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Abstract

Zitterbewegung of massless particles with an arbitrary spin is analyzed in various representa-

tions. Dynamics of the group velocity of a massless particle as a whole and of the corresponding

radius vector is determined. This radius vector defines any fixed point of the envelope of the mov-

ing wave packet characterizing the particle and its group velocity differs from the group velocities

of any points of the wavefront. We consider free massless scalar and Dirac particles, the photon,

and massive and massless particles with an arbitrary spin and describe them in different represen-

tations. For particles with an arbitrary spin, the generalized Feshbach-Villars representation and

the Foldy-Wouthuysen one are used. Zitterbewegung takes place in any representation except for

the Foldy-Wouthuysen one. Formulas describing the motion of a “trembling” free particle are the

same in any representation. In the Foldy-Wouthuysen representation, the operators of the velocity

and momentum of a free particle are proportional and Zitterbewegung does not take place. Since

the radius vector (position) and velocity operators are the quantum-mechanical counterparts of

the classical position and velocity just in the Foldy-Wouthuysen representation, Zitterbewegung is

not observable. The same conclusion has been previously made for free massive particles. For rela-

tivistic massive particles with spins 0, 1/2, 1 and massless particles with spins 0, 1/2 in arbitrarily

strong electromagnetic fields, independent of the external fields Zitterbewegung does not appear

in the Foldy-Wouthuysen representation either. This conclusion is made for leading terms in the

Hamiltonian proportional to the zero and first powers of the Planck constant and for such terms

proportional to ~
2 which describe contact interactions.
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mation; photon
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I. INTRODUCTION

Zitterbewegung is one of the most important and widely discussed problems of quantum

mechanics (QM). It is a well-known effect consisting in a superfast trembling motion of a

free particle. This effect has been first described by Schrödinger [1] for relativistic electrons

in a free space as a result of an interference between positive and negative energy states.

This effect is also known for a scalar particle [2–4] and for a massive Proca one [4, 5]. There

are plenty of works devoted to Zitterbewegung. In the past, Schrödinger’s interpretation

of Zitterbewegung was generally accepted [6–8]. Evidently, Zitterbewegung appears due

to mixing states with positive and negative total energies. The Foldy-Wouthuysen (FW)

transformation eliminates this mixing and, therefore, Zitterbewegung. Since just operators

and equations of motion in the FW representation are counterparts of corresponding classical

variables and equations (see Ref. [12] and references therein), Zitterbewegung is not an

observable physical effect. We focus our attention on papers presenting a correct analysis of

the observability of this effect for Dirac and scalar particles. The correct conclusions about

the origin and observability of this effect have been made in Refs. [3–5, 9–14]. However,

Zitterbewegung of massless particles has not been thoroughly studied. A probable cause is a

demonstration by Newton and Wigner [15] and Wightman [16] for the photon that it cannot

be strictly localized according to natural criteria. However, the group velocity of massless

particles and the corresponding radius vector can be determined and a rigorous consideration

of their Zitterbewegung can be fulfilled. Such a consideration is a goal of the present study.

It has been concluded in some precedent investigations that Zitterbewegung of free photons

exists [17, 18]. The existence of this effect is denied in Refs. [19–21] but it is noted that

Zitterbewegung exists and can in principle be observed for interacting photons. These

conclusions have been based on the heuristic forms of the Dirac-like consideration [17, 18]

and on the Dirac-like quantum-mechanical equation (without the FW transformation) [20].

The possibilities of a rigorous quantum-mechanical determination of the appropriate position

operator and the FW transformation of the Dirac-like quantum-mechanical equation have

not been realized in precedent investigations of Zitterbewegung of the photon.

The paper is organized as follows. In the next section, we explain previously obtained

results for Zitterbewegung of massive fermions and bosons. Distinguishing features of a

quantum-mechanical description of massless particles are considered in Sec. III. In Sec.

3



IV, we study Zitterbewegung of massless scalar and Dirac particles. Quantum mechanics

of the free photon is presented in Sec. V and Sec. VI is devoted to the analysis of its

Zitterbewegung. In Sec. VII, we consider Zitterbewegung of particles with an arbitrary spin

in the generalized Feshbach-Villars (GFV) representation. The problem of Zitterbewegung

in external fields is analyzed in Sec. VIII. Finally, we summarize the obtained results in Sec.

IX.

The system of units ~ = 1, c = 1 and the standard denotations of the Dirac matrices (see,

e.g., Ref. [22]) are used. Hereinafter, p ≡ −i~∇ denotes the momentum operator.

II. PREVIOUSLY OBTAINED RESULTS FOR MASSIVE FERMIONS AND

BOSONS

In our short review of previously obtained results, we follows Ref. [4]. The Dirac Hamil-

tonian for a free spin-1/2 particle is given by

HD = βm+α · p (1)

and the Dirac velocity operator has the form

vD ≡ dr

dt
= i[HD, r] = α. (2)

The operator vD is time-dependent:

dvD
dt

= i[HD, vD] = i{α,HD} − 2iαHD = 2i(p−αHD). (3)

The problem is usually considered in the Heisenberg picture:

vD(t) = eiHDtαe−iHDt. (4)

In the Schrödinger picture, the result is the same. We suppose that the eigenvalues of the

momentum and Hamiltonian operators are p and H , respectively. In this case, Eq. (3) can

be presented in terms of the Dirac velocity operator:

dvD
dt

= 2i(p− vDH). (5)

