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1 Introduction

The Higgs boson, observed by the ATLAS and CMS experiments [1-3], has a rich set
of properties whose measurements will have a significant impact on the understanding of
the physics of the standard model (SM) and possible extensions beyond the SM (BSM).
Extensive effort has been dedicated to determine its quantum numbers and couplings with
ever-improving accuracy due to the large data sample delivered by the CERN LHC and
innovations in analysis techniques.

The differential production cross sections of the Higgs boson can be predicted with
high precision and can therefore provide a useful probe of the effects from higher-order cor-
rections in perturbative theory or any deviation of its properties from the SM expectations.
In particular, the differential cross section as a function of the transverse momentum of
the Higgs boson (pg) is computed up to next-to-next-to-leading order (NNLO) in quantum
chromodynamics (QCD) [4-9], and is known to be sensitive to possible deviations from the
SM in the Yukawa couplings of light quarks [10] and to effective operators of dimension six
or higher in BSM Lagrangians [11].

We present measurements of differential cross sections for Higgs boson production in
proton-proton (pp) collisions at /s = 13 TeV within a fiducial region, as a function of pg



and jet multiplicity (NNje). These two observables are collectively referred to as differential-
basis observables (DO) hereafter. The measurements include all Higgs boson production
modes. Higgs bosons decaying to two W bosons that subsequently decay leptonically into
the eiquvV final state are considered. The data in these measurements were recorded at
the CMS experiment and correspond to an integrated luminosity of 137 fh 1.

Inclusive Higgs boson production cross sections in the H — WTW ™ decay mode have
been performed by both ATLAS and CMS [12, 13] at /s = 13 TeV with smaller data sam-
ples. Both experiments have also reported measurements of differential production cross
sections of the Higgs boson with smaller data samples [14, 15]. In particular, the CMS
Collaboration has measured cross sections as a function of several observables, including
p¥ and N, using Higgs bosons decaying into pairs of photons [16] and Z bosons [17] at
V5 =13TeV in 35.9fb~ " of data. These measurements have been combined [15], including
in the pg spectra data from the search for the Higgs boson produced with large pt and
decaying to a bottom quark-antiquark pair [18]. The larger branching ratio makes the
eiuxvv final state competitive with the two-photon and two-Z boson channels. Addition-
ally, unlike the decay channel into a bottom quark-antiquark pair, identification of Higgs
boson production events in the eiu:FVV final state does not require the Higgs boson to
be boosted, allowing the full range of p¥ to be studied. In the H — WTW™ channel,
previous measurements of the differential cross sections were reported in data collected at
Vs = 8TeV [19, 20]. Measurements reported in this paper have been performed for the
first time in the H — WTW ™ decay channel at /s = 13TeV, exploiting the full data
sample available. The methods for the determination of the differential cross section have
been updated substantially compared to the 8 TeV measurement [20], combining the signal
extraction, unfolding, and regularization into a single simultaneous fit.

2 The CMS detector and object selection

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal
diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon
pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and
a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two
endcap sections. Forward calorimeters extend the pseudorapidity () coverage provided by
the barrel and endcap detectors. Muons are detected using three technologies: drift tubes,
cathode strip chambers, and resistive-plate chambers embedded in the steel flux-return
yoke outside the solenoid. The muon detectors cover the full 27 of azimuth (¢) about the
beam axis and a range of |n| < 2.4.

Events of interest are selected using a two-tiered trigger system [21]. The first level
(L1), composed of specialized hardware processors, uses information from the calorimeters
and muon detectors to select events at a rate of ~100kHz within a fixed time interval
of 4 us. The second level, known as the high-level trigger (HLT), consists of a farm of
processors running a version of the full event reconstruction software optimized for fast
processing, and reduces the event rate to ~1kHz before data storage.



A more detailed description of the CMS detector, together with a definition of the
coordinate system and the kinematic variables, can be found in ref. [22].

Electrons are identified and their momentum measured in the pseudorapidity interval
In| < 2.5 by combining the energy measurement in the ECAL, the momentum measurement
in the tracker and the energy sum of all bremsstrahlung photons spatially compatible with
originating from the electron track. The single electron trigger efficiency exceeds 90% over
the full n range, the efficiency to reconstruct and identify electrons ranges between 60 and
80% depending on the lepton pp. The momentum resolution for electrons with pp ~ 45 GeV
from Z — ee decays ranges from 1.7 to 4.5% depending on the 7 region. The resolution is
generally better in the barrel than in the endcaps and also depends on the bremsstrahlung
energy emitted by the electron as it traverses the material in front of the ECAL [23].

Muons are identified and their momentum measured in the pseudorapidity interval
In| < 2.4 matching tracks in the muon chambers and in the silicon tracker. The single
muon trigger efficiency exceeds 90% over the full n range, and the efficiency to reconstruct
and identify muons is greater than 96%. The relative transverse momentum resolution for
muons with pp up to 100 GeV is 1% in the barrel and 3% in the endcaps [24, 25].

Proton-proton interaction vertices are reconstructed from tracks using the Adaptive
Vertex Fitting algorithm [26]. The candidate vertex with the largest value of summed
physics-object pgf is taken to be the primary pp interaction vertex. The physics objects
are the track-only jets, clustered using the jet finding algorithm [27, 28] with the tracks
assigned to candidate vertices as inputs, and the associated missing transverse momentum,
taken as the negative vector sum of the pr of those jets.

The particle-flow (PF) algorithm [29] aims to reconstruct and identify each individual
particle in an event, with an optimized combination of information from the various ele-
ments of the CMS detector. The momenta of electrons and muons are obtained as described
above. The energies of photons are based on the measurement in the ECAL. The energies
of charged hadrons are determined from a combination of their momenta measured in the
tracker and the matching ECAL and HCAL energy deposits. Finally, the energies of neu-
tral hadrons are obtained from their corresponding corrected ECAL and HCAL energies.
Such reconstructed particle candidates are generically referred to as PF candidates.

