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Abstract

The purpose of this work is to introduce a new idea of how to avoid the factor-
ization of large matrices during the solution of stiff systems of ODEs. Starting
from the general form of an explicit linear multistep method we suggest to
adaptively choose its coefficients on each integration step in order to minimize
the norm of the residual of an implicit BDF formula. Thereby we reduce the
number of unknowns on each step from n to O(1), where n is the dimension
of the ODE system. We call this type of methods Minimal Residual Multistep
(MRMS) methods. In the case of linear non-autonomous problem, besides the
evaluations of the right-hand side of ODE, the resulting numerical scheme ad-
ditionally requires one solution of a linear least-squares problem with a thin
matrix per step. We show that the order of the method and its zero-stability
properties coincide with those of the used underlying BDF formula.

For the simplest analog of the implicit Euler method the properties of linear
stability are investigated. Though the classical absolute stability analysis is not
fully relevant to the MRMS methods, it is shown that this one-step method
is applicable in stiff case. In the numerical experiment section we consider the
fixed-step integration of a two-dimensional non-autonomous heat equation using
the MRMS methods and their classical BDF counterparts. The starting values
are taken from a preset slowly-varying exact solution. The comparison showed
that both methods give similar numerical solutions, but in the case of large sys-
tems the MRMS methods are faster, and their advantage considerably increases
with the growth of dimension. Python code with the experimantal code can be
downloaded from the GitHub repository https://github.com/bfaleichik/mrms.
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Abbreviations

ODE — ordinary differential equation
MRMS method — minimal residual multistep method

Introduction

The necessity of solving large systems of linear equations during the num-
merical solution of stiff initial value problems of high dimensions is a well-known
problem of implicit numerical methods. Currently there are several approaches
which deal with this problem. ‘Purely explicit’ methods for stiff problems em-
ploy only the evaluations of the right-hand side of an ODE, for example the
well-known explicit Runge-Kutta methods of Chebyshev type [1], [2]. There
are also methods which implement implicit methods using special matrix-free
iterative processes instead of conventional Newton iteration [3]. The second
kind are the methods which admit a certain level of ‘implicitness’, i. e. some
linear systems (possibly of low dimensions) need to be solved. The most remark-
able method of this kind is the so-called Newton-Krylov method for solution of
nonlinear systems proposed by Brown and Hindmarsh [4].

The idea which is developed in the present work lies in between the above
mentioned tactics. In a certain sense we borrowed the idea to restrict the set
of possible solutions by a subspace of low dimension from [4]. This allowed us
to reduce the number of unknowns on each step from n to O(1), where n is
the dimension of the ODE system. On the other hand there is some analogy
to Rosenbrock methods [5] which do not employ any iterative processes. In
contrast to these methods, instead of one linear system per step we suggest to
solve a linear least-squares problem with a thin matrix.

The paper is organized as follows. In section 1 we define the general form of
the method. In sections 2 and 3 the properties of accuracy and zero-stability are
discussed. Section 4 is devoted to the investigation of linear stability properties
of the MRMS methods. The main focus here is on the simplest method of the
MRMS family — the one-step minimal residual counterpart of the implicit Euler
method. For the general case we perform a numerical investigation of linear
stability in subsection 4.3. In section 5 we discuss the details of implementation
of the methods for linear systems, and section 6 contains the results of the
numerical experiment with a 2D heat equation which demonstrate considerable
advantage of the MRMS methods over their BDF prototypes.

1. Specification of the method

Consider a system of ordinary differential equations

y′ = f(t, y), y(t0) = y0 ∈ Rn, (1)
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and a k-step explicit linear multistep method of general form

yk =

k−1∑
j=0

(τβjfj − αjyj) (2)

with starting points (tj , yj), tj < tj+1, tk = tk−1 + τ , fj = f(tj , yj). In contrast
to the classical case the coefficients α = [α0, . . . , αk−1]T , β = [β0, . . . , βk−1]T

on each step are not supposed to be determined explicitly by order conditions,
but rather are subjected to some optimization constraints. More precisely, we
would like to choose such coefficients that give a best approximation to y(tk) in
the following sense. Consider a standard backward approximation of order p to
derivative