Its integration shows that the Dirac velocity oscillates:

vD(t) =
[

vD(0)−
p

H

]

e−2iHt +
p

H
. (6)
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The evolution of the Dirac position operator obtained from this equation is given by

rD(t) = rD(0) +
pt

H
+

i

2H

[

vD(0)−
p

H

]

(

e−2iHt − 1
)

. (7)

A similar result has been obtained for a free scalar (spin-0) particle (see Ref. [3] and

references therein). In this case, the initial Feshbach-Villars (FV) Hamiltonian reads [23]

HFV = ρ3m+ (ρ3 + iρ2)
p2

2m
, (8)

where ρi (i = 1, 2, 3) are the Pauli matrices. The velocity operator in the FV representation

is equal to

vFV = (ρ3 + iρ2)
p

m
. (9)

The corresponding acceleration operator is defined by the equation similar to Eq. (3) [3]:

dvFV

dt
= i[HFV , vFV ] = i{vFV ,HFV } − 2ivFVHFV = 2i(p− vFVHFV ). (10)

It is supposed that the eigenvalues of the momentum and Hamiltonian operators are p and

H , respectively. As a result, the final equations of dynamics of the free scalar particle [3]

are equivalent to the corresponding equations for the Dirac particle:

vFV (t) =
[

vFV (0)−
p

H

]

e−2iHt +
p

H
, (11)

rFV (t) = rFV (0) +
pt

H
+

i

2H

[

vFV (0)−
p

H

]

(

e−2iHt − 1
)

. (12)

Zitterbewegung can also be considered in the GFV representation allowing one to describe

not only massive scalar particles but also massless ones. This representation which has been

previously used in Refs. [24–27] is, in fact, an infinite set of representations. It has been

obtained in Ref. [4] that equations of motion in the GFV representation are equivalent to

Eqs. (11), (12).

Amazingly, the same physical situation takes place for Proca (spin-1) particles. Massive

Proca particles have been investigated in Refs. [4, 5]. Zitterbewegung takes place in the

Sakata-Taketani representation [28, 29] which does not exist for massless particles. The final

equations of motion of a free Proca particle are equivalent to the corresponding equations

for the Dirac and scalar particles [4, 5]:

vST (t) =
[

vST (0)−
p

H

]

e−2iHt +
p

H
, (13)
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rST (t) = rST (0) +
pt

H
+

i

2H

[

vST (0)−
p

H

]

(

e−2iHt − 1
)

. (14)

In connection with this equivalence, we can mention the existence of bosonic symmetries of

the standard Dirac equation [30–36].

However, a coincidence of results obtained for particles with different spins in various

representations does not mean that the effect of Zitterbewegung is observable. It has been

pointed out in Ref. [37] that the transition to the FW representation establishes the pro-

portionality of the operators p and v which should take place for free particles with any

spin. In the FW representation, the acceleration vanishes and the Dirac Hamiltonian takes

the form [38]

HFW = β
√

m2 + p2, p ≡ −i~ ∂

∂r
. (15)

The velocity operator is given by

vFW = β
p

√

m2 + p2
=

p

HFW
. (16)

As a result, dvFW/(dt) = 0 and Zitterbewegung does not take place. Similar relations have

been obtained for massive particles with the spins 0 and 1 (see Ref. [4] and references

therein).

The FW representation is the only one in which relativistic QM takes a Schrödinger form

and expectation values of all operators correspond to respective classical variables (see Refs.

[12, 39–42] and references therein). Therefore, this representation is very convenient for

checking an observability of physical effects. Zitterbewegung takes place only for operators

which are not the quantum-mechanical counterparts of the classical position and velocity.

In particular, its appearance in the Dirac representation is caused by a significant difference

between physical meanings of the Dirac and FW position operators (see Ref. [12] and

references therein).

III. DISTINGUISHING FEATURES OF A QUANTUM-MECHANICAL DE-

SCRIPTION OF MASSLESS PARTICLES

It should also be taken into account that particles can be in localized and delocalized

states (see Ref. [58]). Photons being quanta of electromagnetic waves are usually delocalized

and are commonly described in the framework of the wave theory. This theory determines
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local velocities of the wave field. Certainly, phase and group velocities are different. A local

phase velocity is defined by the phase front Φ(r), vp = ω/|∇Φ(r)|, where ω = ck is the

angular frequency [59, 60]. Another frequently used formula for the local phase velocity has

been obtained in Ref. [61] (see also Ref. [62]):

vp = c

[

1 +
∇2A(r)

k2A(r)

]−1/2

. (17)

The local group velocity is given by vg = |∂ω∇Φ(r)|−1 [59, 60] (see also Ref. [63] for

details). The both local velocities can be subluminal and superluminal depending on a

region. Certainly, they characterize important properties of light beams. For example, the

local phase velocity defines an electron acceleration in a laser beam [64–66]. The distribution

of the local phase velocity has been measured in Ref. [67].

The quantum-mechanical approach substantially differs. It is known that the photon

and other massless particles cannot be spatially localized [15, 16, 43, 44]. In any case, this

statement is valid for plane-wave states. Conditions admitting a localization of massless

particles have been considered in Ref. [45]. Examples of light fields localized in two dimen-

sions are Hermite-Gaussian, Laguerre-Gaussian, and Gaussian beams [46]. Amazingly, the

two-dimensional spatial localization of structured light beams results in nonzero effective

masses of their quanta [68].

