ) exp (ipzz),
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Here π = p − eA is the kinetic momentum, the real
function A defines the beam amplitude, L|`|n is the gener-
alized Laguerre polynomial, and n = 0, 1, 2, . . . is the ra-
dial quantum number. When the cylindrical coordinates
are used, Aφ = Br/2, Ar = Az = 0. For the electron,
e = −|e|. The spin function η is an eigenfunction of the
Pauli operator σz (cf. Ref. [25]):

σzη
± = ±η±, η+ =

(
1
0

)
, η− =

(
0
1

)
. (3)

The distinctive feature of the Landau solution is the triv-
ial (exponential) dependence of the electron wave func-
tion on z. Values of pz are fixed and ψ is an eigenfunction
of the operator pz ≡ −i~∂/(∂z).

The twisted states of free photons and electrons are
defined by the paraxial wave equation [3, 26, 27]:(
∇2
⊥ + 2ik
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)
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+
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∂φ2
.

(4)
For electrons, it can be obtained from the Dirac equation
in the Foldy-Wouthuysen (FW) representation provided
that |p⊥| � p [28]. The paraxial wave function of free
electrons and photons characterizes the Laguerre-Gauss
(LG) beams and reads [26, 29, 30]

Ψ = A exp (iΦ),

∫
Ψ†Ψrdrdφ = 1,

A =
Cn`
w(z)

(√
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w(z)

)|`|
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2R(z)
− ΦG(z),

(5)
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where

w(z) = w0

√
1 +

z2

z2R
, R(z) = z +

z2R
z
, zR =

kw2
0

2
,

ΦG(z) = N arctan

(
z

zR

)
, N = 2n+ |`|+ 1,

(6)
the real functions A and Φ define the amplitude and
phase, k is the beam wavenumber, w0 is the beam waist
(minimum beam width), R(z) is the radius of curvature
of the wavefront, ΦG(z) is the Gouy phase, and zR is the
Rayleigh diffraction length. The quantities Cn` and η are
given by Eqs. (2) and (3), respectively. For electrons, Ψ
is a spinor. Evidently, Ψ is not an eigenfunction of the
operator pz. Therefore, the free-space wave function (5),
(6) characterizes a beam formed by partial waves with
different pz.

A correspondence between the relativistic quantum-
mechanical equations in the FW representation and the
paraxial wave equations has been established in Refs.
[28, 31]. The correspondence is very similar for photons
and electrons. In connection with this similarity, we can
mention the existence of bosonic symmetries of the stan-
dard Dirac equation [32–38].

Advanced results obtained in optics allow us to rig-
orously derive a general formula for the paraxial wave
function of a relativistic twisted Dirac particle in a uni-
form magnetic field. In this case, the exact relativistic
FW Hamiltonian is given by [25, 39–41]

i
∂ΨFW

∂t
=HFWΨFW , HFW =β

√
m2 + π2 − eΣ ·B,

(7)
where π = p − eA is the kinetic momentum and β and
Σ are the Dirac matrices. This Hamiltonian acts on the

bispinor ΨFW =

(
ΦFW

0

)
. The zero lower spinor of

the bispinor can be disregarded. Eigenfunctions (more
precisely, an upper spinor) of the relativistic FW Hamil-
tonian coincide with the nonrelativistic Landau solution
(2) because the operator π2− eΣ ·B commutes with the
Hamiltonian in both cases (see Refs. [25, 39, 40]). The
FW representation is important for obtaining a classi-
cal limit of relativistic quantum mechanics [42] and es-
tablishing a connection between relativistic and nonrela-
tivistic quantum mechanics [43, 44].

Let us denote P =
√
E2 −m2 = ~k, where E is

an energy of a stationary state. A transformation of
Hamiltonian equations in the FW representation to the
paraxial form has been considered in Refs. [28, 31, 45].
Squaring Eq. (7) for the upper spinor, applying the
paraxial approximation for pz > 0, and the substitution
ΦFW = exp (ikz)Ψ lead to the paraxial equation [45](
∇2
⊥ − ieB

∂

∂φ
− e2B2r2

4
+ 2eszB + 2ik

∂

∂z

)
Ψ = 0,

(8)

where sz is the spin projection onto the field direc-
tion. The above-mentioned substitution is equivalent to
shifts of the zero energy level and of the squared particle
momentum in Schrödinger quantum mechanics. When
B = 0, Eq. (8) takes the form of the paraxial wave equa-
tion for free electrons (4).