τy′(tk) ≈ cky(tk) + ck−1y(tk−1) + . . .+ ck−py(tk−p), p ≤ k, (3)

a corresponding standard p-step BDF formula [6]

ckyk + ck−1yk−1 . . .+ ck−pyk−p = τfk, (4)

and a residual function r : Rn → Rn,

r(x) = τf(tk, x)− (ckx+ ck−1yk−1 + . . .+ ck−pyk−p). (5)

Then

(α, β) = argmin
α′,β′

∥∥∥∥∥∥r
(k−1∑
j=0

(τβ′jfj − α′jyj)
)∥∥∥∥∥∥ . (6)

Generally any norm in Rn can be used, but for the practical use the 2-norm is
more preferable. For obvious reasons sometimes we will call (4) an underlying
BDF method. By yBDF

k we will denote the exact result of this method, i. e. a
vector for which r(yBDF

k ) = 0 must hold. Generally speaking, yBDF
k does not

necessarily need to be unique and may not exist at all (see e. g. Example 2
below).

If we rewrite (2) in the form

yk = V γ, (7)

where γ =

[
α
β

]
∈ R2k, V : R2k → Rn,

V =
[
−y0

∣∣∣−y1∣∣∣. . .∣∣∣− yk−1∣∣∣τf0∣∣∣τf1∣∣∣. . .∣∣∣τfk−1], (8)

then an alternative point of view on the proposed method is seen. We are
looking for an approximate solution of BDF equation (4) in the subspace V ⊂ Rn
spanned by vectors y0, . . . yk−1, τf0, . . . τfk−1:

yk = argmin
x∈V

‖r(x)‖, V = rangeV. (9)
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There is a simple but important observation: if yBDF
k ∈ V and is unique, then

yk = yBDF
k . In particular this may be the case when rankV = n and it easier to

directly solve r(yk) = 0 than the optimization problem (9). Therefore the most
interesting and important case is 2k � n, so intrinsically MRMS methods are
reasonable to apply only to big ODE systems. Before proceeding to the main
properties of the method we pin down the definition.

Definition 1. Having k starting points (tj , yj), j = 0, 1, . . . , k − 1, and an un-
derlying p-step BDF formula (4), a minimal residual multistep method MRMS(k,p)
is defined by (9), where the residual function r and the matrix V are defined
correspondingly by (5) and (8).

2. Order of the method

Consider the fixed step case: tj = jτ .

Theorem 1. The order of a MRMS(k, p) method is min{2k − 1, p}.

Proof. The basic fact for the proof is that there always exists an explicit k-
step linear multistep method of order 2k − 1. Denote the corresponding vector
of coefficients by γ̂ = [α̂, β̂]T . Then for ŷk = V γ̂k we have

ŷk − y(tk) = O(τ2k).

By definition of yk for the MRMS method

‖r(yk)‖ ≤ ‖r(ŷk)‖ = ‖r(y(tk) +O(t2k))‖ ≤ O(τp+1 + τ2k).

Using mean-value theorem for vector-valued functions [7] it can be shown that
for sufficiently smooth f there exists C <∞ such that

‖yk − y(tk)‖ ≤ C‖r(yk)− r(y(tk))‖ ≤ O(τp+1 + τ2k).

�

Example 1. To support this result we made a computational experiment on the
linear model equation

y′i = λiyi + 1, yi(0) = 1, (10)

where λi are equally spaced on [−λmax, 0], n = 100, t ∈ [0, 1]. We take λmax =
100 and considered MRMS(k, p) methods for p = 1, . . . 7 and the implicit Euler
method. The standard convergence diagrams are shown on Figure 1: the absolute
error in endpoint err is measured in the maximum-norm, the number of equal
steps Nsteps is changing from 24 to 213 . In order to show the importance of
parameter k two diagrams are generated, for k = p and k = p+ 1. The starting
values for k > 1 are taken from the exact solution.
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Figure 1: Convergence diagram from example 1.
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3. Zero-stability

Lemma 1. Let tj = jτ . If p ≤ k then a MRMS(k, p) method inherits zero-
stability from the underlying BDF method.