As a result, the position operator r = (x, y, z) does not characterize the coordinates of

massless particles. To determine a physical sense of this operator, we can use the classical

Hamilton equation for the velocity:

v =
dr

dt
=
∂H
∂p

, (18)

where H is the Hamiltonian. In QM, this equation remains valid as an operator equation and

∂H/(∂p) = i[H, r]. For massless particles, H and p correspond to ~ω and ~k, respectively,

and ∂H/(∂p) is the group velocity. The phase velocity is equal to vph = ω/k. Thus, r is

a radius vector of a moving point characterizing any fixed point of the envelope of the wave

packet and v is the velocity of its motion. The latter quantity defines the group velocity

of a massless particle as a whole. Despite great achievements of the wave theory, it cannot

rigorously describe the motion of field quanta because any field quantum is extended over

the entire space. In particular, a rigorous analysis of a subluminality of Gaussian and other

structured light beams has been recently carried out just in the framework of QM [68].
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The descriptions of massless and massive particles in QM are substantially different.

In the general case, basic equations for massless particles cannot be obtained from the

corresponding equations for massive ones either by the substitution m = 0 or in the limit

of m → 0. First of all, the definition of the spin should be radically changed. For massive

particles, the conventional three-component spin (pseudo)vector s is defined in the particle

rest frame (see Ref. [12] and references therein). However, such a frame does not exist for

massless particles. For such particles, the spin can be introduced but its projection onto the

momentum direction can have only two values, minimum and maximum. Thus, the helicity

of a massless particle is equal to (see, e.g., Ref. [22])

h =
s · p
p

= ±s, (19)

where s is the spin quantum number. Two partial waves describing states with h = ±s
can be coherent when these states have the same energy. When the helicity is fixed, this

polarization is circular. When the two partial waves describing states with the opposite

helicity are coherent, the particle polarization is different (e.g., it can be linear).

It can be easily shown that the Dirac-Pauli spin algebra is applicable for a description of

massless Dirac fermions. Squaring Eq. (19) results in

(s · p)2 = 1

4
p2. (20)

This equation is satisfied with the Pauli matrix σ = 2s. Thus, the polarization of massless

Dirac fermions can be defined by the conventional Pauli and Dirac matrices. As a result, the

Dirac equation with m = 0 can be used for a description of massless fermions. Of course,

the operators σ and Σ characterize the polarization and helicity of massless particles but

do not define the spin in the particle rest frame.

The situation is different for particles with higher spins including the photon (s = 1) and

the graviton (s = 2). The number of components of wave functions is defined by the number

of independent spin components (2s + 1 for massive particles). The quantum-mechanical

description is equally applicable to states with a positive and a negative total energy. For

massive particles, the minimum number of components of wave functions is therefore equal

to 2(2s + 1). Such wave functions are bispinors for Dirac particles and bispinor-like wave

functions for particles with other spins. In particular, the bispinor-like wave functions have

been successfully used for massive spin-1 particles [4, 29, 56, 57].
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Some initial equations describing spinning massive particles may be applicable to massless

ones. However, the condition (19) defining the helicity should be satisfied in the latter case.

This condition defines two admissible longitudinal spin projections and reduces the number

of independent spinor-like wave functions to four. In addition, wave functions of massless

particles loose the probabilistic interpretation and should be considered as a distribution

of a particle field strength. We can conclude that Hamiltonian equations for massive and

massless particles substantially differ and massless particles should be considered separately.

This conclusion is valid even for s = 0, 1/2 while the Klein-Gordon and Dirac equations also

cover massless particles. For massless scalar particles, the well-known FV transformation [23]

becomes inapplicable and the GFV one [24] should be used. For massless Dirac particles, one

should take into account the condition (19). However, one of properties of the Dirac-Pauli

spin algebra is a possibility to present any spin polarization as a coherent superposition of

two basic states with the helicity h = ±1/2. Therefore, the case of massless Dirac fermions

is not very special and can basically be obtained from previous results for massive spin-1/2

particles. Of course, a difference between photons and massive spin-1 particles is much more

substantial.

Zitterbewegung is a rather important quantum-mechanical problem and massless parti-

cles occupy a significant place in QM. However, the problem of Zitterbewegung of massless

particles was not appropriately studied in previous investigations. In particular, the exis-

tence of Zitterbewegung of free photons has been claimed [17, 18]. It has been noted in Refs.

[19–21] that Zitterbewegung does not exist for free photons but takes place for interacting

ones and is observable in this case. We consider Zitterbewegung of photons in Secs. VI,

VIII.

Therefore, the problem of Zitterbewegung of massless particles is still unsolved. Its

detailed study fulfilled in the present paper is rather important. In particular, the unsolved

issue of great interest is Zitterbewegung in external fields.

IV. ZITTERBEWEGUNG OF MASSLESS SCALAR AND DIRAC PARTICLES

In this section, we show an absence of Zitterbewegung of massless scalar and Dirac

particles in the FW representation and its existence in some other representations. We apply

the conventional commutative spatial coordinates. The use of noncommutative coordinates
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(i.e., noncommutative geometry) has been considered, e.g., in Ref. [12].

Certainly, we can utilize the general equation for the Hamiltonian in the GFV represen-

tation derived in Ref. [24]. For a massless scalar particle, the initial Klein-Gordon equation

has the form
(

∂2

∂t2
−∇2

)

ψ = 0 (21)

and the GFV Hamiltonian is given by

HGFV = ρ3
p2 +N2

2N
+ iρ2

p2 −N2

2N
, (22)

where N is an arbitrary real nonzero parameter. Hereinafter, ρ1, ρ2, and ρ3 are the Pauli

matrices:

ρ1 =





0 1

1 0



 , ρ2 =





0 −i
i 0



 , ρ3 =





1 0

0 −1



 . (23)

For a scalar particle, the normalization of the two-component wave function in the FV

representation [23]

Ψ =





φ

χ



 (24)

is given by
∫

Ψ†ρ3ΨdV = 1.