The hadronic jets in each event are clustered from the PF candidates using the anti-kp
algorithm [27, 28] with a distance parameter of 0.4. The jet momentum is determined from
the vectorial sum of all particle momenta in the jet. From simulation, reconstructed jet
momentum is found to be, on average, within 5 to 10% of the momentum of generator jets,
which are jets clustered from all generator final-state particles excluding neutrinos, over
the entire pp spectrum and detector acceptance. Additional pp interactions within the
same or nearby bunch crossings (pileup) can contribute additional tracks and calorimetric
energy deposits to the jet momentum. To mitigate this effect, charged particles identified as
originating from pileup vertices are discarded and an offset correction is applied to correct
for remaining contributions from neutral pileup particles [29]. Jet energy corrections are
derived from simulation studies so that the average measured response of jets becomes
identical to that of generator jets. In situ measurements of the momentum imbalance in
dijet, photon+jet, Z+jet, and multijet events are used to account for any residual differences



in jet energy scale in data and simulation [30, 31]. The jet energy resolution amounts
typically to 15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV. Additional selection criteria
are applied to each jet to remove jets potentially dominated by anomalous contributions
from various subdetector components or reconstruction failures. Jets are measured in the
range |n| < 4.7. In the analysis of data recorded in 2017, to eliminate spurious jets caused
by detector noise, all jets were excluded in the range 2.5 < |n| < 3.0.

The identification of jets containing hadrons with bottom quarks is referred to as b
tagging. For each reconstructed jet, a b tagging score is calculated through a multivariate
analysis of jet properties based on a boosted decision tree algorithm and deep neural
networks [32]. Jets are considered b tagged if this score is above a threshold set to achieve
~80% efficiency for bottom-quark jets in tt events. For this threshold, the probability of
misidentifying charm-quark and light-flavor jets produced in tt events as bottom-quark
jets is ~6%.

Missing transverse momentum (pp iss) is defined as the negative vector sum of the
transverse momenta of all the PF candidates in an event [33], weighted by their estimated
probability to originate from the primary interaction vertex. The pileup-per-particle iden-
tification algorithm [34] is employed to calculate this probability.

3 Data sets and simulated samples

The analyzed data sets were recorded in 2016, 2017, and 2018, with corresponding inte-
grated luminosities of 35.9, 41.5, and 59.7 bt respectively [35-37].

The events in this analysis are selected through HLT algorithms that require the pres-
ence of either a single high-p1 lepton or both an electron and a muon at lower pr thresholds
that pass identification and isolation requirements. The requirements in the single-lepton
triggers are more restrictive than in the electron-muon triggers, but are less stringent than
those applied in the event-selection stage. In the 2016 data set, the p threshold of the
single-electron trigger is 25 GeV for |n| < 2.1 and 27GeV for 2.1 < |n| < 2.5, although
the use of tight L1 pt constraints at the beginning of the fill made the effective thresh-
olds higher. The threshold for the single-muon trigger is 24 GeV for || < 2.4. The pr
thresholds in the dilepton trigger are respectively 23 and 8 GeV for the leading and trailing
(second highest pt) leptons for the first part of the data set corresponding to an integrated
luminosity of 17.7 fb~!. The threshold for the trailing lepton is raised to 12 GeV in the
later part of the 2016 data set. In the 2017 data set, single-electron and single-muon pr
thresholds are raised to 35 and 27 GeV, respectively. The corresponding thresholds in the
2018 data set are 32 and 24 GeV. The dilepton triggers in the 2017 and 2018 data sets
have the same thresholds as given above for the latter part of the 2016 data set.

Monte Carlo (MC) simulated events are used in this analysis for signal modeling and
background estimation. To account for changes in detector and pileup conditions and to
incorporate the latest updates of the reconstruction software, a different simulation is used
in the analysis of each of the 2016, 2017, and 2018 data sets. Different event generators
are used depending on the simulated hard scattering processes, but parton distribution
functions (PDFs) and underlying event (UE) tunes are common to all simulated events for



a given data set. The parton-showering and hadronization processes are simulated through
PYTHIA [38] 8.226 (8.230) in 2016 (2017 and 2018). The PDF set is NNPDF 3.0 [39, 40]
(3.1 [41]) and the UE tune is CUETP8M1 [42] (CP5 [43]) for the 2016 sample (2017 and
2018 samples).

Higgs boson production through gluon-gluon fusion (ggF), vector-boson fusion (VBF),
weak-boson associated production (VH, with V representing either the W or Z boson), and
tt associated production (ttH), are considered as signal processes in this analysis. Weak
boson associated production has contributions from quark- and gluon-induced Z boson
associated production and W boson associated production. Events for all signal production
channels are generated using POWHEG v2 [44-50] at next-to-leading order (NLO) accuracy
in QCD, including finite quark mass effects. The ggF events are further reweighted to match
the NNLOPS [6, 7] prediction in the distributions of prlg and Nje. The reweighting is based
on p¥ and Nje as computed in the Higgs boson simplified template cross section (STXS)
scheme 1.0 [51]. All signal samples are normalized to the cross sections recommended
in [52]. In particular, the ggF sample is normalized to next-to-next-to-next-to-leading order
(N3LO) QCD accuracy and NLO electroweak accuracy [53-55]. Alternative sets of events
for ggF and VBF production using the MADGRAPH5__aMC@NLO v2.2.2 generator [56] are
used for comparison with the extracted differential cross sections. The alternative ggF
sample is generated with up to two extra partons merged through the FxFx scheme [57]
in the infinite top quark mass limit. The Higgs boson mass is assumed to be 125 GeV for
these simulations.

The JHUGEN generator [58] (v5.2.5 and 7.1.4 in 2016 and 2017-2018, respectively)
is used to simulate the decay of the Higgs boson into two W bosons and subsequently
into leptons for the VBF events in 2016, ggF' and VBF events from 2017 and 2018, and
quark-induced ZH production in 2017 and 2018. The decay of the Higgs boson in other
signal samples is simulated through PYTHIA 8.212 along with the parton shower (PS) and
hadronization. Higgs boson that decays into a t7t~ pair is considered as background in
this analysis.

Quark-initiated nonresonant W boson pair production (W+W_) is simulated at NLO
with POWHEG v2 [59]. Gluon-initiated, loop-induced nonresonant W W™ is simulated
with MCFM v7.0 [60-62] and normalized to its NLO cross section [63]. The tt and single
top production (tt + tW) are simulated with POWHEG v2 [64—66]. The Drell-Yan t lepton
pair production (t7t7) is simulated with MADGRAPH5_aMC@QNLO v2.4.2 with up to two
additional jets at NLO accuracy. Radiative W production (Wy) is simulated with MAD-
GRAPHS__aMC@NLO v2.4.2 with up to 3 additional jets at LO accuracy. Other diboson pro-
cesses involving at least one Z boson or a virtual photon (y*) with mass down to 100 MeV
are simulated with POWHEG v2 [59]. Associated Wy" production with virtual photon mass
below 100 MeV is simulated by the parton shower on top of the Wy sample. The Wy* pre-
diction is corrected with a scale factor extracted from a trilepton control region, following
the approach described in ref. [13]. Purely electroweak WTW ™ plus two jets production is
simulated at LO with MADGRAPH5__ aMC@NLO v2.4.2. Multiboson production with more
than two vector bosons is simulated at NLO with MADGRAPH5 aMCQ@NLO v2.4.2.