Proof. Since we are considering f(t, y) = 0, the MRMS solution is

yk = −(α0y0 + . . .+ αk−1yk−1),

where α0, . . . , αk−1 minimize the norm of

−r(yk) = ck

k−1∑
j=0

(−αjyj) + ck−1yk−1 + . . .+ ck−pyk−p =

k−1∑
j=0

(cj − ckαj)yj ,

where we put c0 = . . . = ck−p−1 = 0. It is clear that optimal r(yk) is zero and
there can be infinitely many vectors α for which this minimal value is reached.
But for all these α we have

yk = −
k−1∑
j=0

αjyj = −c−1k
k−1∑
j=0

cjyj ,

so the corresponding generating polynomial ρ is

ρ(z) =

k−1∑
j=0

αjz
j + zk = c−1k

k−1∑
j=0

cjz
j + zk = c−1k zk−pρBDF(z),

where ρBDF is the generating polynomial of degree p of the underlying BDF
method (4). �

4. Linear stability

The analysis of linear stability we are going to perform on the simplest case
of k = 1, p = 1.

4.1. Minimal residual Euler method

The simplest method of MRMS family is MRMS(1,1) — the analog of the
Euler method:

y1 = αy0 + τβf0. (11)

Note that here for clarity we put α = −α0, β = β0, which is not perfectly
consistent with the previously introduced general notation. On each step these
two coefficients are forced to minimize the norm of implicit Euler’s residual:

(α, β) = argmin
α′,β′

‖r1(α′y0 + τβ′f0)‖, (12)

where
r1(x) = y0 + τf(t0 + τ, x)− x. (13)
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Hereinafter we will call this method the minimal residual Euler (MRE) method.
By theorem 1 the order of the method is equal to one.

It is straightforward to check that for the standard linear test equation
y′ = λy the MRE method is equivalent to the implicit Euler method1. Therefore
to analyze linear stability of the method we must consider a multidimensional
analogue:

y′ = Λy, y(0) = y0,
Λ = diag{λ1, . . . , λn}, y0 = (η1, . . . , ηn)T .

(14)

By definition of the MRE method in this case we have

y1 = R(τΛ)y0, R(z) = α+ βz, (15)

and
r1(y1) = y0 + τΛy1 − y1 = P (τΛ)y0, (16)

P (z) = 1 + (z − 1)R(z). (17)

Optimization problem (12) now takes the form

(α, β)T = argmin
γ∈R2

∥∥∥Wγ + y0

∥∥∥, (18)

where

W =

[
η1(z1 − 1) η2(z2 − 1) . . . ηn(zn − 1)
η1z1(z1 − 1) η2z2(z2 − 1) . . . ηnzn(zn − 1)

]T
, (19)

zi = τλi and by ηi we denote the components of y0. In terms of polynomial
(17) problem (18) can be reformulated in the following way: find polynomial
P ∈ P1 such that

‖P (τΛ)y0‖ = min
p∈P1
‖p(τΛ)y0‖. (20)

Here P1 is the set of all polynomials p of degree 1 such that p(1) = 1.
It should be noted that the MRE method is nonlinear: even on linear system

the evolution operator R(τA) depends on the initial condition y0. Hence it is
difficult to directly generalize the classical notion of stability region to the MRE
case. The same is true for all MRMS methods in general.

Regarding absolute stability we are interested in considering zi ≤ 0. For
definiteness let’s assume that

0 ≥ z1 ≥ z2 ≥ . . . ≥ zn.

We need to check the conditions

|R(zi)| ≤ 1. (21)

1Since we have two free parameters, in this case optimization problem (12) generally has
infinitely many solutions. But all of them yield a solution y1 which coincides with that of
implicit Euler’s method.
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To analyze the simplest case when all |ηi| are equal it is reasonable to correlate
polynomial P from (20) with the minimax polynomial P̃ ∈ P1,

P̃ = argmin
p∈P1

max
z∈[zn,0]

|p(z)|. (22)

As is known (see, e.g. [8]) P̃ can be expressed using Chebyshev polynomial T2
as

P̃ (z) =

T2

(
1− 2z

zn

)
T2

(
1− 2

zn

) =
8z2 − 8znz + z2n
z2n − 8zn + 8

. (23)

The maximum deviation of P̃ (z) from zero is equal to

ε̃ =
z2n

z2n − 8zn + 8
. (24)

4.1.1. Maximum-norm minimization

In the case ‖ · ‖ = ‖ · ‖∞ the use of (23) gives us the following result.

Proposition 1. Consider minimization problem (20) in maximum-norm. If all
|ηi| are equal, then

0 < R(zi) <
2

1− zi
∀ i = 1, . . . , n. (25)

Proof. By definition

‖P (τΛ)y0‖∞ = max
i
|P (zi)ηi| ≤ ‖P̃ (τΛ)y0‖∞ = max

i
|P̃ (zi)ηi| ≤ ε̃|η1|,

where ε̃ is defined in (24). From this it follows that for any i

|P (zi)| = |1 + (zj − 1)R(zi)| ≤ ε̃ < 1.