Any GFV Hamiltonian is pseudo-Hermitian (more exactly, ρ3-pseudo-Hermitian): H‡
GFV =

ρ3H†
GFV ρ3 = HGFV . For massless and massive particles, the normalization of GFV and FV

wave functions is the same:
∫

Ψ†
GFV ρ3ΨGFV dV = 1.

The velocity operator in the GFV representation is equal to

vGFV = (ρ3 + iρ2)
p

N
. (25)

The corresponding acceleration operator reads

dvGFV

dt
= i[HGFV , vGFV ] = i{vGFV ,HGFV } − 2ivGFVHGFV = 2i(p− vGFVHGFV ). (26)

The dynamics of the massless scalar particle is independent of N and is defined by the

following equations:

vGFV (t) =
[

vGFV (0)−
p

H

]

e−2iHt +
p

H
, (27)
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rGFV (t) = rGFV (0) +
pt

H
+

i

2H

[

vGFV (0)−
p

H

]

(

e−2iHt − 1
)

. (28)

These equations are the same as the equations previously derived for massive particles.

For a massless Dirac particle, we use the initial Dirac equation (1), suppose that m = 0,

and repeat all calculations presented in Sec. II. Dynamic equations are the same as Eqs.

(6) and (7) and show the existence of Zitterbewegung.

As well as for massive particles, Zitterbewegung does not appear in the FW representa-

tion. The use of this representation for spinning massless particles should be commented.

For a massless Dirac particle, the FW transformation operator is given by (cf. Refs.

[38, 39, 47])

UFW =
p+ γ · p√

2p
. (29)

The FW Hamiltonian reads

HFW = β
√

p2 = βp (30)

and the velocity operator is given by

vFW = β
p

p
=

p

HFW
. (31)

Thus, the velocity and momentum are proportional. We can repeat the conclusion [10, 11]

that Zitterbewegung is the result of the interference between positive and negative energy

states. In the FW representation, it disappears not only for massive [9–11] but also for

massless Dirac particles.

V. QUANTUM MECHANICS OF THE PHOTON

While the quantum theory of radiation is well known [69] and QM of the photon has

a long history (see Refs. [50, 70, 71] and references therein), some important results, in

particular, the FW transformation for the photon [55], have been obtained comparatively

recently. Photon (light) beams are also extensively studied in optics. In optics, the wave

function of the photon, Ψ, is not a wave function in the same sense as for the electron

and determines the relative amplitude of the electric field [48–50]. The full description

of an electromagnetic field including its interaction with matter is based on the quantum

field theory (see Refs. [51, 52]). However, the propagation of light in a free space can be
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adequately described with the Riemann-Silberstein vector

F =
1√
2
(E + iB) .

It allows one to reduce the Maxwell equations and to present them in the form [53, 54]

i~
∂F

∂t
= c(S · p)F , (32)

where S = (S1, S2, S3) is a vector in which the components are the conventional spin-1

matrices [56]:

S1 =











0 0 0

0 0 −i
0 i 0











, S2 =











0 0 i

0 0 0

−i 0 0











, S3 =











0 −i 0

i 0 0

0 0 0











. (33)

This definition is not unique. One can use any other spin matrices satisfying the properties

[Si, Sj] = ieijkSk, SiSjSk + SkSjSi = δijSk + δjkSi, S2 = 2I, (34)

where I is the unit 3 × 3 matrix. The spin matrices act on three components of F . The

equation (32) is similar to the Weyl equation for a massless Dirac particle [54]. When the

six-component wave function is defined by [55, 70, 71]

Ψ =
1√
2





φ

χ



 ≡ 1√
2





E

iB



 , (35)

the Dirac-like equation for the free electromagnetic field can be obtained [55, 70, 71]:

i~
∂Ψ

∂t
= α · pΨ, α =





0 S

S 0



 . (36)

In this equation, H = α · p is the Dirac-like Hamiltonian. Only Eq. (36) has been taken

into account in Ref. [20].

The additional condition of an orthogonality of the momentum direction to the fields E

and B should also be taken into account. It follows from the Maxwell equations in the free

space that p · φ = p · χ = 0. As a result, the number of independent components of Ψ

reduces to four.

The FW transformation of Eq. (36) has been carried out only in 2014 by Barnett [55].

It is instructive to mention that any operator V satisfies the relation

iV ×G = (S · V )G,
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where G is equal to E or B. The FW transformation operator is equivalent to the operator

(29) for the massless Dirac particle but has six components:

UFW =
p+ βα · p√

2p
, β =





I 0

0 −I



 . (37)

As a result, the FW wave function of the photon, ΨFW = UFWΨ, is defined by

Ψ
(+)
FW =





φ
(+)
FW

0



 =





E

0



 if H = |p| > 0,

Ψ
(−)
FW =





0

iχ
(−)
FW



 =





0

iB



 if H = −|p| < 0.

(38)

Here p and H are eigenvalues of the momentum and Hamiltonian operators, respectively.

Negative values ofH define photon states with a negative total energy. In Eq. (38), the fields

E and B also characterize states with a positive and a negative total energy, respectively.

It is convenient to present the fields in the matrix form, E =











E1

E2

E3











and B =











B1

B2

B3











.