The simulated quark-induced W W~ background is weighted event-by-event to match
the transverse momentum distribution of the W W~ system to NNLO plus next-to-next-
to leading logarithm (NNLL) accuracy in QCD [67, 68]. It is also weighted to include the
effect of electroweak corrections, computed based on ref. [69]. The tt component of the
tt 4+ tW background and the 17t~ events are also weighted to improve agreement of the
simulated pr distributions of the tt and Drell-Yan systems with data [70, 71].

For all processes, the detector response is simulated using a detailed description of the
CMS detector, based on the GEANT4 package [72]. To model multiple pp collisions in one
beam crossing, minimum bias events simulated in PYTHIA are overlaid onto each event,
with the number of interactions drawn from a distribution that is similar to the observed
distribution. The average number of such interactions per event is 23 for the 2016 data,
and 32 for the 2017 and 2018 data.

To mitigate the discrepancies between data and simulation in various distributions,
simulated events are reweighted according to relevant lepton or jet kinematic variables.
Discrepancies due to multiple causes, such as the difference in the pileup distribution and
the imperfect modeling of the detector, are corrected using weights derived from compar-
isons of simulation with observed data in control regions.

4 Analysis strategy

The differential production cross sections are measured using dilepton event samples se-
lected based on the reconstructed properties of the leptons and py 55 Events passing the
selections described in section 5 are referred to as signal candidate events, and are split
into reconstruction-level (RL) bins of the DO. The RL p¥ is computed as the magnitude
of the vectorial sum of the transverse momenta of the two lepton candidates and pr iss,
The missing transverse momentum represents the total vector pr of the two neutrinos that
escape detection. The RL Nje, is the number of jets with pp > 30 GeV and [n| < 4.7.

The signal candidate events are dominated by background processes, with main con-
tributions from WTW ™, tt 4+ tW, 1717, and events with misidentified leptons or leptons
from heavy-flavor hadron decays (nonprompt leptons). The total number of signal events in
the sample is extracted by template fitting techniques, exploiting quantities that separate
signal and background.

Two observables, the dilepton mass (m”) and the transverse mass of the Higgs boson
(mg), are found to have strong discrimination power against background processes. The
value of m¥ can be defined as

mlt = [l [1— cos g (1. 7)) (4.1)

where péfw is the magnitude of the vector sum of the transverse momenta of the two lepton
candidates, and A¢(pe, Pa™*) is the azimuthal angle between pa and i

Signal candidate events in individual RL bins are therefore sorted into two-dimensional
(m”,m%) histograms. The number of Higgs boson production signal events in each his-

togram can be inferred by fitting it with a model that consists of a sum of background and



signal templates, obtained from their respective expected distributions. The estimation
of the background is described briefly in section 6 and more thoroughly in refs. [13, 73].
Signal expectations are derived from the simulated event samples described in section 3.
There is only a small dependence of the signal (m”7 m?) shape on production mode, thus
distributions from the four Higgs boson production modes are combined with their relative
normalizations fixed to the SM predictions.

To extract differential cross section measurements from such fits, signal templates from
different bins of DO values predicted by the event generator (generator-level, GL, bins) are
individually assigned a priori unconstrained normalization factors. Initial normalizations
of the signal templates are set to the SM expectations. The best fit normalization factor
for the templates of a GL bin ¢ can therefore be interpreted as its signal strength modifier
;= o™ /o™ where 9™ and 5™ are the observed and predicted fiducial cross sections
in bin 4.

Generator-level and RL observable values are not perfectly aligned due to resolution
and energy scale effects. For this reason, signal events from one GL bin i contribute to
multiple RL bin templates, which are all scaled together by p;. Therefore, by performing
one simultaneous fit over all RL bin histograms, signal strength modifiers of the GL ob-
servable bins can be determined exploiting the full statistical power of the data set. This
fit extracts the signal and simultaneously unfolds the measured cross sections into the GL
bins, correctly propagating the experimental covariance matrix. The unfolding procedure
can be highly sensitive to statistical fluctuations in the observed distributions, especially
for the p¥ measurement, where the contributions from each G£ bin into multiple RL bins
are significant. To mitigate this effect, a regularization procedure is introduced in the fit
for the p¥ measurement to obtain the final result. More details about the fiducial phase
space, the fit, and the regularization scheme are given in section 7.

5 Event selection

The selection of signal candidate events starts with a requirement of at least two charged
lepton candidates, where the two with the highest pr (leading and trailing lepton can-
didates) have tracks associated with the primary vertex, and have opposite charge. The
two leptons must be an electron and a muon to suppress Drell-Yan background. Charged
leptons are required to satisfy the isolation criterion that the scalar sum of the py of PF
candidates associated with the primary vertex, exclusive of the lepton itself, and neutral
PF particles in a cone of a radius AR = V(An)? + (A¢)*=0.4 (0.3), where ¢ is the az-
imuthal angle in radians, centered on the muon (electron) direction is below a threshold
of 15 (6)% relative to the muon (electron) pp. To mitigate the effect of the pileup on this
isolation variable, a correction based on the average energy density in the event [74] is ap-
plied. Additional requirements on the transverse and longitudinal impact parameters with
respect to the primary vertex are included. An algorithm based on the evaluation of the
track hits in the first tracker layers is used to reject electrons arising from photon conver-
sions. The transverse momenta of the leading and trailing lepton candidates, pl% and plTQ,
must be greater than 25 and 13 GeV, respectively, so that the electron-muon triggers are



efficient. To ensure high reconstruction efficiencies, only electron candidates with |n| < 2.5
and muon candidates with |n| < 2.4 are considered. Other lepton candidates in the event,
if there are any, must have pp < 10 GeV.