�

Corollary 1. If conditions of proposition 1 hold then R(zi) ∈ (0, 1) for all
zi ≤ −1.

While in practice we use the 2-norm minimization, this simple result already
shows that potentially the MRE method can be stable on stiff problems.

4.1.2. Minimization in 2-norm

Firstly let’s ensure that the MRE method is well-defined when minimization
(18) is held in ‖ ·‖2. Problem (18) is well-posed when columns of W are linearly
independent. By considering all minors of order 2 we get the following necessary
and sufficient condition.
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Proposition 2. Linear least squares problem (18) is well-posed iff there exist
i 6= j such that zi 6= zj 6= 1 and ηiηj 6= 0.

It is important to realize that the solution of (18) always exists, while well-
posedness guarantees its uniqueness.

Proposition 3. Consider model linear system (14) with time step τ and let the
implicit Euler approximate solution yIE1 be well-defined, i. e. zi = τλi 6= 1 for
all i. In the following cases the MRE solution yMRE

1 coincides with yIE1 .
(i) Linear least squares problem (18) is well-posed, but the set {zi} contains

only two distinct elements.
(ii) Problem (18) is not well-posed (the conditions of proposition 2 are not

fulfilled).

Proof. In case (i) let z1 and z2 be the two possible distinct values of zi. We
can always choose the polynomial R from (15) such that R(z1) = (1 − z1)−1

and R(z2) = (1− z2)−1, so r1(yMRE
1 ) = 0. Case (ii) can be easily proved in the

similar manner. �

It is interesting that the MRE optimization problem can be well-defined even
if the implicit Euler method is not.

Example 2. Consider n = 3, y0 = (1, 1, 1)T , λ = {−1, 0, 1} and τ = 1 the
MRE stability polynomial from (15) is R(z) = 1 + 1

2z.

From proposition 3 it follows that in case when the optimization problem (18)
is not well-posed, the MRE method appears to be absoltely stable. Hereinafter
we are going to consider only well-posed least-squares problems.

Denoting
si = 1− zi

the normal equations for (18) take the form ∑ η2i s
2
i

∑
η2i s

2
i zi∑

η2i s
2
i zi

∑
η2i s

2
i z

2
i

α
β

 =

 ∑ η2i si∑
η2i sizi

 (26)

and the solution is

α =
∆1

∆
, β =

∆2

∆
, (27)

where ∆ and ∆i are usual Kramer determinants of (26) in which the summation
is held over all i from 1 to n.

Lemma 2. Consider the MRE method (11) applied to linear system (14). Sup-
pose that the conditions of proposition 2 are fulfilled and all zi ≤ 0. Then the
coefficients α and β satisfy 0 ≤ β ≤ α ≤ 1.
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Proof. The proof is by induction on n. Let ∆n, ∆n
1 and ∆n

2 be the corre-
sponding Kramer determinants of (26). After collecting similar terms these
determinants can be written as

∆n =

n∑
i=1

η2i s
2
i zi

n∑
j=1

η2j s
2
j (zi − zj), (28a)

∆n
1 =

n∑
i=1

η2i s
2
i zi

n∑
j=1

η2j sj(zi − zj), (28b)

∆n
2 = −

n∑
i=1

η2i s
2
i

n∑
j=1

η2j sj(zi − zj). (28c)

For n = 2 we have
0 ≤ ∆2

2 ≤ ∆2
1 ≤ ∆2.

In general case by direct computation it can be shown that

∆n = ∆n−1 + δn−1, ∆n
1 = ∆n−1

1 + δn−11 , ∆n
2 = ∆n−1

2 + δn−12 ,

where

δn−1 = η2ns
2
n

n−1∑
i=1

η2i s
2
i (zi − zn)2,

δn−11 = η2nsn

n−1∑
i=1

η2i (zi − zn)2(1− zi − zn),

δn−12 = η2nsn

n−1∑
i=1

η2i si(zi − zn)2.