For massless particles including the photon, the physical meaning of negative-energy

states is mostly the same as for massive particles. The problem of these states cannot be

satisfactorily resolved in the context of relativistic QM [74] but the negative-energy states

are rather important for quantum electrodynamics and quantum field theory [75]. Such

states can be used for a description of virtual particles and a state with a negative energy

can characterize a virtual photon. We should note that masses of particles with negative

energies are also negative [76]. Some of the most important forces can be considered as an

exchange of virtual particles. This possibility exists for all major forces like electromagnetic,

weak, strong, and gravitational ones. In particular, the electromagnetic interaction of a

charged body can be interpreted as an exchange of virtual photons. Virtual photons play a

pivotal role in quantum physics (see, e.g., Refs. [19–21, 77–81]).

In the FW representation, p · φ = 0 if H = |p| > 0 and p · χ = 0 if H = −|p| < 0.

Therefore, the number of nonzero and independent components of ΨFW reduces to two. It

has been proven in Ref. [55] that

P2Ψ ≡ [p2 − (α · p)2]Ψ = [p2 − (Σ · p)2]Ψ = 0, Σ =





S 0

0 S



 . (39)
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As a result of derivations [55], the FW Hamiltonian is defined by

i~
∂ΨFW

∂t
= HFWΨFW , HFW = βp. (40)

Quantum mechanics of the photon agrees with the general condition (19) for the helicity.

For the photon, s = S and s = Σ when one uses two-component and four-component wave

functions, respectively, and s = 1. Squaring Eq. (19) leads to the relation (Σ · p)2 = p2

which is equivalent to Eq. (39) (see Ref. [55] and references therein).

Equation (38) does not mean that the electric and magnetic fields defines the FW wave

functions of real and virtual photons, respectively. In the electromagnetic wave, these fields

are not independent and are connected by the relationsB = n×E, E = −n×B, n = p/|p|.
In addition, one can introduce the transformed spinor-like wave functions φ′(+)

FW = n ×
φ

(+)
FW , χ

′(−)
FW = n×χ(−)

FW with the same FW Hamiltonian (40). As a result, the transformed

FW wave functions take the form

Ψ′(+)
FW =





φ′(+)
FW

0



 =





B

0



 if H = |p| > 0,

Ψ′(−)
FW =





0

iχ′(−)
FW



 =





0

−iE



 if H = −|p| < 0.

(41)

Equations (39) and (41) show that the both fields can be equivalently used for a definition

of real and virtual photons.

To complete QM of the photon, we need to determine an equation of the second order in

the temporal and spatial derivatives (Klein-Gordon-like equation). The quantum-mechanical

description of the photon in the GFV representation will be carried out in Sec. VII. The

Klein-Gordon-like (KGL) equation can be easily obtained by squaring the FW Hamiltonian

equation (40) and has the form

(

∂2

∂t2
−∇2

)

ψ = 0. (42)

The three-component wave function ψ coincides with the upper three-component spinor-like

part of ΨFW and is equal to E for positive-energy states of the photon. For negative-energy

states, ψ = iB. The number of independent components of ψ reduces to two due to the

orthogonality condition p ·ψ = 0.

It can also be shown by squaring Eq. (32) and taking into account Eqs. (19) and (39)
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that the Riemann-Silberstein vector is also a solution of the KGL equation, ψ = F =
1√
2
(E + iB), for states with both positive and negative total energies.

We note the nonequivalence of the Dirac-like and FW wave functions, Ψ and ΨFW . The

former function defines both fields, E and B, reproduces the Maxwell equations, and estab-

lishes the connection between states with a positive and a negative total energy. While the

FW wave function perfectly describes the light field, it does not possesses these properties.

However, just the wave function defined only by the electric field strength is used in optics.

VI. ZITTERBEWEGUNG OF THE FREE PHOTON

The use of the Dirac-like equation (36) and the KGL equation (42) allows us to study

Zitterbewegung of the photon. The velocity and acceleration operators determined from Eq.

(36) are given by

v ≡ dr

dt
= i[H, r] = α, dv

dt
= i[H, v] = i{α,H} − 2iαH = 2i(p−αH) (43)

and are equivalent to the corresponding equations (2) and (3) for Dirac particles. Certainly,

the derivation for the photon leads to the final formulas which are also equivalent to the

corresponding ones for Dirac particles:

r(t) = r(0) +
pt

H
+

i

2H

[

v(0)− p

H

]

(

e−2iHt − 1
)

, (44)

v(t) =
[

v(0)− p

H

]

e−2iHt +
p

H
. (45)

To study Zitterbewegung, we can also use the GFV transformation of the KGL equation

(42). In this case, we introduce the spinor-like wave functions (cf. Ref. [24])

ψ = φ+ χ, i
∂ψ

∂t
= N(φ− χ). (46)

Multiplying the second equation by i∂/(∂t) allows one to obtain the GFV Hamiltonian [24]:

HGFV = ρ3
p2 +N2

2N
+ iρ2

p2 −N2

2N
. (47)

We should mention that this Hamiltonian is also proportional to the 3×3 unit matrix which

is omitted (HGFV I → HGFV ). This is its only difference with the Hamiltonian (22). As a

result, the final equations describing Zitterbewegung coincide with Eqs. (27) and (28) for

the scalar particle and with Eqs. (44) and (45) in the Dirac-like representation.
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Thus, Zitterbewegung of the photon in the Dirac-like and GFV representations is deter-

mined by the same equations which also coincide with all corresponding equations for other

massless and massive particles presented in Secs. II–IV. Nevertheless, all noted equations

have been obtained in representations different from the FW representation. The transition

to the latter representation resulting in the Hamiltonian (40) eliminates Zitterbewegung. In

this representation, the velocity operator has the form [cf. Eqs. (16) and (31)]

vFW = β
p

√

m2 + p2
=

p

HFW
. (48)

Since the FW position and velocity operators are the quantum-mechanical counterparts of

the corresponding classical variables (see Ref. [12] and references therein), the observability

of Zitterbewegung should be determined just in the FW representation. As a result of

proportionality of the velocity and momentum operators, Zitterbewegung of the free photon

is unobservable. Such Zitterbewegung should be considered as a purely mathematical effect

and does not exist as a real physical one. These our conclusions contradict to the conclusions

made in Refs. [17, 18].

