ON LOCAL NORMALITY OF MAXIMAL FITTING CLASSES

N.V. Savelyeva

Brest State University named after A. S. Pushkin, Brest, Belarus natallia.savelyeva@gmail.com

All groups considered are finite. We use standard definitions and notation taken from [1].

A normally hereditary class of groups \mathfrak{F} is called a Fitting class if it is closed under the products of normal \mathfrak{F} -subgroups. A Fitting class \mathfrak{F} is called a maximal (by inclusion) subclass of a Fitting class \mathfrak{H} (this is denoted by $\mathfrak{F} < \cdot \mathfrak{H}$), if $\mathfrak{F} \subset \mathfrak{H}$ and the condition $\mathfrak{F} \subseteq \mathfrak{M} \subseteq \mathfrak{H}$, where \mathfrak{M} is a Fitting class, always implies $\mathfrak{M} \in \{\mathfrak{F},\mathfrak{H}\}$. A non-empty Fitting class \mathfrak{F} is called locally normal (or normal in a Fitting class \mathfrak{H} , or \mathfrak{H} -normal, this is denoted by $\mathfrak{F} \subseteq \mathfrak{H}$) if $\mathfrak{F} \subseteq \mathfrak{H}$ and for every \mathfrak{H} -group G its \mathfrak{F} -radical $G_{\mathfrak{F}}$ is an \mathfrak{F} -maximal subgroup of G. Recall that a unique maximal normal \mathfrak{F} -subgroup of an arbitrary group G is called its \mathfrak{F} -radical and denoted by $G_{\mathfrak{F}}$.

Since 1970s maximal and normal Fitting classes have been deeply investigated in the class \mathfrak{S} of all soluble groups. In particular, it is proved [2] that every maximal Fitting subclass of \mathfrak{S} is \mathfrak{S} -normal. This result was extended [3] for the class \mathfrak{S}_{π} of all soluble π -groups (π is a non-empty set of prime numbers). In the class \mathfrak{E} of all groups it is also proved [4] that every maximal Fitting subclass of the class \mathfrak{E} is normal in \mathfrak{E} .

In this paper the property of local normality of maximal Fitting classes of π -groups is established.

Let \mathbb{P} be a set of all primes and $\emptyset \neq \pi \subseteq \mathbb{P}$. The symbol \mathfrak{E}_{π} denotes the Fitting class of all π -groups.

Theorem. Let \mathfrak{F} and \mathfrak{H} be Fitting classes such as $\mathfrak{F} < \mathfrak{H} \subseteq \mathfrak{E}_{\pi}$, where π denotes a non-empty set of prime numbers. Then \mathfrak{F} is \mathfrak{H} -normal.

This theorem implies the following four corollaries:

Corollary 1 $(\mathfrak{H} = \mathfrak{E}_{\pi}, \emptyset \neq \pi \subseteq \mathbb{P})$. If \mathfrak{F} is a Fitting class such as $\mathfrak{F} < \mathfrak{E}_{\pi}$ then $\mathfrak{F} < \mathfrak{E}_{\pi}$.

Corollary 2 [4] $(\mathfrak{H} = \mathfrak{E}_{\pi}, \pi = \mathbb{P})$. If \mathfrak{F} is a Fitting class such as $\mathfrak{F} < \mathfrak{E}$ then $\mathfrak{F} \triangleleft \mathfrak{E}$.

Corollary 3 [3] $(\mathfrak{H} = \mathfrak{S}_{\pi}, \emptyset \neq \pi \subseteq \mathbb{P})$. If \mathfrak{F} is a Fitting class such as $\mathfrak{F} < \mathfrak{S}_{\pi}$ then $\mathfrak{F} \triangleleft \mathfrak{S}_{\pi}$.

Corollary 4 [2] $(\mathfrak{H} = \mathfrak{S}_{\pi}, \ \pi = \mathbb{P})$. If \mathfrak{F} is a Fitting class such as $\mathfrak{F} < \cdot \mathfrak{S}$ then $\mathfrak{F} \triangleleft \mathfrak{S}$.

References

- 1. Doerk K., Hawkes T. Finite soluble groups. Berlin New York: Walter de Gruyter, 1992.
- 2. Cossey J. Products of Fitting classes // Math. Z. 1975. Vol. 141. P. 289–295.
- 3. Savelyeva N. V., Vorob'ev N. T. Maximal subclasses of local Fitting classes // Siberian Math. J. English Translation of Sibirskii Matematicheskii Zhurnal. 2008. Vol. 49. P. 1124–1130.
 - 4. Laue H. Über nichtaflösbare normale Fittingklassen // J. Algebra. 1977. Vol. 45. P. 274–283.