Since
0 ≤ δn−12 ≤ δn−11 ≤ δn−1

for all n ≥ 2, in general case we have

0 ≤ ∆n
2 ≤ ∆n

1 ≤ ∆n

and 0 ≤ β = ∆n
2/∆

n ≤ α = ∆n
1/∆

n ≤ 1. �

A consequense of this lemma is that R(zi) ≤ 1 for zi ≤ 0, and the stability
condition now reduces to R(zi) ≥ −1. Since R is a first-degree polynomial, if
R(zn) ≥ −1 then we will have R(zi) ≥ −1 for all the rest zi.

Lemma 3. Suppose that the conditions of proposition 2 are fulfilled, all zi ≤ 0
and all components of y0 have equal magnitudes: |ηi| = |η1|. If

R(zn) = α+ βzn < −1

then
Bn(zn) = (2− zn)(z2n − 8zn + 8)−

√
nz2n < 0. (29)
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Proof. The proofs is similar to that of proposition 1. First of all by definition
of P we have

P (zn) = 1 + (zn − 1)R(zn) > 2− zn
and

‖P (τΛ)y0‖22 > η21

(
(2− zn)2 +

n−1∑
i−1

P (zi)
2

)
.

On the other hand,

‖P (τΛ)y0‖22 ≤ ‖P̃ (τΛ)y0‖22 ≤ nη21 ε̃2.

Combining these two inequalities and using (24) we have

(2− zn)2 < n

(
z2n

z2n − 8zn + 8

)2

.

�

A simple analysis of polynomial B from (29) yields that

• Bn(z) is positive for all z ≤ 0 if
√
n < 2(5 + 3

√
3) ≈ 20.3923;

• For
√
n > 2(5 + 3

√
3) Bn has two real negative roots an, bn such that

Bn(z) < 0 for z ∈ (an, bn);

• The leftmost root an lies between 10−
√
n and 11−

√
n.

Corollary 2. Let the conditions of proposition 2 hold, all zi ≤ 0 and all |ηi|
are equal. Then |R(zi)| ≤ 1 for all i = 1, . . . n in the following cases:

(i) n ≤ 415;
(ii) n > 415 and zn ≤ 10−

√
n.

Note that the requirements of corollary 2 are not necessary, but sufficient for
stability.

4.2. Instability cases

Though the result of corollary 2 is quite optimistic we should always keep
in mind the dependence of the stability polynomial R on the values of ηi. In
fact it is quite easy to construct a case when |R(zn)| > 1. It suffices to consider
ηn = 0: now the n-th component of P (τΛ)y0 is always zero and P (zn) does not
influence the functional that is being minimized. Taking into account lemma 2
this means that when ηn = 0 and zn � zn−1 then R(zn) � −1. On the other
hand this is not a big problem, since this huge number will be multiplied by
zero. But by continuity argument in such a case we will get R(zn) < −1 also
for all ηn in a neighborhood of zero. Anyway the instability in this case does
not occur for big values of ηi and thus can not lead to a blow-up. The following
example illustrates the described situation.
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Figure 2: Illustration of example 3. Graphs of dependence of −R(z3) (top row) and R(0)
(bottom row) on η for z3 = −10 (left column) and z3 = −106 (right column).

Example 3. Let n = 3, y0 = (1, 1, η)T , z1 = 0, z2 = −1, and z3 is a parameter.
Then

R(z3) =
2(z3 + 2)− η2(z3 − 1)(5z23 + 8z3 + 4)

η2(z3 − 1)2(5z23 + 8z3 + 4) + 4
,

so at η = 0 we have R(z3) = 1 + z3/2. Graphs of −R(z3) are shown at the first
row of Figure 3. They display that R(z3) tends to 0 very fast as η grows, but
remains negative in a neighborhood of 0. This will result in a fading wiggling
around equilibrium in an approximate solution as t→∞.

Another important observation is the behavior of R(0) which is equal to

R(0) =
η2((z3 − 2)z3(z3 + 1)(3z3 − 1) + 4) + 4

η2(z3 − 1)2(5z23 + 8z3 + 4) + 4
. (30)

The second row of Figure 3 shows how R(0) depends on η for z3 = −10 and
z3 = −106. We see that R(0) can be much less than 1. This means that generally
very slow eigenmodes of the solution are heavily damped by the MRE (lemma 2
confirms this statement). This is the main reason of poor accuracy of the MRE
method in our first experiment from Figure 1.

