Let f be an invertible function. A parastrophe \mathcal{f} of f is defined by

$$\mathcal{f}(x_1; x_2) = x_{3\sigma} \iff f(x_1; x_2) = x_3$$

for any $\sigma \in S_3$, where $S_3 := \{e, r, s, r s, r s s\}$ and $s := (12)$, $e := (31)$. Let f_1, f_2, f_3, f_4 be binary invertible functions defined on a set Q. Then a quadruple $(f_1; \ldots; f_4)$ is a solution of

$$F_1(y; x) = F_4(x; F_3(x; f_4(x; x)))$$

iff there exists a substitution α and an element $a \in Q$ such that

$$f_1(y; y) = a, \quad f_2(x; \alpha x) = a, \quad f_4(x; x) = \mathcal{f}_3(x; \alpha x).$$

References

SYSTEMS OF LINEAR CONGRUENCES, BALANCED MODULAR LABELLINGS OF GRAPHS AND CHROMATIC TOTIENTS

V.A. Liskovets

Institute of Mathematics, National Academy of Sciences of Belarus
220072, Minsk, Belarus
liskov@im.bas-net.by

The present research is devoted to some number-theoretic consequences of certain notions and results of algebraic graph theory. Given a finite simple connected graph $G = (V, E)$, an orientation of its edges and a natural number k, we consider edge k-labellings $f : E \to \mathbb{Z}_k^*$ satisfying Kirchhoff’s circuit law, where \mathbb{Z}_k^* is the set of invertible elements of the ring $\mathbb{Z}_k = \mathbb{Z}/k\mathbb{Z}$. In terms of variables $x_e = f(e), e \in E$, we consider the system of homogeneous linear congruences modulo k which correspond to the (simple, independent) cycles of G, have coefficients 0 and ± 1 (moreover, their matrix is unimodular) and are subject to the 'side condition' that all values of their variables are coprime with k. The solutions with the latter property are called invertible. The choices of edge orientations and independent cycles do not influence the resulting system of congruences up to equivalence. Let $R(G, k)$ be the number of invertible solutions of such a system.

Theorem. For any finite connected graph G, $R(G, k)$ is the multiplicative arithmetic function of k that is determined by the formula

$$R(G, p^\alpha) = \chi(G, p)p^{(a-1)(n-1)-1}$$ \hspace{1cm} (1)

for every prime p and integer $\alpha \geq 1$, where $\chi(G, z)$ is the chromatic polynomial of G and $n = |V|$ is the number of vertices.

This basic equation shows that $R(G, k)$ is a kind of totient functions [1], which we call a chromatic totient. In particular, $R(K_2, k) = \phi(k)$, Euler’s totient function, where $K_2 = \bullet \rightarrow \bullet$
is the graph consisting of two vertices and one edge. When G is a cycle, the general formula reduces to the well-known formula of Rademacher—Brauer [2, Ch. 3] for the number of invertible solutions of the congruence $x_1 + \cdots + x_n \equiv 0 \pmod{k}$ (cf. also the concluding remark in [3]).

Corollary. The system of congruences corresponding to the cycles of G has an invertible solution modulo k if and only if $p \geq \lambda(G)$ for all prime p dividing k, where $\lambda(G)$ is the chromatic number of G.

We refer to [4] for useful details concerning the chromatic polynomials and numbers of graphs. There are three main ingredients of the proof:

- the existence of a bijection between proper vertex p-colorings of a rooted connected graph and nowhere-zero \mathbb{Z}_p-labellings of its edges that satisfy Kirchhoff’s second law;
- the equivalence of the restrictions $\gcd(p, i) = 1$ and $i \neq 0 \pmod{p}$ for any prime p;
- the familiar fact (see, e.g., [5]) that in a fundamental cycle base \mathcal{B} of G, every cycle C contains an exclusive edge (such as, e.g., the edge $e \in G - T$ by which C is determined as the unique cycle of the subgraph $e \cup T$, where $T = T_{\mathcal{B}}$ is the corresponding spanning tree of G).

Formula (1) extends easily to disconnected graphs. A generalization to non-homogeneous systems of linear congruences where some variables get prescribed values holds with an appropriate “partial” chromatic polynomial instead of $\chi(G, z)$.

References

GROUPS WITH PRESCRIBED PROPERTIES OF FINITE SUBGROUPS GENERATED BY COUPLES OF 2-ELEMENTS

D.V. Lytkina\(^1\), V.D. Mazurov\(^2\)

\(^1\) Siberian State University of Telecommunication and Information Sciences, Faculty of Information Science and Computer Engineering
Kirova st. 86, 630102 Novosibirsk, Russia
daria.lytkin@gmail.com

\(^2\) Sobolev Institute of Mathematics RAS
Acad. Koptyug Avenue 4, 630090 Novosibirsk, Russia
mazurov@math.nsc.ru

We discuss results of the research started in [1] and continued in [2–4].

Theorem. Suppose that in a group G the order of the product of every two involutions is finite. If every finite subgroup of G generated by a couple of 2-elements is either nilpotent of class at most 2 or has an exponent dividing 4, then all 2-elements of G form a normal subgroup which is either nilpotent of class at most 2 or has an exponent dividing 4.

This research has been supported by the Russian Foundation of Basic Research (Grants NN 11-01-00456, 11-01-91158, 12-01-9006), the Federal Target Program “Research and Pedagogical Personnel for Innovative Russia” for 2009–2013 (State Contract N 14.740.11.0346), and the Joint Basic Research Projects Program of SB RAS for 2012–2014 (Project 14).