Signal candidate events must further satisfy p™ > 20GeV and ph > 30GeV to
discriminate against QCD multijet and t7t~ backgrounds. The contribution from the 17t~
background, including that from the low-mass Drell-Yan process, is further suppressed by
the requirements m' > 12 GeV, m¥ > 60 GeV, and mfﬁ > 30 GeV. Here the last quantity
is defined by

mlT2 = \/Qpl2 miss [1 —cos Ao (p,i?, _'%“ss)}, (5.1)

where ﬁlT is the transverse momentum of the trailing lepton, pfﬁ is the magnitude, and
A(b(ﬁlTQ, P55 s the opening azimuthal angle relative to p"*. This observable stands as
a proxy to the mass of the virtual W boson from the Higgs boson decay. As such, the last
criterion also limits the contribution from nonprompt lepton background due to single W
boson production, when the trailing lepton candidate is a misidentified jet and therefore

78 Finally, to suppress tt +tW events, the events are required

has little correlation with pp
to have no b-tagged jets with pp > 20 GeV.

The event selection criteria are identical among the three data sets, aside from certain
details such as the definition of b tagging. The efficiencies of the signal candidate selection
for identifying ggF events with W bosons decaying to leptons are 2.8, 3.6, and 3.6% for
the 2016, 2017, and 2018 data sets, respectively. The differences in efficiencies arise mainly
from the requirements set on lepton identification and p%liss resolution.

Within each RL bin of the DO, signal candidate events are categorized by plq% and fla-
vors of the leptons to maximize the sensitivity to signal. Categories with pl{i < 20 GeV re-
ceive, in comparison to those with pl% > 20 GeV, more contributions from nonprompt-lepton
background but less from WTW ™ and tt processes, and result in fewer total background
events. However, the Higgs boson signal is expected to contribute evenly to the two p%
regions, providing thereby categories with plT2 < 20 GeV with larger signal-to-background
ratios. Since nonprompt leptons are more likely to arise from jets misidentified as electrons,
categorization within the two regions by the flavor of the leptons helps increase the sen-
sitivity by creating two regions with a different signal-to-background ratio. This four-way
categorization (4)V) is applied to reconstructed DO bins with a sufficiently large expected
number of events. For bins with fewer expected events, categorization is reduced to three-
way (3W, using pl{i, and flavor categorization for p% < 20GeV), two-way (2WV, using just
pl%), or none (1W). In the most sensitive categories, the ratio of expected signal yield to
the expected total number of events is ~0.08, and the ratio of expected signal events to
the square root of expected background events is 3.5.

Control regions for tt +tW and ttt” background processes are used to constrain the
estimates of these processes in the simultaneous fit. The definitions of the two control
regions follow that of the signal region closely to make the event kinematics similar among
the three regions. Specifically, both control regions Share all event selection criteria with the

l H

signal region except for the requirements on m", m-, mT7 and the number of b-tagged jets.

The tt +tW control region instead requires m' > 50 GeV and at least one b-tagged jet with



pr > 20 GeV. If there is another jet in the event with pp > 30 GeV, the b-tagged jets must
also have pp > 30 GeV. There is no constraint on mg, and the requirement mlT2 > 30 GeV
is common with the signal region. The 171~ control region requires 40 < m' < 80GeV
and m% < 60 GeV, and has no constraint on m% The restriction of having no b-tagged
jets with pp > 20 GeV is common with the signal region.

6 Background modeling

All background processes, except for that from nonprompt lepton events, are modeled us-
ing MC simulation. The nonprompt lepton background is modeled by applying weights
to events containing lepton candidates passing less stringent selection criteria than those
used in the signal region. These weights, called fake-lepton factors, are obtained from the
probability of a jet being misidentified as a lepton and the efficiency of correctly recon-
structing and identifying a lepton. More details about this method are given in ref. [13].
The validity of this background estimate is checked by comparing the prediction of the
(m“,mg) distribution of the nonprompt lepton events to the observed distribution in a
control region with two leptons of the same charge.

Different constraints are applied to the background template normalization, to reflect
our knowledge of the cross section of those processes in the model. First, the normaliza-
tions of the templates of the three main background processes, i.e., WTW™, tt +tW, and
1717, are left unconstrained separately in each RL bin. This treatment reflects the belief
that precise predictions of these background processes are essential, but the MC simulation
cannot be trusted at extreme values of the observables, especially large Nje. Their nor-
malizations are therefore determined from the observed data. To help constrain tt 4+ tW
and 171, control samples enriched in the two processes (see section 5) are included in the
simultaneous fit. The normalizations of the tt + tW and t71~ templates in these control
samples are fit with factors that also scale the respective templates in the fit to the signal
candidate events. The normalization of the WTW ™ template is determined without using
specific control samples, and is mostly constrained by the high m! region.

Normalizations of the templates for the minor background processes are centered at the
SM expectations and are constrained a priori by their respective systematic uncertainties.
Normalizations of the nonprompt lepton templates are centered at the estimates given by
the method described above. Because the closure of the nonprompt background estimation
method depends on the flavor composition of the jets faking the leptons, and since the
flavor composition varies among DO bins, the normalization of the nonprompt background
is allowed to vary independently in each of those bins.

7 Definition of the fiducial region and extraction of the signal

The fiducial region is defined in table 1, with all quantities evaluated at generator level
after parton showering and hadronization. Leptons are “dressed”, i.e., momenta of photons

radiated by leptons within a cone of AR = V/(An)® + (A¢)® < 0.1 are added to the lepton
momentum. The fiducial region definition matches that of the event selection criteria,



Observable Condition
Lepton origin Direct decay of H —+ WTW ™
Lepton flavors; lepton charge e u (not from t decay); opposite
Leading lepton py pgf > 25 GeV
Trailing lepton pp péﬁ > 13 GeV
In| of leptons In| < 2.5
Dilepton mass ml > 12 GeV
pr of the dilepton system plqlﬂ > 30 GeV
Transverse mass using trailing lepton mfﬁ > 30 GeV
Higgs boson transverse mass m? > 60 GeV

Table 1. Definition of the fiducial region.

except for the 1 bound of muons (|n| < 2.4 in the event selection) and the absence of
. . miss H ly _miss

any direct selection of pp™. Generator level my and m.{ employ a generator level pr

definition corresponding to the vector sum of all neutrinos in the event. The expected

fiducial cross section and its theoretical uncertainty [52] computed for the nominal signal is
oM = 82,5+ 4.21h. (7.1)

This cross section is estimated using, for each process, the cross sections recommended
in [52] and estimating the acceptance of the fiducial region from the nominal signal samples.