To sum up these observations consider η = 1, λ3 = −105, τ = 0.05 and
compare the MRE method and the implicit Euler method on [0, 1]. The results
are shown on Figure 3.
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Figure 3: Numerical results for example 3. Graphs of approximations to solution of the system
y′1 = 0, y′2 = −y2, y′3 = −105, yi(0) = 1, by the MRE method (thin blue line) and the implicit
Euler method (thick gray line) are shown. Constant time step τ = 0.05 is used.

4.3. Linear stability in general case

The dependence of the MRMS coefficients on the values of the solution makes
the general analysis of linear stability a difficult problem. If we try to follow
the common scheme of absolute stability analysis for linear multistep methods
[9, V.1], then we need to analyze the location of roots of equation

ρ(ζ)− µσ(ζ) = 0, (31)

where ρ(ζ) = ζk +

k−1∑
j=0

αjζ
j , σ(ζ) =

k−1∑
j=0

βjζ
j . Just as with the MRE method

two issues complicate things: (i) the coefficients {αj} and {βj} are nonlinear
functions of {yj}; (ii) a set of values for parameter µ must be considered at
once, and the distribution of these values must be taken into account. It is not
very clear how to deal with this problem, so we leave it for future research.

To see how much can we ever expect let’s repeat the experiment from ex-
ample 1 and Figure 1 with λmax = 107. Recall that the system y′i = λiy + 1,
i = 1, 2, . . . , 100 is solved, where λi are evenly distributed on [−λmax, 0] (in-
cluding the endpoints). For such a problem implicit Euler method readily
jumps to the equilibrium. We consider this method, the MRMS(p,p) and the
MRMS(p+ 1,p) methods on Figure 4.

Now let’s make an important modification of the problem: instead of uniform
distribution let λi = −(10mi), where mi are equispaced on [−7, 7]. Thereby now
we have more eigenvalues near zero, while the maximum negative eigenvalue is

13



the same as before. The corresponding diagrams are shown at Figure 5. Note
that there we displayed the results of MRMS(p,p) and MRMS(p+ 4,p).

Now we are ready to comment on the results of the experiment:

1. No instability is observed for p < 7 as it would happen in case of explicit
methods.

2. The accuracy gets significantly improved as additional vectors are added
to the subspace V.

3. The MRMS methods exhibit the non-monotonic error decay as the step
size decreases. Taking into account the stability analysis of the MRE
method described above we can suppose that the reason is the sensitivity
to the number of zi close to 0, rather than a numerical instability issue.

4. The accuracy significantly depends on the distribution of the Jacobian
matrix eigenvalues. More research is needed to understand this effect
better.

5. Implementation in the linear case

The most tractable class of problems for MRMS methods are non-autonomous
linear systems of the form

y′(t) = f(t, y(t)) = A(t)y(t) + b(t), (32)

where A(t) is a n× n matrix, b : R→ Rn. Then BDF residual function (5) is

r(x) = (τA(tk)− ckI)x+ τb(tk)− ck−1yk−1 − . . .− ck−pyk−p, (33)

the approximate solution is

yk =

k−1∑
j=0

(τβjfj − αjyj)

and the optimization problem is to find

(α, β)T = argmin
γ∈R2k

‖Wγ − g‖, (34)

where

W = (τA(tk)− ckI)V, g =

p∑
j=1

ck−jyk−j − τb(tk). (35)

Here V is a n× 2k matrix defined by (8).
In our experiments we always solve problem (34) in the 2-norm. If we

write the solution of this problem using the pseudo-inverse matrix W+ =
(WTW )−1WT then the sought approximate solution yk can be also written
as

yk = VW+g. (36)
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Figure 4: The results of numerical experiment with stiff linear model problem (14) from
subsection 4.3. The eigenvalues of the diagonal matrix of ODE system (10) are uniformly
distributed on [−106, 0].
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Figure 5: The results of numerical experiment with stiff linear model problem (14) from
subsection 4.3. The eigenvalues of the diagonal matrix of ODE system (10) are −(10mi ),
where mi are uniformly distributed on [−7, 7].

16



5.1. Computational complexity

The most computationally complex stages of one MRMS(k,p) step are the
following.

• The computing of A(tk) and b(tk) — at most O(n2) flops in the case of
dense matrix.

• The computing of matrix W = τA(tk)V − ckV , which approximately
amounts to 2k multiplications of matrix A(tk) by vectors y0, . . . , yk−1,
f0, . . . , fk−1 which constitute V . However if A and τ are constant then
the most of columns in matrix AV will be available from the previous
steps and only two matrix-vector multiplications are actually required.