A METHOD OF TEACHING DETERMINANTS

F.M. Sokhatsky

University "Ukraina" Vinnytsia Institute of Economics and Social Sciences, Vinnytsia, Ukraine fmsokha@ukr.net

We adopt the notion of diagonal of a matrix from combinatorics: maximal collection of matrix places being in its different rows and in different columns is called a *diagonal of this matrix*. This notion is the base of the notion of determinant.

A collection of cells of an n order square matrix such that both their sets of rows and their sets of columns are partitions of $\{1, \ldots, n\}$ is said to be a *cell diagonal* of the matrix. A *cell*

summand of a determinant |A| being defined by a cell diagonal $\widehat{\beta} := \{B_1, B_2, \dots, B_s\}$ is said to be a number $d_{\widehat{\beta}}$, which is defined by

$$d_{\widehat{\beta}} := (-1)^{\operatorname{inv}\widehat{\beta}} \cdot |B_1| \cdot |B_2| \cdot \ldots \cdot |B_s|,$$

where $\operatorname{inv}\widehat{\beta}$ denotes a number of inversions in $\widehat{\beta}$. Using the determinant definition we find an elementary proof of the following theorem.

Theorem. Sum of all cell summands of a matrix having the same row partition is equal to the determinant of the matrix.

The other properties of determinants, including Laplace theorem and Binet — Cauchy formula, follow immediately from this theorem.

ON FINITE GROUPS ISOSPECTRAL TO FINITE SIMPLE EXCEPTIONAL GROUPS OF TYPE E_7

A.M. Staroletov, A.V. Vasil'ev

Sobolev Institute of Mathematics, Novosibirsk, Russia astaroletov@gmail.com, vasand@math.nsc.ru

Denote $\omega(G)$ the spectrum of a fixed finite group G, i.e., the set of its element orders. Groups with the same spectra are called isospectral. A finite group G is said to be recognizable by spectrum (briefly, recognizable) if every finite group H isospectral to G is isomorphic to G. Since a finite group with a nontrivial normal soluble subgroup is not recognizable [1], of prime interest is the recognition problem for nonabelian simple groups. In this abstract we consider finite simple exceptional groups of Lie type. At present it is known that the groups ${}^{2}B_{2}(q)$ [2], ${}^{2}G_{2}(q)$ [3], ${}^{2}F_{4}(q)$ [4], ${}^{2}F_{4}(2^{m})$ [5], ${}^{2}E_{8}(q)$ [6], and ${}^{2}E_{7}(q)$ with ${}^{2}G_{7}(q)$ are recognizable. Moreover, it is still unknown whether there exists a finite simple exceptional group of Lie type which is not recognizable by its spectrum (see question 16.24 in [8]). Here we investigate the composition structure of finite groups isospectral to finite simple exceptional groups of type ${}^{2}F_{7}$.

Theorem. Let L be a finite simple exceptional group $E_7(q)$ with q>3. If G is a finite group with $\omega(G)=\omega(L)$ and K is the maximal normal soluble subgroup of G, then $L\leqslant G/K\leqslant <$ Aut L

Together with previous results the theorem yields the following assertion.

Corollary. Let L be a finite simple exceptional group of Lie type. If G is a finite group with $\omega(G) = \omega(L)$ and K is the maximal normal soluble subgroup of G, then $L \leq G/K \leq \operatorname{Aut} L$.

Acknowledgement. The work is supported by the Russian Foundation for Basic Research (Grant 12-01-90006-Bel_a)

References

- 1. Shi W., A characterization of the sporadic simple groups by their element orders// Algebra Colloq. 1994. Vol. 1, no. 2. P. 159–166.
- 2. Shi W., A characterization of Suzuki simple groups // Proc. Amer. Math. Soc. 1992. Vol. 114, no. 3. P. 589–591.
- 3. Brandl R. and Shi W., A characterization of finite simple groups with abelian Sylow 2-subgroups // Ricerche di Mat. 1993. Vol. 42, no. 1. P. 193–198.
- 4. Deng H. W. and Shi W. J., The characterization of Ree groups ${}^2F_4(q)$ by their element orders // J. Algebra. 1999. Vol. 217, no. 1. P. 180–187.
- 5. Cao H. P., Chen G., Greckoseeva M. A., Mazurov V. D., Shi W. J., and Vasil'ev A. V., Recognition of the finite simple groups $F_4(2^m)$ by spectrum // Sib. Math. J. 2004. Vol. 45, no. 6. P. 1031–1035.