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Introduction

The article presents analysis of geometry of Banach structures that can be interpreted as
certain arbitrage free markets type phenomena.

In the theory of Mathematical Finance the principal role in this field is played by the
so-called ’Fundamental Theorem of asset Pricing’ (in fact there is a series of results under
this name related to situations in question). The Fundamental Theorem of asset Pricing
links arbitrage free markets (i.e markets that do not admit riskless claims yielding profit
with strictly positive probability; the accurate definition will be given below in Section 1)
with existence of martingales generated by measures that are equivalent to the initial one.
One should mention quite a number of researchers who contributed to the theme. Among
them are F. Black, M. Scholes, R. Merton, J. Harrison, S. Pliska, S. Ross, D.M. Kreps,
R. Dalang, A. Morton, W. Willinger, D. Kramkov, J. Jacod, A.N. Shiryaev, D.R. Rokhlin,
F. Delbaen, W. Schachermayer, Yu. Kabanov and many others. We cannot give a full
account of sources and names related to the subject and refer, for example, to [4], [11],
and [10] and the sources quoted therein.

As was emphasized Fundamental Theorem of asset Pricing describes arbitrage free
markets phenomena by means of stochastic objects. In the finite-dimensional situation
it is also well known that the corresponding description can be obtained by means of
geometrical objects. The finite-dimensional geometric criterium is given by Stiemke’s
Lemma (in particular, it implies Harrison’s – Pliska’s theorem). The results of the article
belong to this direction in a general Banach space situation (cf., in particular, Theorem 3.8
and Remark 3.9).

As a stimulating example we consider here a one-period financial market model where
arbitrage freeness criterium can be given in terms of existence of a martingale measure
which is equivalent to the initial one. We show that the principal Banach space objects
that possess ’arbitarge free’ and ’martingale’ geometric behavior are plasterable cones and
reflexive subspaces. Whereas the main Banach geometry results constituting mathemat-
ical foundation are Mazurs’s convex sets separation theorem, Krasnosel’skij’s description
of plasterable cones and Eberlein – Šmul’jan criterium for reflexivity of a Banach space.
Moreover it is uncovered that geometrically ’martingalness’ can be expressed directly in
terms of initial (not dual) objects and correspods to remoteness of a base of arbitrage
possibilities from the financial strategies space (condition 2) of Theorem 3.1).

The article in fact forms a certain refinement and rearrangement of the material of
[9]. In addition we have added a discussion of the results obtained in order to make their
relation to other results and fields of analysis more transparent. The paper is organized
as follows. Preliminary Section 1 serves for introduction and explanation of geometrical
objects that will be under analysis further. Here we recall a one-period market model
and the corresponding Fundamental Theorem of asset Pricing (Theorem 1.2) and give
its geometric reformulation (Theorem 1.3) thus, in particular, arriving at the equality
L ∩ K = {0}, where L is a subspace and K is a certain cone in a given Banach space
E as relation describing absence of arbitrage; and relation L⊥ ∩ K̃ 6= ∅, where K̃ is a
certain cone belonging to K∗ as describing existence of a martingale measure. The goal
of the paper is general Banach analysis of objects of this sort and their interrelations. An
auxuliary Section 2 conains a collection and discussion of the known results on separation
theorems, plasterable cones and reflexive subspaces that will be used in sequel. The main
part of the article starts with Section 3 which presents a Banach geometric picture of
arbitrage absence phenomena. Here Theorem 3.1 gives an alternative description of a
martingale measure existence condition. It is proven that this condition can be given in a
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number of ways as in dual terms so also in direct geometric form (condition 2) ) that does
not contain dual objects (martingale measures). It follows easily that conditions obtained
are sufficient for arbitrage freeness (Corollary 3.2), but unfortunately, as is shown by
example, in general they are not necessary conditions. Complete Banach geometry of
arbitrage free markets (necessary and sufficient conditions) is given by Theorem 3.4 (the
principal result of the article). In particular, it shows that assumption of finiteness of
assets (dimL < ∞) can be relaxed by means of reflexivity condition (L = L∗∗) of the
corresponding subspace. These results describe the role of plasterable cones and reflexive
subspaces in the whole of a play. As a by product on this base in a finite-dimensional
situation we derive a certain additional information for Stiemke’s Lemma (Theorem 3.8
and Remark 3.9) and as an immediate corollary we also obtain a refined version of the
Fundamental Theorem of assets Pricing for the case considered (Theorem 3.10). We finish
the article with discussion in Section 4 of arbitrage freeness criteria for markets without
any assumptions on strategies subspace (i.e. no assumption on the nature of assets). Here
the corresponding criteria can be obtained as in terms of initial objects (Theorem 4.5) so
also in dual terms (Theorem 4.1). However, contrary to Theorem 3.4, the latter criterium
does not exploit martingale measures. It is formulated in the spirit of condition 4) of
Theorem 3.4 and in fact is related to the classical theorem on bipolar.