• The solution of the linear least squares problem (34). This problem can
be solved in many ways, but the most widely used methods are the normal
equations, the QR decomposition and the singular value decomposition.
In the case n � k, which we are mostly concentrated on, the asymptotic
complexity of these algorithms is O(nk2) flops [10]. Again, if A and τ
are constant, then matrices W on two subsequent steps differ only in two
columns. This allows reusing the results of QR decomposition and update
it in O(nk) flops. We do not use this opportunity in the forthcoming
numerical experiment, though.

Therefore, in the dense case the asymptotic complexity of each step is O(n2),
which is to be compared with O(n3) required by matrix factorization within the
standard implicit methods. But it should be realized that LU decompositions
in standard implicit solvers are not computed on each step, and if it is already
available, then the cost of one ‘implicit’ step is O(n2) as well.

6. Numerical experiment

6.1. The problem

For the numerical experiment we consider the two-dimensional heat equation
on the unit square:

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
+ f(x, y, t), (x, y) ∈ S = (0, 1)× (0, 1), (37)

u(x, y, t)
∣∣∣
(x,y)∈∂S

= 0, u(x, y, 0) = u0(x, y). (38)

We solve this problem using the standard method of lines using the five-point
stencil for the discretization of Laplacian on the uniform mesh (xi, yj) = (ih, jh),
h = 1/(N + 1):

w′ij(t) =
1

h2

(
wi,j+1 + wi,j−1 + wi+1,j + wi−1,j − 4wij

)
+ bij(t), (39)
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i, j = 1, 2, . . . N , wij(t) ≈ u(xi, yj , t), bij(t) = f(xi, yj , t). In order to exactly
compute the error of our methods we construct a problem with preset solution
of the form

wij(t) = p(t)qij (40)

by defining b(t) as

bij(t) = p′(t)qij −
p(t)

h2

(
qi,j+1 + qi,j−1 + qi+1,j + qi−1,j − 4qij

)
.

Since the integration is performed with constant step size, for the experiment
we took a slowly-changing exact solution with

p(t) = 1 + cos(t), qij = exp(xi + yj) sin(2πxi) sin(3πyj). (41)

The interval of integration is [0, 10], and the initial condition is obviously wij(0) =
p(0)qij .

6.2. Implementation details

In the computational experiment we compare the performance of MRMS(k,
k) methods with their classical k-step BDF counterparts, k = 1, 2, . . . 5. For the
both methods problem (39) is represented in the general form

w′(t) = Aw(t) + b(t), (42)

where A is a well-known banded matrix of the two-dimensional discrete Lapla-
cian, w and b are vectors obtained from matrices (wij) and (bij) by stacking their
columns atop one another. Matrix A is stored in Compressed Sparse Column
format.

The integration with both MRMS and BDF methods is performed with fixed
time step, the starting values are taken from the known exact solution (40), (41).

The code for the experiment can be downloaded from the GitHub repository
[11]. It is written in Python language (v. 3.5.2) and uses libraries numpy 1.16.4
and scipy 1.3.0. The test were made on a laptop with 1.8 GHz Intel Core i5
processor and 8 Gb of RAM.

BDF methods. Since matrix A and the time step τ are constant, only one LU
decomposition of matrix τA− ckI is enough for the whole integration interval.
Hence the most time-consuming part of each step is the backsubstitution for
the solution of the system

(τA− ckI)yk = ck−1yk−1 . . .+ ck−pyk−p − b(tk). (43)

The sparse LU factorization is performed using the function scipy.sparse.linalg.splu
which uses the SuperLU library described in [12].

MRMS methods. Here the most important stage is the solution of linear least
squares problem (35). In our code it is performed using the function scipy.linalg.lstsq
which is a wrapper around the corresponding LAPACK routines. We used the
SVD-based method by specifying the option lapack driver=’gelsd’.
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6.3. Results

The numerical tests are performed with grid sizes N = 20, N = 400 and
N = 1000. The integration interval [0, 10] was split into Ms equal steps, where
Ms = 50·2s, s = 0, 1, . . . , 5, for N = 20 and N = 400. To make the computation
time shorter for the largest problem with N = 1000 the number of steps was
ten times less: Ms = 5 · 2s.