VII. ZITTERBEWEGUNG OF PARTICLES WITH AN ARBITRARY SPIN IN

THE GENERALIZED FESHBACH-VILLARS REPRESENTATION

Zitterbewegung can also be studied for particles with an arbitrary spin. It has been

shown by Weinberg [72] that particles with an arbitrary spin satisfy the Klein-Gordon (more

precisely, Klein-Gordon-like) equation

(

∂2

∂t2
−∇2 +m2

)

ψ = 0, (49)

where the wave function ψ has 2s+1 components. The number of components of this wave

function is defined by the number of independent spin components. Evidently, Eq. (49)

is equally applicable to states with a positive and a negative total energy. Any passage to

the Hamiltonian formalism joins such states and needs an introduction of the 2(2s + 1)-

component wave function Ψ.

Equation (49) is also applicable to massless particles. However, the condition (19) defining

the helicity should be satisfied in this case. This condition defines two admissible longitudinal

spin projections and reduces the number of independent components of ψ to two.
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We can carry out the GFV transformation [4, 24]

ψ = φ+ χ, i
∂ψ

∂t
= N(φ − χ) (50)

for particles with an arbitrary spin.

After multiplying the last relation by i∂/(∂t), Eq. (50) can be presented in the matrix

form [4, 24]

i
∂ΨGFV

∂t
= HGFVΨGFV , ΨGFV =





φ

χ



 ,

HGFV = ρ3
p2 +m2 +N2

2N
+ iρ2

p2 +m2 −N2

2N
.

(51)

HereHGFV and ΨGFV are the Hamiltonian and the wave function in the GFV representation.

Evidently, this representation connects the states with a positive and a negative total energy

with each other. We note the difference between the ST and GFV Hamiltonians for massive

spin-1 particles and underline the applicability of the GFV representation for both bosons

and fermions. The same derivations as in Ref. [4] show that equations of motions in this

representation coincide with the corresponding equations [4] for scalar particles and with

Eqs. (27) and (28). Thus, the description of particles with an arbitrary spin in the GFV

representation demonstrates the presence of Zitterbewegung and the perfect similarity of

equations of motion for particles with any spin in any representation (except for the FW

one). The derivation is the same for massive and massless particles. In the latter case, all

obtained formulas remain valid provided that m = 0.

Like in other cases, Zitterbewegung does not take place in the FW representation. The

FW transformation of the Hamiltonian (51) is exact. The general form of the FW trans-

formation operator has been obtained in Ref. [39]. In the considered case, this operator

reduces to [24]

UGFV→FW =
ǫ+N + ρ1(ǫ−N)

2
√
ǫN

, ǫ =
√

m2 + p2. (52)

Since this operator is ρ3-pseudounitary [24], the operator of the inverse transformation is

defined by

U †
GFV→FW = ρ3U

−1
GFV→FWρ3, U−1

GFV→FW = UFW→GFV = ρ3U
†
GFV→FWρ3,

UFW→GFV =
ǫ+N − ρ1(ǫ−N)

2
√
ǫN

.
(53)
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For the photon, m = 0 and the GFV wave function ΨGFV = UFW→GFVΨFW is equal to

Ψ
(+)
GFV =

E

2
√
pN





N + p

N − p



 , Ψ
(−)
GFV =

iB

2
√
pN





N − p

N + p



 . (54)

for states with a positive and a negative total energy, respectively. The FW wave function

corresponding to these states is defined by Eq. (38).

In the general case, we can determine the FW Hamiltonian and the corresponding wave

function with the use of the operator (52):

HFW = βǫ, ΨFW = Ψ
(+)
FW =

2
√
ǫN

ǫ+N





φ

0



 if HFW = |ǫ| > 0,

ΨFW = Ψ
(−)
FW =

2
√
ǫN

ǫ+N





0

χ



 if HFW = −|ǫ| < 0.

(55)

The connection between the FW wave function and the initial GFV one is similar to that

between the FW and Dirac wave functions [73] but the coupling factors are different in the

two cases.

For massive and massless particles, the FW velocity operator is defined by

vFW = i[HFW , rFW ] = β
p

√

m2 + p2
=

p

HFW

. (56)

This equation is valid for particles with any spin. For massless particles, vFW = βcp/|p|.
Therefore, dvFW/(dt) = 0 and Zitterbewegung does not take place. Since the FW repre-

sentation is the only representation in which relativistic QM takes a Schrödinger form and

expectation values of all operators correspond to respective classical variables, Zitterbewe-

gung takes place only for operators which are not the quantum-mechanical counterparts of

the classical position and velocity. As a result, Zitterbewegung is not observable. This is

the same conclusion which has been made in the previous studies [3–5, 9–14].

VIII. ZITTERBEWEGUNG IN EXTERNAL FIELDS

The analysis of Zitterbewegung made in the above-mentioned previous publications is not

excaustive because only free particles were studied. However, the problem of Zitterbewegung

of particles in external fields is also very important. In particular, it has been stated in Refs.

[6, 82, 83] that just Zitterbewegung causes the electrostatic contact (Darwin) interaction.
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We will consider Zitterbewegung of particles with spins 0, 1/2, and 1 in external fields.