The differential production cross sections for the Higgs boson are inferred from the
signal strength modifiers extracted through a simultaneous fit to all bins and categories of
signal candidate events and two control regions. The systematic uncertainties discussed in
section 8 are represented by constrained or unconstrained nuisance parameters that affect
the shapes and normalizations of the signal and background templates. The simultaneous
fit maximizes the likelihood function

L(p;0) = [ [ Poisson (n; s;(p; 0) + b;(8)) N (6)K(p). (7.2)
J

In the formula, g and @ are vectors of the signal strength modifiers and nuisance pa-
rameters, respectively. The expression Poisson(n; \) represents the Poisson probability of
observing n events when expecting A, and n; is the observed number of events in a given
bin of the (m”, m%) template in any RL category, with index j running over bins of his-
tograms of signal region categories and control regions for all the RL DO bins, and all
three data sets. The signal in the jth bin is represented by

N

s;(1:0) =>_ [A;;(0)p;Ljo;] (7.3)
=1

where N is the number of GL DO bins. The migration matrix Ajz» represents the number
of events expected in RL bin j for each H — WTW ™ signal event found in the GL£

~10 -



bin 7. The expected number of events in bin ¢ are expressed as a product of u,;, the total
integrated luminosity L; (with three possible values corresponding to the three data sets),
and the signal cross section ;. Note that here o; contains both fiducial and nonfiducial
components. The total background contribution in bin j is represented by b;. The factor
N (0) incorporates a priori constraints on the nuisance parameters, taken as log-normal
distributions for most of the individual 8 elements. Finally, the regularization factor K(u),
present only in the p¥ measurement, is constructed as

K(p) = Aﬁl exp (‘ [(Miﬂ - MZ)Q(;? (i — :U'z'l)]2> 7 (7.4)
i=2

with index ¢ running over GL DO bins, penalizing thereby large variations among signal
strength modifiers of neighboring bins. The parameter § controls the strength of the regu-
larization, and is optimized by minimizing the mean of the global correlation coefficient [75]
in fits to “Asimov” data sets [76]. The optimal value of ¢ is found to be 2.50. It should be
noted that the regularization term acts as a smoothing constraint on the unfolded distri-
bution. Because the distribution of Nj. is discrete, regularization was not applied in the
Nig, fit.

Nonfiducial signal events are scaled together with the fiducial components, with the
distinction between fiducial and nonfiducial parts made only when translating the extracted
signal strength modifiers into fiducial differential cross sections, achieved by multiplying
the fiducial cross section in a given GL DO bin i by the corresponding p;. This treatment
is chosen because the ratio of nonfiducial to fiducial signal yields expected in this analysis
averages across DO bin to ~0.2. This value is significantly larger than for the diphoton and
two Z boson decay channels, rendering the scaling of just the fiducial component unphysi-
cal. Nonfiducial signal events appear in the signal region mostly through the discrepancy
between GL and RL p%iss affecting miﬁ and m¥ In addition, for larger values of Nije,
the leading Higgs boson production mode is ttH, which has more possible eiu:F final-state
configurations where the lepton pair does not arise from H — WHTwW™ decay. The ratio of
nonfiducial over fiducial signal yields is however still affected by the uncertainties on the
migration matrix, allowing it to vary postfit with respect to its prefit value.

A RIVET [77] implementation of the STXS scheme [52] is used to compute the GL
pg and Nje observables. For Nig, all final-state particles from the primary interaction,
excluding the products from Higgs boson decay, are clustered using the anti-kt algorithm
with a distance parameter R = 0.4, and jets with pp > 30 GeV are counted regardless of
their rapidity.

The binning in both p? and Nje; is common for the fiducial space and for the re-
constructed events. Bin definitions and categorizations of the reconstructed events within
each bin are summarized in table 2. The bin widths at lower values of p¥ are dictated by
the reconstruction resolution of p%ﬂss that affects the resolution of pg. At higher values,
boundaries are chosen so that the expected uncertainties in p; are less than unity. The
fraction of events reconstructed in the correct GL bin ranges from 52 to 73% when spanning
from the lowest to the highest pI; bin, and the purity of each pg bin, i.e., the fraction of
events in RL bin i that also belong to GL bin i, ranges from 48 to 80%. Corresponding
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H
Pt

Binning (GeV): 0-20 2045 45-80 80-120 120-200 >200

Categorization: 4W  4W 4w 3w 2w 2W
*Njet
Binning: 0 1 2 3 >4
Categorization: 4W 4W 2W 1W 1W

Table 2. Binning of the DO and signal categorizations used in the respective bins.

p¥ Acceptance per production mode (%)

(GeV) All SM ggF VBF VH ttH

0-20 6.77+£0.36 6.79+0.37 6.574+0.13 4.994+0.12 11.3+1.1

2045 6.32+£0.30 6.33+0.33 6.314+0.09 4.91£0.08 11.1+1.1
45-80 5.94+042 591+0.53 5.86+0.08 4.81+0.06 10.9+1.0
80-120 6.13+0.47 5994+0.73 5.77+0.08 5.21+£0.07 11.1+1.1
120200 6.35+£0.59 584+1.06 5874+0.09 5.74+£0.08 11.4+1.1

>200 6.894+0.73 5.87+1.47 6.22+0.15 643+0.17 11.94+1.1

Table 3. Acceptance of each GL pr}fI bin with its theoretical uncertainty.

Acceptance per production mode (%)

N.

et

—

All SM

ggF

VBF

VH

ttH

w N = O

>4

6.50 = 0.35
6.03 £ 0.64
6.36 £0.72
7.08 £0.73
7.54 £ 0.66

6.58 £ 0.37
6.04 £0.76
6.08+1.24
6.26 £1.30
6.16 £ 1.45

6.12+£0.11
5.91 £ 0.08
5.99 £0.08
6.11 £0.11
6.03 £0.20

4.98 +0.06
5.24 +£0.07
5.44 £0.07
5.60 £ 0.10
5.01 £0.15

125+1.3
12.5+1.2
125+£1.2
11.5£+1.1
10.3£1.0

Table 4. Acceptance of each GL Nj,, bin with its theoretical uncertainty.

numbers for the Njo, measurement are 80 to 92% and 68 to 95%, respectively, with the
highest jet multiplicity bins representing the lowest bound of these intervals.

The values of the signal acceptance per GL DO bin are shown in tables 3 and 4 for p¥
and Nj¢, respectively.

The two-dimensional histograms of (m'', m?) in the signal region have different bin-
nings depending on the expected number of events and statistical uncertainties in the
templates. The finest binning is 10-25, 25—40, 40-50, 50-70, 70-90, and >90 GeV in m”;
and 60-80, 80—90, 90-110, 110-130, 130-150, and >150 GeV in m? The coarsest binning,
used for the highest pIT{ bins, is 10-50 and >50 GeV in m" and 60-110 and >110 GeV in ml;.
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Figure 1. Observed distributions of m' in data and the expectations from the best fit model with

the uncertainties. The distributions in each p¥ bin are given in separate panels. Within each panel,
the lower sub-panel displays background-subtracted observations and expectations.