At each run the absolute error in the maximum norm at the endpoint t = 10
and the time of execution (in seconds) are measured. The resulting ”time-error”
diagrams are plotted at Figure 6.3.

6.4. Discussion

The main observation regarding Figure 6.3 is that the relative efficiency of
the MRMS methods grows with the increase of dimension. For N = 20 the BDF
methods run faster, but already for N = 400 the MRMS methods take a lead
and for N = 1000 they are several times faster.

To give more evidence let’s give some statistics for the case N = 1000, k = 5.
The BDF method : the initial computation of the LU decomposition took 52 sec-
onds, one step took 0.5 seconds which include 0.47 seconds for the backsubsti-
tution to solve (43). The MRMS method : one step took 0.44 seconds including
0.3 seconds for the solution of the least-squares problem. Of course, all these
numbers are platform- and implementation-specific, but the relation between
the timings seems to be rather fair.

Another remark is that on the problem being solved the general-purpose
BDF solver with variable step size implemented in the function scipy.integrate.solve ivp
(with option method=’BDF’) for big values of N performs significantly slower
than our fixed-step implementation of the BDF method (for N = 400 the differ-
ence is more than 10 times with the accuracy 10−6). One reason for this is that
every time the step size is changed the LU decomposition must be recomputed,
and another reason is that the general-purpose code took some additional time
to compute the starting values. Needless to say that the explicit Runge–Kutta
methods RK45 and RK23, which are also available in scipy.integrate.solve ivp, are
not competetive due to stiffness.

It is also worth mentioning that for k 6= 1 the errors of the BDF and MRMS
methods are almost equal, which means that for this problem the exact solutions
yBDF
k are well approximated by the elements of subspaces V.

Conclusion

In this paper we proposed a new approach to the numerical solution of
big stiff linear systems. It is characterized by the reduced computation cost
compared to usual implicit methods: instead of solving n × n linear systems
on each step, the proposed numerical scheme requires solution of linear least
squares problems with thin n× 2k matrices (k � n).

We showed that the MRMS methods inherit the accuracy and zero-stability
properties from their BDF counterparts, and performed a partial analysis of
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Figure 6: The results of numerical experiment with the 2D heat equation (39). The dimension
of the ODE systems is N2.
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linear stability for the one-step analog of implicit Euler method. This analysis
showed that this method is applicable in stiff case. For the general case a
numerical investigation of linear stability is performed. From the results of
this investigation we can conclude that the MRMS methods are stable, but the
accuracy in stiff case depends on the distribution of eigenvalues of matrix A:
the difficulty of the problem grows as the number of eigenvalues which are close
to zero increases. The accuracy can be improved by increasing the number of
steps k (whithout changing the order p).

In section 6 we compared the performance of the MRMS and BDF methods
during the fixed step integration of a 2D heat equation on the unit square for
different mesh sizes N . Though the BDF integration for the whole time interval
employed only one sparse LU factorization procedure, for large N even the
cost of a backsubstitution exceeded the cost of the linear least squares problem
solved on each step of the MRMS method. As a consequence the advantage
of the MRMS methods in speed over the BDF methods was clearly seen for
N = 400 and became compelling for N = 1000 (see Figure 6.3).

We would like to conclude with the list of three main topics which seem most
important for further research on the MRMS methods:

1. Convergence. Though the approximation and zero-stability of the MRMS
methods are proved in this paper, the rigorous proof of convergence is
still missing. It is not clear if these well-known Dahlquist convergence
conditions for the linear multistep methods [13] are sufficient in the MRMS
case.

2. Linear stability. The standard scheme of linear stability investigation can
not be directly applied to the MRMS methods, e. g. it is impossible to
construct a stability region in its usual sense for these methods. This
is due to the intrinsic nonlinearity and multidimensionality of the meth-
ods. It is necessary to consider a set of eigenvalues at once and to reckon
with the dependence of the evolutionary operator on the initial conditions.
Therefore the rigorous linear stability and/or contractivity analysis of the
MRMS methods is much-needed.

3. Nonlinear case. From the technical point of view, the nonlinear case for
the MRMS methods does not look as attractive as the linear one, because
the numerical solution of the arising nonlinear optimization problem with
standard techniques, such as gradient descent, will require expensive com-
putations involving Jacobian. Some workaround should be found for the
MRMS approach to succeed on a nonlinear problem.

The author would like to thank the anonymous reviewer for valuable com-
ments and suggestions.
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