ON LOCAL NORMALITY OF MAXIMAL FITTING CLASSES

N.V. Savelyeva

Brest State University named after A. S. Pushkin, Brest, Belarus natallia.savelyeva@gmail.com

All groups considered are finite. We use standard definitions and notation taken from [1].

A normally hereditary class of groups \mathfrak{F} is called a Fitting class if it is closed under the products of normal \mathfrak{F} -subgroups. A Fitting class \mathfrak{F} is called a maximal (by inclusion) subclass of a Fitting class \mathfrak{H} (this is denoted by $\mathfrak{F} < \mathfrak{H}$), if $\mathfrak{F} \subset \mathfrak{H}$ and the condition $\mathfrak{F} \subseteq \mathfrak{M} \subseteq \mathfrak{H}$, where \mathfrak{M} is a Fitting class, always implies $\mathfrak{M} \in \{\mathfrak{F},\mathfrak{H}\}$. A non-empty Fitting class \mathfrak{F} is called locally normal (or normal in a Fitting class \mathfrak{H} , or \mathfrak{H} -normal, this is denoted by $\mathfrak{F} \subseteq \mathfrak{H}$) if $\mathfrak{F} \subseteq \mathfrak{H}$ and for every \mathfrak{H} -group G its \mathfrak{F} -radical $G_{\mathfrak{F}}$ is an \mathfrak{F} -maximal subgroup of G. Recall that a unique maximal normal \mathfrak{F} -subgroup of an arbitrary group G is called its \mathfrak{F} -radical and denoted by $G_{\mathfrak{F}}$.

Since 1970s maximal and normal Fitting classes have been deeply investigated in the class \mathfrak{S} of all soluble groups. In particular, it is proved [2] that every maximal Fitting subclass of \mathfrak{S} is \mathfrak{S} -normal. This result was extended [3] for the class \mathfrak{S}_{π} of all soluble π -groups (π is a non-empty set of prime numbers). In the class \mathfrak{E} of all groups it is also proved [4] that every maximal Fitting subclass of the class \mathfrak{E} is normal in \mathfrak{E} .

In this paper the property of local normality of maximal Fitting classes of π -groups is established.

Let \mathbb{P} be a set of all primes and $\emptyset \neq \pi \subseteq \mathbb{P}$. The symbol \mathfrak{E}_{π} denotes the Fitting class of all π -groups.

Theorem. Let \mathfrak{F} and \mathfrak{H} be Fitting classes such as $\mathfrak{F} < \mathfrak{H} \subseteq \mathfrak{E}_{\pi}$, where π denotes a non-empty set of prime numbers. Then \mathfrak{F} is \mathfrak{H} -normal.

This theorem implies the following four corollaries:

Corollary 1 $(\mathfrak{H} = \mathfrak{E}_{\pi}, \emptyset \neq \pi \subseteq \mathbb{P})$. If \mathfrak{F} is a Fitting class such as $\mathfrak{F} < \mathfrak{E}_{\pi}$ then $\mathfrak{F} < \mathfrak{E}_{\pi}$.

Corollary 2 [4] $(\mathfrak{H} = \mathfrak{E}_{\pi}, \pi = \mathbb{P})$. If \mathfrak{F} is a Fitting class such as $\mathfrak{F} < \mathfrak{E}$ then $\mathfrak{F} \triangleleft \mathfrak{E}$.

Corollary 3 [3] $(\mathfrak{H} = \mathfrak{S}_{\pi}, \emptyset \neq \pi \subseteq \mathbb{P})$. If \mathfrak{F} is a Fitting class such as $\mathfrak{F} < \mathfrak{S}_{\pi}$ then $\mathfrak{F} \triangleleft \mathfrak{S}_{\pi}$.

Corollary 4 [2] $(\mathfrak{H} = \mathfrak{S}_{\pi}, \ \pi = \mathbb{P})$. If \mathfrak{F} is a Fitting class such as $\mathfrak{F} < \cdot \mathfrak{S}$ then $\mathfrak{F} \triangleleft \mathfrak{S}$.

References

- 1. Doerk K., Hawkes T. Finite soluble groups. Berlin New York: Walter de Gruyter, 1992.
- 2. Cossey J. Products of Fitting classes // Math. Z. 1975. Vol. 141. P. 289–295.
- 3. Savelyeva N. V., Vorob'ev N. T. *Maximal subclasses of local Fitting classes* // Siberian Math. J. English Translation of Sibirskii Matematicheskii Zhurnal. 2008. Vol. 49. P. 1124–1130.
 - 4. Laue H. Über nichtaflösbare normale Fittingklassen // J. Algebra. 1977. Vol. 45. P. 274–283.

A METHOD OF TEACHING DETERMINANTS

F.M. Sokhatsky

University "Ukraina" Vinnytsia Institute of Economics and Social Sciences, Vinnytsia, Ukraine fmsokha@ukr.net

We adopt the notion of diagonal of a matrix from combinatorics: maximal collection of matrix places being in its different rows and in different columns is called a *diagonal of this matrix*. This notion is the base of the notion of determinant.

A collection of cells of an n order square matrix such that both their sets of rows and their sets of columns are partitions of $\{1, \ldots, n\}$ is said to be a *cell diagonal* of the matrix. A *cell*