The paraxial form of the Landau wave function is an
eigenfunction of Eq. (8) and is given by [45]

Ψ = A exp (i`φ) exp [−iζG(z)],

ζG(z) = (2n+ 1 + |`|+ `+ 2sz)
2z

kw2
m

, wm =
2√
|e|B

,

(9)
where ζG(z) is the Gouy phase. Amazingly, the proba-
bility and charge densities defined by the nonrelativistic
Landau wave function (2) and by the relativistic parax-
ial wave function (9) coincide. This property follows
from the paraxial approximation for the electron veloc-
ity, |v⊥| � v, and takes place in the laboratory frame.
In this frame, the transversal motion can be described by
means of nonrelativistic quantum mechanics.

While Eq. (9) is similar to Eqs. (5) and (6), there
is a substantial difference between them. The paraxial
Landau wave function (9) describes a wave with a fixed
value of pz, while the free-space LG beam is formed by
partial waves with different pz. Thus, the use of the
function (9) for a general description of a twisted parax-
ial electron in a uniform magnetic field means that even
a weak magnetic field leads to destroying the longitudi-
nal structure of LG beams. However, any partial wave
forming the beams does not change its energy during the
beam penetration from the free space into a magnetic
field region. Therefore, the above-mentioned meaning is
not reasonable and the Landau solution of Eq. (8) is
not general. To obtain the general solution of this equa-
tion, we use its similarity to Eq. (4) and utilize optical
approach [27, 46–48] applied for the free-space paraxial
equation (see Supplemental Material [49], Sec. I). The
subsequent derivation shows that an electron state is de-
scribed by the matter wave beam (5) but three functions
on z should be overridden. The power and exponential
functions are defined by an asymptotic behavior of Eq.
(8) at ζ → 0 and ζ → ∞, respectively (see Ref. [20]).
These functions cannot be totally specified a priori be-
cause of the presence of the last operator in Eq. (8).
It is helpful to suppose that the general solution of Eq.
(8) has the form (5), where w(z), R(z), and ΦG(z) are
not yet specified. First of all, we need to check that the
corresponding wave functions Ψ form a set of orthogonal
eigenfunctions. When we denote

ζ =
2r2

w2(z)
,
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the substitution of Ψ into Eq. (8) results in

exp [i(Φ− `φ)]∇2
⊥Ψ0 +

{
−4(`+ 2sz)

w2
m

− 4r2

w4
m

− k2r2

R2(z)
− k2r2

[
1

R(z)

]′
+ 2kΦ′G(z)

}
Ψ

+2ikΥ(z)

[
1 + |`| − 2r2

w2(z)
+

4r2L
|`|
n

′
(ζ)

w2(z)L
|`|
n (ζ)

]
Ψ = 0,

∇2
⊥Ψ0 =

2

w2(z)

[
4ζL|`|n

′′
(ζ) + 4(−ζ + |`|+ 1)L|`|n

′
(ζ)

+(ζ − 2|`| − 2)L|`|n (ζ)

]
Ψ0

L
|`|
n (ζ)

,

Υ(z) =
1

R(z)
− w′(z)

w(z)
,

(10)
where Ψ0 = A exp (i`φ) and primes denote derivatives
with respect to mentioned variables (ζ or z). We can
check that properties of the generalized Laguerre polyno-
mials confirm our supposition about the validity of wave
functions (5) in the considered case. In this case,

∇2
⊥Ψ0 =

4

w2(z)

[
r2

w2(z)
−N

]
Ψ0, (11)

Ψ0 coincides with the Landau wave eigenfunction, and
the following conditions should be satisfied:

1

R(z)
=
w′(z)

w(z)
,

k2

R2(z)
+ k2

[
1

R(z)

]′
=

4

w4(z)
− 4

w4
m

,

2kΦ′G(z) =
4(`+ 2sz)

w2
m

+
4N

w2(z)
.