RL p;{ bin
Process

[0-20] [20-45] [45-80] [80-120] [120-200] > 200

Data 41032 41799 31273 16942 10366 3514
H(125) 1485+ 81  (1356) 1386+ 80  (1402) 835+ 52 (792) 320+ 36 (344) 217+ 33 (222) 54+ 17 (75)
All background 39532+ 280 (35861) 40414+ 391 (41978) 30423+ 393 (32293) 16614+ 351 (17809) 101544 220 (10790) 3475+ 107 (4019)
ot 537+ 49 (372) 675+ 43 (585) 684+ 61 482) 316+ 42 (195) 173+ 24 (219) 104+ 58 (83)
WHw™ 26945+ 213 (22840) 17421+ 290 (18771) 7444+ 269 (9048) 2759+ 250 (3972) 22054 155 (2816) 1037+ 70 (1637)
tE+tW 55714 65  (5492) 14700+ 176 (14528) 18313+ 239 (18188) 11482+ 220 (11624) 6481+ 137 (6488) 1659+ 40 (1671)
Nonprompt 3709+ 127 (5154) 4373+ 128 (5909) 18224 107 (3143) 1002+ 80  (1239) 558+ 52 (749) 197+ 23 (279)
Other background ~ 2770% 102 (2002) 32454 137 (2186) 21604 100 (1431) 10554 64  (778) 737449  (519) 478+ 33  (349)

Table 5. Signal and background post-fit (pre-fit) yields in the RL pg bins.

The observed events are shown as a function of m' in figures 1 and 2, along with

the predictions from the best fit model and their estimated overall uncertainties. The m

distributions are formed by integrating the two-dimensional (m” mT) distributions and
templates over mr? and combining all signal regions and all data sets. The yield breakdown

in each RL DO bin is shown in tables 5 and 6 for the p¥ and Nj¢; case respectively.
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Figure 2. Observed distributions of m' in data and the expectations from the best fit model

with the uncertainties. The distributions in each N, bin are given in separate panels. Within

each panel, the lower sub-panel displays background-subtracted observations and expectations. For

Njer = 0, results are split into pfﬁ > 20 GeV (left) and plf’ < 20 GeV (right).

RL Nje bin

P

rocess 0 1 9 3 >y

Data 66263 42959 23027 8912 3765
H(125) 21864+ 92 (2447) 12544 60 (1165) 632+ 66  (445) 178+ 48 (109) 98+ 26  (36)
All background 640854 463 (63221) 41650 374 (43994) 22367+ 344 (22782) 87354 182 (8658) 36554 79 (3822)
T 740+ 41 (520) 944450  (822) 68899  (301) 255+ 43 (135) 100+ 50 (70)
Wrw- 41058+ 360 (38437) 13190+ 252 (15176) 3402+ 222 (4266) 698+ 125 (966) 0+ 0 (240)
£+ tW 111254 144 (11870) 20891k 179 (21198) 157884 214 (15381) 68534 110 (6510) 3152 52 (3031)
Nonprompt 6649+ 188 (8999) 34364 149 (4457) 1066+ 77 (1792) 480+ 52 (685) 254+ 30 (357)
Other background 4513 165 (3394) 3180+ 139 (2342) 14244 89  (1043) 449+ 32  (362) 149+ 12 (124)

Table 6. Signal and background post-fit (pre-fit) yields in the RL Nje bins.
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8 Systematic uncertainties

The experimental uncertainties mostly concern the accuracy in modeling the detector re-
sponse in MC simulation, while the theoretical uncertainties are more specific to individual
signal and background processes. Because signal extraction is performed using templates of
(m”, mg) distributions, the relevant effects of the uncertainties are changes in the shapes
and normalizations of the templates. In the signal extraction fit, one continuous con-
strained nuisance parameter represents each such change. The constraints are implemented
through log-normal probability distribution functions, with the nominal values of the nui-
sance parameters at zero and the widths given by the estimated sizes of the corresponding
uncertainties.

Experimental uncertainties pertaining to all MC simulation samples, both signal and
background, are the uncertainties in trigger efficiency, lepton reconstruction and identifi-
cation efficiencies, lepton momentum scale, jet energy scale, and the uncertainty on p%iss
arising from the momentum scale of low pr PF candidates not clustered into jets (unclus-
tered energy). Uncertainties in lepton momentum and jet energy scales also affect p%nss
Each of these uncertainties is represented by one independent nuisance parameter per data
set, effectively keeping the template variations for the three data sets in the simultane-
ous fit uncorrelated. The uncertainty in b tagging efficiency, also included in this class of
uncertainties, is represented by seventeen nuisance parameters. Five of these nuisance pa-
rameters relate to theoretical predictions of jet flavors involved in the measurement of the
efficiency and are thus common among the three data sets. The remaining twelve param-
eters, four per data set, relate to statistical uncertainties in the samples used to measure
the efficiency, and are uncorrelated among the data sets [32].

Uncertainties in the trigger efficiency, and lepton reconstruction and identification
efficiencies, evaluated as functions of lepton p and 7, cause variations in both the shape
and the normalization of the templates. The impacts on the template normalizations from
the uncertainties in the trigger efficiency are less than 1% overall, while the uncertainties in
the reconstruction and identification efficiency cause shape and normalization changes of
~1% for electrons and ~2% for muons. These uncertainties are dominated by the statistical
fluctuations of the data set where they are measured, and are thus kept uncorrelated among
the data sets.

Changes in the lepton momentum scale, the jet energy scale, and the unclustered
energy scale all cause migrations of simulated events between template bins and migration
in and out of the acceptance, which in turn cause changes in the shape and normalization
of the templates. The impact on the template normalization is ~0.6-1.0% in the electron

momentum scale, 0.2% in the muon momentum scale, and 1-10% in p™®

. For the changes
in the jet energy scale, the impact on the template normalization is ~3 and 10% in the pg
and Nje measurements, respectively. The latter has larger uncertainties because the jet
energy scale directly affects the number of events falling into different RL Ni¢; bins.
There are also experimental uncertainties in the estimation of the nonprompt lepton
background. This background is affected by shape uncertainties arising from the depen-

dence of the fake-lepton factors on the flavor composition of the jets misidentified as leptons.
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These shape uncertainties amount to ~5-10% (see ref. [13] for details). Additionally, a 30%
normalization uncertainty is assigned to the fit template for the nonprompt lepton back-
ground from a closure test performed on simulation. Because these uncertainties depend
on lepton reconstruction and identification algorithms, which have differences among the
three data sets, they are represented through independent sets of nuisance parameters.
Due to the difference in shape between the nonprompt lepton background and the other
backgrounds and the signal, the normalization uncertainty is constrained post-fit to about
50% of its pre-fit value.