Both massless and massive particles will be taken into consideration. This is necessary

because a consideration of massive particles simplifies making a conclusion on an existence

of Zitterbewegung in external fields. Furthermore, we cannot include the massless photon

into our consideration because its electromagnetic interactions can be described by quantum

field theory but not by QM.

We use the method of the relativistic FW transformation elaborated in Refs. [39, 41,

47, 84]. It is applicable for a particle in arbitrarily strong external fields (without taking

into account effects of quantum field theory). We can mention that the Darwin interaction

manifests itself even in the weak-field approximation. In this approximation, interactions

with external fields do not significantly affect large Zitterbewegung in the Dirac and GFV

representations and total Zitterbewegung is mostly defined by the equations for free particles

(see Secs. II,IV,VI,VII). The problem of existence of Zitterbewegung in external fields is

nontrivial because Zitterbewegung is absent for free particles in the FW representation (see

Secs. II,IV,VI,VII) but the Darwin interaction is usually explained by Zitterbewegung. To

solve this problem, we use the previous derivations of relativistic FW Hamiltonians for scalar

[24] and spinning [85, 86] particles in electromagnetic fields.

Certainly, the FW transformation is perturbative in the presence of external fields and

an exact FW separation into positive- and negative-energy subspaces is not possible in a

non-perturbative way. However, the FW transformation method [39, 41, 47, 84] applied

also in Ref. [24] gives exact and compact relativistic expessions for all terms proportional

to the zero and first powers of the Planck constant and only for such terms proportional

to ~
2 which describe contact interactions (including the Darwin one). Hereinafter, we will

reproduce only such expressions and will omit other terms. We should add that terms

proportional to ~ describe spin interactions. While the precision of the used method of the

FW transformation has been specified only in Ref. [47], previous results obtained by this

method are also exact for the above-mentioned terms. The considered method of the FW

transformation cannot be applied for a calculation of perturbations of next orders.

The relativistic FW Hamiltonian for a scalar particle in electromagnetic fields reads [24]

HFW = ρ3ǫ
′ + eΦ, ǫ′ =

√
m2 + π2. (57)

We underline the absence of terms describing contact interactions.
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The corresponding FW Hamiltonian for a spin-1/2 particle with magnetic and electric

dipole moments (MDM and EDM) is given by [39, 85]

HFW = H(MDM)
FW +H(EDM)

FW , (58)

H(MDM)
FW = βǫ′ + eΦ +

1

4

{(

µ0m

ǫ′ +m
+ µ′

)

1

ǫ′
,
[

Σ · (π ×E −E × π)− ~∇ ·E
]

}

−1

2

{(µ0m

ǫ′
+ µ′

)

,Π·B
}

+β
µ′

4

{

1

ǫ′(ǫ′ +m)
,
[

(B ·π)(Σ·π) + (Σ·π)(π ·B) + 2π~(π ·j + j ·π)
]

}

,

(59)

H(EDM)
FW = −dΠ·E +

d

4

{

1

ǫ′(ǫ′ +m)
,

[

(E ·π)(Π·π) + (Π·π)(π ·E)

]}

−d
4

{

1

ǫ′
,

(

Σ·[π×B]−Σ·[B×π]
)}

.
(60)

Here µ0 = e~/(2mc) is the Dirac magnetic moment, µ′ is the anomalous magnetic moment

(µ = µ0+µ′ = ges~/(2mc), where g is the g-factor), ǫ′ =
√
m2 + π2, π = p− eA, Σ and Π

are Dirac matrices, d is the electric dipole moment, and

j =
1

4π

(

c∇×B − ∂E

∂t

)

is the density of external electric current. The term in Eq. (59) proportional to ∇·E defines

the Darwin (contact) interaction. While we take into account in Eq. (60) terms proportional

to ~
2 and describing contact interactions with external charges and currents, such terms are

zero due to the Maxwell equations

∇ ·B = 0, ∇×E = −∂B
∂t

.

Terms proportional to the second and higher powers of ~ and quadratic/bilinear in E and

B are neglected.

For a spin-1 particle with a magnetic moment, taking into account quadrupole interactions

[56, 87] leads to the following FW Hamiltonian [87]:

HFW = ρ3ǫ
′ + eΦ +

e

4m

[

{(

g − 2

2
+

m

ǫ′ +m

)

1

ǫ′
, [S · (π ×E −E × π)]

}

−ρ3
{(

g − 2 +
2m

ǫ′

)

,S ·B
}

+ ρ3

{

g − 2

2ǫ′(ǫ′ +m)
, {S · π,π ·B}

}

]

+
e(g−1)

4m2

{

(

S · ∇ − 1

ǫ′(ǫ′+m)
(S · π)(π · ∇)

)

,
(

S ·E − 1

ǫ′(ǫ′+m)
(S · π)(π ·E)

)

}

+
e

8m2

{

1

ǫ′(ǫ′ +m)

(

g − 1 +
m

ǫ′ +m

)

,

{

S · [π ×∇],S · [π ×E]

}}

−e(g − 1)

2m2
∇ ·E +

e

4m2

{

1

ǫ′2

(

g − 1 +
m2

4ǫ′2

)

, (π · ∇)(π ·E)

}

,

(61)
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where the g factor is used and the Planck constant is omitted. In this equation, a noncom-

mutativity of operators is (partially) neglected. We should add that Eqs. (57) and (58)–(60)

are appicable for massless particles while Eq. (61) describes only massive ones.

The presented equations perfectly agree with corresponding classical equations describing

the momentum and spin dynamics [12, 88]. The agreement takes also place for a spin-1

particle with MDM and EDM [12, 29].