(12)
The straightforward solution of these differential equa-

tions is based on known integrals [50] and has the form
(Supplemental Material [49], Sec. II)

w(z) = w0

√
1

2

[
1 +

w4
m

w4
0

−
(
w4
m

w4
0

− 1

)
cos

2z

zm

]
= w0

√
cos2

z

zm
+
w4
m

w4
0

sin2 z

zm
, zm =

kw2
m

2
,

R(z) = kw2
m

cos2 z
zm

+
w4

m

w4
0

sin2 z
zm(

w4
m

w4
0
− 1
)

sin 2z
zm

,

ΦG(z) = N arctan

(
w2
m

w2
0

tan
z

zm

)
+

(`+ 2sz)z

zm
.

(13)

The normalization constant Cn` is given by Eq. (2).
It is important that the exact FW Hamiltonian for

a Dirac particle in a nonuniform but time-independent
magnetic field B(r) has also the form (7) [39, 41]. We
expect that our approach can be useful for a general de-
scription of relativistic Dirac particle beams in some ax-
ially symmetric nonuniform magnetic fields, in particu-
lar, for the relativistic electron beams in round magnetic

-2 -1 0 1 2
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m

FIG. 1. The beam width, w(z), of a twisted electron beam in a
uniform magnetic field for different values of the ratio w0/wm.
The black line describes the case of w(z) = w0 = wm, when
the beam width is equal to the transverse magnetic width of
Landau levels, wm. The blue and green lines demonstrate the
beam width defined by our general solution for w0 = 0.5wm

and w0 = 2wm, respectively. The red line shows the beam
width of a free twisted electron beam for w0 = 0.5wm.

lenses and real solenoids. These problems are of great
practical importance (see Refs. [51, 52] and references
therein).

In the cases of wm > w0 and wm < w0 (for a rela-
tively weak and strong magnetic field, respectively), the
derivations are very different but the corresponding for-
mulas for w(z), R(z), and ΦG(z) coincide. w(z) oscil-
lates between w0 and w2

m/w0. In the case of B → 0
(wm >> w0), z << zm, there is a full compliance with
the solution for a free twisted particle and the beam pa-
rameters (13) take the form (6). This important prop-
erty is illustrated by Fig. 1 (the blue and red lines at
z = 0) and Fig. 2 (the middle plot). In the latter fig-
ure, the probability density distribution in the xy plane
is shown. Our result coincides with the Landau solution
when w0 = wm. The coincidence is shown by the black
line at Fig. 1 and by Fig. 2 (the left plot). In this case,
the general wave function (5), (13) takes the form (9)
and w(z) = wm = const. However, the paraxial form (9)
of the Landau wave eigenfunction cannot explain a tran-
sition to the free-space solution (5), (6) at B → 0. The
inconsistency of the weak-field limits of the Landau wave
eigenfunction and its relativistic generalizations with the
well-known equation for free twisted electron beams is
rather natural because Refs. [16, 19–24] describe only
unstructured electrons.

Unlike the wave function in the free space, the wave
function defined by Eq. (13) is spatially periodic. Amaz-
ingly, its period L = πzm = πkw2

m/2 = 2πP/(ωcE) is
equal to the pitch of the helix characterizing the classical
motion of electrons (ωc is the cyclotron frequency). The
spatially periodic behavior of the wave function is illus-
trated by Fig. 1. A similarity between the probability
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(a) (b) (c)

x/wm

y
/
w

m

FIG. 2. The transverse probability density defined by our
solution for different values of the longitudinal coordinate z
and the ratio w0/wm. In the case (a), w0 = wm and our
general solution coincides with the Landau solution and is
independent of the longitudinal position. In the case (b),
w0 = 0.5wm and z = 0. In this case, our solution coincides
with the corresponding one for a free twisted electron. In the
case (c), w0 = 0.5wm and z = zm. All the plots presented
correspond to the quantum numbers n = 1, ` = 2.

density distributions of the LG and Landau wave eigen-
functions is demonstrated by Fig. 2. Equations (5) and
(13) show that the wave function of a twisted electron in
a uniform magnetic field depends only on the total OAM
~` but not on intrinsic and extrinsic OAMs separately.
Therefore, the two latter OAMs cannot be separated.

