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The Wiener-Hopf (WH) method was
created in 1931, by Norbert Wiener and
EberhardHopf, to deliver exact solutions
to integral equations with convolution-
type kernels on a half-line. It appears
that this problem is closely related to
that posed by Riemann in 1857 on the
problem concerning the construction of
a Fuchsian system of differential equa-
tions with given singular points and a
prescribed monodromy group. This later
became known as the 21st Hilbert prob-
lem. The WH method is a powerful and
long-standing tool that served as a cat-
alyst in broadening the applicability of
Fourier analysis, owing to the essential
characteristics of analytic functions. Em-
ploying the Fourier transform (FT) to
the integral equation leads to a Riemann-
Hilbert (RH) problem on the real axis:

�+(s ) + K (s )�−(s ) = G(s ),

s ∈ R, (1)

where s is the FT parameter,G is a speci-
fied function and�+, �− are unknown
functions except that the superscript in-
dicates they are analytic for Im(s ) > 0,
Im(s ) < 0, respectively.

An essential component of the
method is to factorize the given kernel
into the form: K(s ) = K+(s )K−(s ),
where K±(s ) are analytic and non-
vanishing functions for ±Im(s ) > 0.

Then, multiplying equation (1) by
K −1

+ (s ) gives

K −1
+ (s )�+(s ) + K−(s )�−(s )

= K −1
+ (s )G(s ) , s ∈ R. (2)

Finally, using a combination of Cauchy’s
integral formula, Liouville’s theorem and
analytic continuation arguments, explicit
evaluation of �±(s ) is enabled. Note
that solutions to the homogeneous equa-
tion (1) (i.e. G(s ) = 0) provide infor-
mation on the kernel space of the original
integral operator.

The general factorization procedure
for the scalar RHproblem (1) on a closed
curve�, dividing the complex plane into
two domains D+ ∪ D− = C, was estab-
lished by Gakhov in 1933.

A natural generalization of equation
(1) assumes this represents n equations
on �, leading to a factorization of a ma-
trix kernel, K(s ), via a product of n × n
matrices:

K (s ) = K+(s ) D(s ) K−(s ), s ∈ �,

(3)

with D(s ) = diag1≤k≤n{s ik }, where
{ik}nk=1 are the partial indices. Consider-
able challenges arise here and so far a gen-
eral approach to obtaining equation (3)
remains elusive.

In 1958, two seminal papers ap-
peared: one by Krein, dealing with
the scalar equation, and the other,
co-authored by Krein and Gohberg,

focusing on the vector case. Both
demonstrated direct links between linear
operator analysis and the factorization
problem.

However, in contrast to the scalar
case, a general procedure for constructing
equation (3) still remains an open prob-
lem. The validity of any numerical ap-
proximate factorization is also question-
able as they proved (independently of
Bojarski, whose proof appeared the same
year) that the indices {ik}nk=1 are stable to
perturbations if and only if

max{ik}nk=1 − min{ik}nk=1 ≤ 1. (4)

Since then, the theory has undergone
significant development in determining
classes of matrix functions allowing for
constructive factorization. For analytic
and rational matrix-functions, a finite fac-
torization algorithm and the method of
pole removal have been developed. Im-
portant classes of non-rational matrix-
functions and piecewise constant matri-
ces, appearing in RH problems related to
the construction of complex differential
equationswith a prescribedmonodromy,
were studied. Factorization methods for
matrix-functions having special proper-
ties (e.g. positive definite, unitary, self-
adjoint, circular, triangular) have also
beendeveloped. Alternative factorization
methods (spectral, commutative, non-
commutative etc.) also exist (see [1] and
references therein). Methods to approxi-
matematrix factorizations have also been
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Figure 1. The participants of the WHT research programme held at the Isaac Newton Institute for
Mathematical Sciences during 5–30 August 2019.
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Figure 2. (a) Deformation induced by a subsonic crack (situated at n < 0, m = 0) propagating
between two identical isotropic lattices connected by a stiff non-inertial interface (situated at
n > 0, m = 0). The interface is composed of links four times stiffer than those in the ambient
medium. The crack propagates with a speed that is 90% of the speed of sound in the lattices. The
colour plot (scale shown on the right) indicates the change of length in the vertical lattice links rela-
tive to their original length, with positive (negative) values representing an extension (compression)
of these links. As the crack propagates, energy is released into the medium, with the white inclined
lines indicating the most preferable directions for this process. (b) Typical fluctuation in the velocity
of a subsonic crack propagating in a uniform discrete structure (see [6] for more details).

proposed for certain classes of matrix
functions including a popular approach
using rational approximations of matrix
entries (see [2] and references therein).