Equations (57)–(61) allow us to check the above-mentioned statement [6, 82, 83] that the

electrostatic contact interaction (defined in the FW representation) is connected with Zitter-

bewegung. However, this statement cannot be right. The electrostatic contact interaction

does not exist for scalar particles and exists for spinning ones while Zitterbewegung appears

for any particles in representations different from the FW representation. An absence of ob-

servable Zitterbewegung for scalar particles and a similarity of Eqs. (57)–(60) for massless

and massive particles show that it not caused by the particle localization (established in

Ref. [15]) either. In fact, the electrostatic contact interaction is conditioned by the particle

spin. Its essential difference for spin-1/2 and spin-1 partices confirms this important and

unobvious statement. We can add that a spinning particle is not perfectly pointlike. In

particular, its center of charge and center of mass do not coincide [89–94].

The effective root-mean-square radii do not depend on external fields and are the same

as in vacuum.

We repeat that an exact FW separation into positive- and negative-energy subspaces is

not possible in a non-perturbative way and our conclusions cannot be extended to pertur-

bations of next orders.

In this section, we have analyzed only Zitterbewegung which appears even for free par-

ticles (like a nonzero root-mean-square radius of the electron) but manifests itself only for

interacting ones. None of leading terms in equations of motion describes such Zitterbe-

wegung. However, it is evident that external fields can lead to a trembling motion (e.g.,

Zitterbewegung) of particles which is observable in these fields but does not have any ana-

logue for particles in free space. For example, a charge undergoes Zitterbewegung in a field

of a coherent electromagnetic wave. It has been established in Refs. [19–21] that Zitter-

bewegung takes place for real photons interacting with virtual longitudinal and scalar ones

and this effect is observable. The effect cannot occur in the absence of virtual photons.

It is described in the framework of quantum field theory and cannot be considered as a
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quantum-mechanical effect.

IX. DISCUSSION AND SUMMARY

We have analyzed Zitterbewegung of massless particles with an arbitrary spin in various

representations. While Zitterbewegung of massless particles in the free space has been

extensively studied, the quantum-mechanical descriptions of massless and massive particles

substantially differ. In the general case, basic equations for massless particles cannot be

obtained from the corresponding equations for massive ones and the definition of the spin

should be substantially changed. For massive particles, the conventional three-component

spin (pseudo)vector s is defined in the particle rest frame (see Ref. [12] and references

therein). However, such a frame does not exist for massless particles. For such particles,

the helicity has only two admissible values, +s and −s. The spin defines the polarization

and helicity of massless particles and cannot be defined in the particle rest frame. If s 6=
0, the bispinor-like wave functions have only four independent components. Therefore,

Hamiltonian equations for massive and massless particles substantially differ and massless

particles should be considered separately. For this reason, the results obtained are not

obvious.

Photons and other field quanta are extended over the entire space and the radius vector

r = (x, y, z) cannot define their coordinates. Therefore, r is a radius vector of a moving

point characterizing any fixed point of the envelope of the wave packet characterizing the

particle and v is the velocity of its motion. The latter quantity defines the group velocity of

the massless particle as a whole but not that of any point of the wavefront. We have consid-

ered massless scalar and Dirac particles, the photon, and massive and massless particles with

an arbitrary spin. We have described them in different representations. For particles with

an arbitrary spin, the GFV and FW representations have been used. In all cases, Zitterbe-

wegung takes place in any representation except for the FW one. In such cases, formulas

describing the particle motion are the same in any representation. In the FW representation,

the operators of the velocity and momentum are proportional and Zitterbewegung does not

take place. The radius vector (position) and velocity operators are the quantum-mechanical

counterparts of the classical position and velocity just in the FW representation. Therefore,

Zitterbewegung of free particles is not observable. This conclusion agrees with the conclu-
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sions made in the previous studies [3–5, 9–14] for massive particles. However, it disagrees

with the corresponding conclusions reached in many other investigations including precedent

papers devoted to Zitterbewegung of the free photon [17, 18].

The very important problem is Zitterbewegung of particles in external fields. Zitterbe-

wegung has been noted in Refs. [6, 82, 83] as a reason of the electrostatic contact (Darwin)

interaction being a manifestation of effective root-mean-square radii of spinning particles.

However, our analysis given in Sec. VIII shows that this interaction cannot be caused by

Zitterbewegung and is conditioned by the particle spin. We underline that the effective root-

mean-square radii do not depend on external fields and are the same as in vacuum. Since

an exact FW transformation is not possible in a non-perturbative way, our conclusions are

restricted by the applicability of the used transformation method and cannot be extended

to perturbations of next orders.

We have analyzed only Zitterbewegung which appears even for free particles (like a

nonzero root-mean-square radius of the electron) but manifests itself only for interacting

ones. None of leading terms in equations of motion describes such Zitterbewegung. How-

ever, it is evident that external fields can lead to a trembling motion (e.g., Zitterbewegung)

of particles which is observable in these fields but does not have any analogue for particles

in free space. For example, a charge undergoes Zitterbewegung in a field of a coherent

electromagnetic wave. It has been established in Refs. [19–21] that Zitterbewegung takes

place for real photons interacting with virtual longitudinal and scalar ones and this effect

is observable. The effect cannot occur in the absence of virtual photons. It is described in

the framework of quantum field theory and cannot be considered as a quantum-mechanical

effect.

Thus, Zitterbewegung of particles can appear due to interactions with external fields and

effects of quantum field theory (see Refs. [19–21]). In such cases, it can be observable.
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