The uncertainties in the integrated luminosity are incorporated into the fit as changes
in normalization of the templates of the MC simulation samples, excluding the WTW ™,
tt + tW, and t7t~ samples. The total uncertainty in the CMS luminosity is 2.5, 2.3, and
2.5% for the 2016, 2017, and 2018 data sets, respectively [35-37]. These evaluations are
partly independent, but also depend on inputs that are common among the three data
sets. In total, nine nuisance parameters are introduced to model the correlation in the
uncertainties of the integrated luminosity among the data sets.

Several theoretical uncertainties are relevant to all MC simulation samples. Uncertain-
ties in this category arise from the choice of the PDFs, missing higher-order corrections
in the perturbative expansion of the simulated cross sections, and modeling of the pileup.
Template fluctuations due to these uncertainties are controlled through nuisance parame-
ters common to all three data sets.

Since the changes in the shapes of the templates from the uncertainties in PDFs are
found to be small, only the normalization changes, both as cross section changes and
acceptance changes, are considered from this source. For the tt + tW and 171~ events,
while uncertainties in the overall normalizations have no impact in the fit, uncertainties in
PDFs give rise to respective 1% and 2% uncertainties in the ratios of the predicted yields
in the signal and the control region.

Except for the ggF signal and WTW~ background processes, the estimated uncertain-
ties from missing higher-order corrections in the perturbative QCD expansion are given by
the bin-by-bin difference between the nominal and alternative templates, which are con-
structed from simulated events, where renormalization and factorization scales are changed
up and down by factors of two. Extreme variations where one scale is scaled up and the
other is scaled down are excluded. For the ggF signal, the uncertainties are decomposed into
several components, such as overall normalization and event migrations between jet multi-
plicity bins [52]. For the WHTW ™ background, the higher-order corrections described in sec-
tion 3 are modified by shifting the renormalization and factorization scales and the jet veto
threshold, where the latter determines the scale below which QCD gluon radiation is re-
summed. The entire size of the electroweak corrections to the W W~ process is taken as an
uncertainty. For the uncertainties in both the PDF and higher-order corrections, processes
sharing similar QCD interactions are controlled through a common nuisance parameter.

The uncertainty in the modeling of the pileup is assessed by changing the pp total
inelastic cross section of 69.2mb [78, 79] within a 5% uncertainty, accounting for both the
uncertainty in inelastic cross section measurement and the differences in primary vertex
reconstruction efficiency between simulation and data.
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Theoretical uncertainties in modeling the PS and UE primarily affect the jet multi-
plicity and are in principle relevant to all MC simulated samples, but in practice have
nonnegligible impacts on the fit result only in the ggF and VBF signal samples and the
quark-induced WTW ™ background sample. The uncertainty in the PS is evaluated by
employing an alternative PS MC generator (HERWIGH+ v2.7.1 [80, 81]) for the simulation
of the 2016 data set, and by assigning PS variation weights computed in PYTHIA [82] to the
simulated events for the simulation of the 2017 and 2018 data sets. The UE uncertainty is
evaluated by changing the fit templates using MC simulation samples with UE tunes that
are varied from the nominal tunes to cover their uncertainties [42, 43]. For each of the PS
and UE uncertainties, changes in the 2017 and 2018 simulations are controlled through one
nuisance parameter, but the 2016 simulation uses an independent parameter.

In addition, there are theoretical systematic uncertainties specific to individual back-
ground processes. The W W™ background events have a 15% uncertainty in the relative
fraction of the gluon-induced component [63]. Similarly, the tt + tW background events
have an uncertainty of 8% in the fraction of the single top quark component. Also the
tt + tW background sample considers the entire pp correction weight (as mentioned in
section 3) as the uncertainty in its tt component. The Wy™ process is assigned a 30%
uncertainty arising from the statistical precision of the trilepton control region used to
estimate the scale factor assigned to this background process, as described in section 3.

The theoretical uncertainties reflect those in the cross sections expected for signal pro-
cesses, as well as their template shapes. Because this analysis is a measurement of fiducial
differential cross sections, theoretical uncertainties in the fiducial cross section of each bin
of DO must be excluded from the fits. This is achieved by keeping the normalizations of
the signal templates for individual GL DO bins constant when changing the values of the
nuisance parameters corresponding to theoretical uncertainties.

It should be recognized that the use of regularization in signal extraction can introduce
systematic biases in the measured differential cross sections. In particular, by construction,
a discrepancy from the expectation in a single DO bin will be suppressed if the neighboring
bins do not exhibit discrepancies in the same direction. The scale of possible regularization
bias is measured from the results of the fit as outlined in ref. [83]. In this method a toy
data sample is created with signal yields corresponding to a statistical fluctuation around
the best fit model. For each DO bin the difference in the number of events between the
regularized fit result to the toy sample and the toy sample itself is taken as an indication
of the scale of bias introduced by regularization. These differences are then translated to
estimates of the bias in signal strengths through a multiplication by the rate of change of
the extracted signal strength modifiers, estimated by comparing the regularized fit result
and the toy data sample. Estimated biases from regularization are separately reported in
section 9 with the measured differential cross sections and other uncertainties. Unfolding
bias has also been estimated as the difference between the true and fitted signal strength on
an Asimov dataset constructed with either no VBF component or twice the expected VBF
component. In this case the bias was smaller than the one estimated with the previously
described method.