In particular, while the aforemen-
tioned approaches have allowed theWH-
RH method to have an immense impact
in the solution linear mixed problems
it is clear the approach has limitations
in solving nonlinear problems. Neverthe-
less, some nonlinear problems are treat-
able with these methods, including those
containing Painlevé-type equations.

Traditional applications of RH-WH
techniques, developed by Muskhelishvili

and others, include elasticity, plasticity,
fracture mechanics and wave scattering
by obstacles with simple geometries. In
the last 50 years the method has also
provided a profound impact in finance,
aerospace, acoustics, electromagnetics,
water waves, civil engineering, advanced
materials, etc. However, further progress
is severely constrained due to the afore-
mentioned issues, as most new applica-
tions lead to matrix problems. Neverthe-
less, problems arising from applications
can offer natural pathways to solvingWH
problems, e.g. wave diffraction by com-
plex surfaces can be reformulated as a

sequence of simple approximate WH
problems [3]. Additionally, the method
can reveal pertinent information about
physical problems, e.g. the appearance of
leaky waves potentially missed by stan-
dard numerical procedures.

Driven by a range of novel real-
world applications, the recentWHT pro-
gramme gathered international experts in
the WH method (see Fig. 1) to initiate
a renewed effort to address existing chal-
lenges concerning matrix factorization.

In aerospace applications, matrix
factorization techniques have created
new possibilities in understanding tur-
bofan noise radiation and its reduction
by various edges and soft boundaries.
Consequently, this has revealed insight
concerning silent flying capabilities
of owls [3] that could, amongst other
impacts, revolutionize current aircraft
designs with environmental benefits.

A popular driver of new technolo-
gies includes metamaterials, possessing
unusual static and dynamic properties
at multiple scales unavailable in nat-
ural materials (e.g. negative Poisson’s
ratio). Waves propagating through (or
redirected by) metamaterials may pro-
mote high local stress concentrations,
making these materials susceptible to
failure. The WH technique has already
proven its efficacy for such problems [4].
Figure 2(a) shows a subsonic crack prop-
agating within a discrete uniform lattice
along an interface. Note in this case that
equation (1), with the right-hand side,
G(s ), represented by the Dirac delta
function, defines all waves radiated from
the crack tip.

Metamaterials are natural candidates
that require matrix factorization due to
their complexity and rich multi-scaled
response. Examples include the existence
of various failure regimes (steady state,
clustering, forerunning [5]), their topo-
logical structure andpossible behavioural
instabilities. Note that in such materials,
even steady failure can be difficult to real-
ize. The failure speed is deterministic and
usually oscillates around the average value
as is shown inFig. 2(b) for the case of uni-
form discrete structures [6].

The importance of theWHmethod in
bridging and advancing seemingly unre-
lated fields is illustrated in its application
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to financially inspired Levi processes or
discretely monitored path-dependent
option pricing. Other promising di-
rections include the development of
hybrid methods, combining analytical
modelling, artificial intelligence and ex-
perimental testing [7]. Potential benefits
include the rapid production of high-
fidelity ground truth data for the training
of machine learning models and the
development of forwardmodels required
by inverse testing methods applied in
acoustic and ultrasound imaging. The
method has also recently opened new di-
rections in analysing wave phenomena in
complex solids with random microstruc-
ture (see [8] and references therein).

All these challenging problems face
issues concerning possible instabilities
of the partial indices and, in the absence
of the generalized approach, require
significant advancement of matrix factor-
ization techniques. Possible promising
directions have been recently reported
[9,10].

Since its conception, the WH tech-
nique has remained an enduring ana-
lytical tool used broadly in addressing
many challenging real-world problems.
Its ubiquity, elegance and insight will

ensure its continued importance to re-
searchers in a plethora of fields, creating
new mathematical research paradigms
and enabling scientists to unlock ex-
isting and novel industrial and societal
challenges.
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