The LG beam described by Eqs. (5), (13) is formed
by partial waves with the same E and P but slightly
different directions of the kinetic momentum. Figures 1,
2 clearly show differences between the Landau solution
and our one. As follows from Eq. (13) and Fig. 1, our
solution for w(z) always crosses the Landau line.

The mean square of the beam radius can be obtained
by an integration of the operator r2 over the transversal
coordinates r, φ and reads (cf. Refs. [13, 53])

< r2 >=

∫
Ψ†Ψr3drdφ =

w2(z)

2
(2n+ |`|+ 1) . (14)

The electric quadrupole moment of twisted electrons in-
troduced in Ref. [53] is measured in the focal plane z = 0
and is given by

Q0 =
|e|w2

0

2
(2n+ |`|+ 1) . (15)

The relativistic magnetic moment and the tensor mag-
netic polarizability are defined in Refs. [54] and [53],
respectively (see also Refs. [55, 56]). We note that inte-
grating over the longitudinal coordinate results in

1

2πzm

∫ 2πzm

0

w2(z)dz =
w2

0

2

(
1 +

w4
m

w4
0

)
= w2

m

[
1 +

1

2

(
wm
w0
− w0

wm

)2
]
.

(16)

Equation (2), its relativistic generalizations [16, 21,
22], and Eq. (9) do not describe twisted electrons which
constitute structured beams even in the free space. The
necessity to use the general equations (5), (13) should
substantially change the present theoretical description
[3, 7, 8, 13–15] of twisted electron beams in uniform mag-
netic fields.

Energies of all partial waves which manifold defines a
twisted or a untwisted structured state conserve when a
beam penetrates from the free space into a magnetic field
region. Therefore, final energies of such partial waves also
coincide. This property remains valid for any nonuniform
magnetic field. We predict the effect of a different behav-
ior of two LG beams with opposite OAM directions pene-
trating from the free space into the magnetic field. Due to
a helical motion in the magnetic field, both twisted and
untwisted electrons acquire extrinsic OAMs with posi-
tive projections onto the field direction (cf. Ref. [45]).
When the initial intrinsic OAMs of electrons in the two
beams are antiparallel (`1 = −`2 = |`2|), an appearance
of the extrinsic OAMs conditions the relation `′1 + `′2 > 0
for the final OAMs. The change of total OAMs leads to
the difference of magnetic moments of electrons which
is observable. The transversal velocities of twisted elec-
trons are nonzero and the Lorentz force turns electrons
inwards and outwards for the beams with the intrinsic
OAMs `1 > 0 and `2 < 0, respectively. When the initial
beam waists coincide (w1 = w2), the final beam waists
differ and w′1 < w′2. The difference should be of the order
of wm. In the general case, the radial quantum numbers
will also be changed (n′1 6= n′2). The effect is observable
and the predicted properties can be discovered in a spe-
cially designed experiment which is in principle similar
to that fulfilled in Ref. [57].

In Ref. [28], the effect of a quantization of the ve-
locity and the effective mass of structured photons and
electrons has been predicted. A similar effect should
takes place for twisted and other structured electrons in
the uniform magnetic field. Expectation values of the
group velocity are obtained by integrating the operator
v = ∂HFW /(∂p) over the transversal coordinates r, φ
and are defined by (cf. Ref. [28])

< vz >=
cP

E

(
1− < π2

⊥ > −2eszB

2P 2

)
=

ck√
k2 +K2

(
1 +

1

k

〈
∂Φ

∂z

〉)
, K =

mc

~
.

(17)

The effective electron mass is equal to (cf. Refs. [28, 58])

meff =
√
m2+ < π2

⊥ > −2eszB =

√
m2 − 2k

〈
∂Φ

∂z

〉
.

(18)
Cumbersome but straightforward calculations similar to
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those fulfilled in Ref. [28] result in

< vz >=
ck√

k2 +K2

[
1− Λ

k

]
, meff =

√
m2 + 2kΛ,

Λ = −
〈
∂Φ

∂z

〉
=
N

k

(
1

w2
0

+
w2

0

w4
m

)
+

2(`+ 2sz)

kw2
m

.