17 -



pg oM . Regularized p Bias obs

(GeV) (fb) Value stat exp signal bkg  lumi (fb)
0-20 2745 1.37+0.30 1.26+0.27 +0.17 =+£0.19 +0.01 +0.10 +0.03 +0.00 34.6+7.5
20-45 2476 0.52+042 0.73+£0.36 +024 =+0.25 +0.01 +0.10 +0.03 —0.12 18.2+8.9
45-80 1528 1.55+0.41 1.3040.33 +0.24 40.20 +0.03 +0.09 =+0.03 —0.03 19.9+5.2
80-120 7.72 0.49+0.52 0.794+042 +0.32 +0.25 +0.02 +0.08 =+£0.03 —0.16 6.1+3.3
120200 526  1.34709% 1144041 4029 +0.27 +0.04 +0.08 +0.03 +0.11 6.0 +2.2
>200 2.05  0.64798 0737081 +0.38 +042 599 4010 +0.03 40.19 15+1.2

Table 7. Observed signal strength modifiers and resulting cross sections in fiducial pg bins. The
cross section values are the products of o™ and the regularized p. The total uncertainty and
the contributions by origin are given, where the contributions are statistical (stat), experimental
excluding integrated luminosity (exp), theoretical related only to signal modeling (sig), to the
background modeling (bkg), and integrated luminosity (lumi). Estimated biases in regularization
are separately listed in the second from last column and are not included in the total uncertainty.

oM u 5P
et (fb) Value stat exp signal bkg  lumi (fb)
0 4570 0.88+0.13 +0.06 +0.08 +0.01 +0.07 +0.03 40.1+6.0
1 2174 1.06+020 +0.12 =+0.14 =+0.01 +0.08 +0.03 23.0+4.6
2 999 1504+040 102 +0.28 +0.04 +0.11 £0.03 15.0+4.2
3326 156713 oR 0% foor Tl foor st
>4 183 35470 oy % fow o3 oo 65550

Table 8. Observed signal strength modifiers, uncertainties, and resulting cross sections in fidu-

cial Nje, bins. The cross section values are the products of o™ and the unregularized p. The

uncertainties are separated by origin as in table 7.

9 Results

Tables 7 and 8 display the SM cross sections, observed values of u, the uncertainties sep-
arated according to their origin, and the observed cross sections. The contributions to
the uncertainties are categorized as: statistical uncertainties in the observed numbers of
events; experimental uncertainties excluding those in the integrated luminosity; theoretical
uncertainties related only to signal modeling; other theoretical uncertainties; and the uncer-
tainties in the integrated luminosity. Table 7 also shows the estimates of the regularization
bias discussed at the end of section 8.

Correlations among the signal strength modifiers obtained from the fits are shown in
figure 3. Because the GL and RL DO are not perfectly aligned, the signal template for
a GL bin has nonzero contributions in neighboring RL bins. This misalignment induces
negative correlations between the signal strength modifiers of the nearest-neighbor bins in
the fit, which are indeed observed in the correlation matrices. Regularization counters this
negative correlation, as evident in the correlation matrix for the p¥ fit.
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20-45 0076 0026
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Figure 3. Correlation among the signal strength modifiers in bins of fiducial p;I (left) and Nje
(right). For the p? matrix, results of the regularized and unregularized fits are given above and
below the diagonal.

The observed cross sections are compared with SM expectations in figure 4. As dis-
cussed in section 3, all samples in the nominal signal model are generated using POWHEG,
with the ggF component reweighted to match NNLO accuracy. Expectations from an al-
ternative signal model, where the MADGRAPH5_aMC@NLO generator is used for the ggF
and VBF components but the VH and ttH components are kept identical, are also over-
laid in the figure. The largest deviation from the SM prediction is observed in the > 4 jet
multiplicity bin and is 1.4 standard deviations.

In addition, the total fiducial cross section is extracted from a fit where the signal in
eq. (7.3) is reformulated to

s (1", 0) = 5;(1"p;0) = "> [A;(0)piLjoy] (9.1)

in which ,uﬁd and all except one p; are free parameters. A specific p, depends on the other
p parameters via

SM SM
o = Dtk PiOi
Pk = SM )
Ok

(9.2)

fixing the sum >_; pio—is M £o the total SM fiducial cross section JSM, given in eq. (7.1). No
regularization is applied for this fit. Through this reformulation, anticorrelated components
within uncertainties in y; are absorbed into the sum >_; A;;p;0;, resulting in an uncertainty
in uﬁd that is smaller than the quadratic sum of uncertainties in individual p; that appear
in tables 7 and 8.

The observed signal strength uﬁd and cross section o4 = ,uﬁdaSM from the fit to the
pg—binned combined data set, which has a smaller expected uncertainty than the fit to the
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Figure 4. Observed fiducial cross sections in bins of p? (left) and Nj (right), overlaid with predic-
tions from the nominal and alternative models for signal. The ggF and VBF samples are generated
using POWHEG in the nominal model and MADGRAPH5__aMC@NLO in the alternative model. The
uncertainty bars on the observed cross sections represent the total uncertainty, with the statisti-
cal, experimental (including luminosity), and theoretical uncertainties also shown separately. The
uncertainty bands on the theoretical predictions correspond to quadratic sums of renormalization-
and factorization-scale uncertainties, PDF uncertainties, and statistical uncertainties of the simu-
lation. The filled histograms in the ratio plots show the relative contributions of the Higgs boson
production modes in each bin.

Njei-binned combined data set, are

#i = 1.05£0.12 (£0.05 (stat) £0.07 (exp) £0.01 (signal) +0.07 (bkg) +£0.03 (lumi) ), (9.3)
o =86.5+9.5 fb. (9.4)

where (stat) refers to the statistical uncertainties (including the background normalizations
extracted from control regions), (exp) to the experimental uncertainties excluding those in
the integrated luminosity, (signal) to the theoretical uncertainties in modeling the signal,
(bkg) to the remaining theoretical uncertainties, and (lumi) to the luminosity uncertainty.
Tabulated results are available in the HepData database [84].

10 Summary

Inclusive and differential fiducial cross sections for Higgs boson production have been mea-
sured using H - WTW~ — eipﬁvv decays. The measurements were performed using
pp collisions recorded by the CMS detector at a center-of-mass energy of 13 TeV, cor-
responding to a total integrated luminosity of 137 fb~!. Differential cross sections as a
function of the transverse momentum of the Higgs boson and the number of associated
jets produced are determined in a fiducial phase space that is matched to the experimental
kinematic acceptance. The cross sections are extracted through a simultaneous fit to kine-
matic distributions of the signal candidate events categorized to maximize sensitivity to
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Higgs boson production. The measurements are compared to standard model theoretical
calculations using the POWHEG and MADGRAPH5_aMC@QNLO generators. No significant
deviation from the standard model expectations is observed. The integrated fiducial cross
section is measured to be 86.5 9.5 fb, consistent with the SM expectation of 82.5 +4.2 fb.
These measurements were performed for the first time in the H — WTW ™ decay channel
at /s = 13 TeV exploiting the full data sample available. The methods for the determina-
tion of the differential cross section have been updated significantly compared to the last
report in the same channel at /s = 8 TeV, combining the signal extraction, unfolding, and
regularization into a single simultaneous fit.
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