(19)
In the uniform magnetic field, the effect of quantiza-

tion of the velocity and the effective mass of structured
electrons strongly depends on a kind of the structured
electron beam. A distance between neighboring quan-
tum levels of these quantities defining the quantization
is determined by Λ. Importantly, a similar quantization
takes place for the Landau beams in the uniform mag-
netic field and the LG beams in the free space. In these
cases, the formulas for < vz > and meff presented in Eq.
(19) remain the same and the corresponding formulas for
ΛL and Λfree read

ΛL =
2(N + `+ 2sz)

kw2
m

, Λfree =
N

kw2
0

. (20)

The formula for ΛL follows from the paraxial form of
the Landau wave function (9) and can also be extracted
from the Landau solution. The formula for Λfree has
been derived in Ref. [28]. These formulas can also
be obtained from Eq. (19). For nonoscillating Landau
beams w0 = wm and for twisted beams in the free space
wm → ∞ (B = 0). While some enhancement of Λ takes
place in comparison with Λfree due to the presence of
the uniform magnetic field, this enhancement is not sig-
nificant.

The kinetic energy of twisted electrons usually ob-
tained in electron microscopes is about 200÷300 keV.
An estimate of the beam waist w0 ∼ 10−9 m can be ex-
tracted from results obtained in Ref. [59]. When B = 1
T, wm = 5.1 × 10−8 m. In most cases wm is, therefore,
significantly bigger than w0. Equations (19) and (20)
explicitly shows that the distances between neighboring
quantum levels of average velocities of the Landau and
LG beams in magnetic fields also substantially differ. As
follows from Eq. (17), the average velocities themselves
coincide for the two kinds of beams if the wavenumber
k is the same. For the LG beams, the above-mentioned
distance is defined by

∆ < vz >=
∆ < vz >free Λ

Λfree

=
c

k
√
k2 +K2w2

0

[
1 +

w4
0

w4
m

+
2(`+ 2sz)w

2
0

Nw2
m

]
.

(21)

As a rule, Λ is close to Λfree. For the above-mentioned
w0 and wm, sz = 1/2, and the quantum state illustrated
by Fig. 2, Λ/Λfree = 1.0005. When the kinetic energy
E − mc2 = 200 keV and w0 = 10−9 m, ∆ < vz >=
1.1× 10−7c = 33 m/s. When the beam energy spread is
small enough, this quantity may be measured. Thus, the

existence of the LG beams in the uniform magnetic field
can be proven. For the Landau beams, the quantization
of the average velocity also takes place but this effect is
by three orders of magnitude less than for the LG ones.
Of course, this quantization can always be calculated.

As follows from Eq. (19), the quantization of the ef-
fective mass of the LG and Landau beams in the uniform
magnetic field is given by

∆mLG
eff ≈

1

mw2
0

, ∆mLandau
eff ≈ 1

mw2
m

. (22)

This quantization cannot be measured directly, but it can
be derived from the quantization of the average velocity.

In summary, we have revisited the theory of twisted
paraxial electrons and have fulfilled their general
quantum-mechanical description in the uniform magnetic
field. We have generalized the Landau theory and its rel-
ativistic extensions. The results obtained establish fun-
damental properties of twisted and other structured elec-
trons and substantially change the common view on the
considered problem. Unlike all precedent investigations,
we have determined structured electron states which are
not plane waves along the magnetic field direction. In
the weak-field limit, our solution agrees with the well-
known equation for free twisted electron beams. To the
contrary, the weak-field limits of the Landau wave func-
tion and its relativistic generalizations are inconsistent
with this equation. We have predicted the important ob-
servable effect of the different behavior of LG beams with
the same beam waist and opposite OAM directions pene-
trating from the free space into the magnetic field. When
`1 = −`2 = |`2|, the final beam waists differ (w′1 < w′2)
and the final OAMs satisfy the relation `′1 + `′2 > 0. Dis-
tinguishing features of the quantization of the velocity
and the effective mass of the LG and Landau electrons
in the uniform magnetic field have been analyzed. A sinu-
soidal dependence of the beam waist on the longitudinal
coordinate is the first example of spatial oscillations of
the LG beams. This effect can be compared with other
unusual effects found for the LG and Gaussian beams
(see, e.g., Ref. [60]).
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