1 Stimulating example – one-period market model.

Geometric formulation of The Fundamental Theo-

rem of asset Pricing

This is a preliminary section. Its goal is to explain what sort of Banach structures will
be under further analysis as objects possessing ’arbitarge free’ and ’martingale’ geometric
behavior. Namely on the base of a stimulating model example presented henceforth
we show that it is quite natural to consider equality L ∩ K = {0} (1.22), where L is
a subspace and K is a certain cone in a given Banach space E as relation describing
absence of arbitrage; and relation L⊥∩ K̃ 6= ∅ (1.23), where K̃ is a certain cone belonging
to K∗ as describing existence of a martingale measure. The reader who takes this as
self-evident (known) could immediately pass to the main part of the article which starts
with Section 3.

As a stimulating example we recall the Fundamental Theorem of asset Pricing for
one-period market model and give its Banach geometric reformulation (Theorem 1.3).

A one-period market model is described in the following way. Let us denote by π :=
(π0, π) := (π0, π1, . . . , πd) ∈ R

d+1
+ the (initial, known) price system at moment t0. By

S := (S0, S) := (S0, S1, . . . , Sd) we denote the price system at moment t1, that is a
family of nonnegative random variables on a probability space (Ω,F ,P) (where (Ω,F ,P)
is the space of (possible) scenario). It is assumed that all the random variables under
consideration are summable, that is Si ∈ L1(Ω, P ), i = 0, d; (in the corresponding field
of Mathematical Finance it is normal to consider L0 random variables, we assume here
summability at least for two reasons: on the one hand in this way we simply incorporate
Banach geometry in our further analysis, and on the other hand this assumption in one-
period model is quite natural – without it one cannot even formulate the Fundamental
Theorem of asset Pricing for the situation under consideretion (Theorem 1.2)). The
variable S0 is assumed to be a riskless bond, that is it is not random

S0 :≡ (1 + r) π0, (1.1)
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where r is interpreted as a bank interest rate (for purely mathematical reasons one can
assume that r > −1). In what follows we presuppose that

π0 = 1, (1.2)

that is the price π0 is normalized. Therefore

S0 :≡ (1 + r); (1.3)

A (starting) investment portfolio is a vector ξ := (ξ0, ξ) := (ξ0, ξ1, . . . , ξd) ∈ R
d+1, where

the values ξi can be negative.
The price of buying the portfolio (at moment t0) is equal to

ξ · π :=

d∑

i=0

ξi πi . (1.4)

And the value of portfolio (at moment t1) is the random variable

ξ · S =

d∑

i=0

ξi Si(ω) = ξ0 (1 + r) + ξ · S . (1.5)

An arbitrage opportunity is a portfolio ξ ∈ R
d+1, such that

ξ · π ≤ 0, but
{
ξ · S ≥a.e. 0 and P (ξ · S > 0) > 0

}
.

If the market is arbitrage free (i.e. there are no portfolio satisfying the relation written
above) it is reasonable to consider it as being just.

It is convenient to express the arbitrage freeness conditions in terms of the so-called
discounted net gains. Recall that discounted net gains (at moment t1) are the random
variables given by

Y i :=
Si

1 + r
− πi, i = 1, . . . , d . (1.6)

Let us denote by Y the vector of discounted net gains Y := (Y 1, . . . , Y d).
By (1.1) we have Y 0 = S0

1+r
− π0 = 0 and therefore Y 0 does not play any role.

Lemma 1.1. [[6], Lemma 1.3 and condition (1.3)] The following conditions are equiva-
lent:

1) market is arbitrage free;
2) if ξ ∈ R

d satisfies ξ · Y ≥
a.e.

0, then ξ · Y =
a.e.

0.

This lemma has clear geometric interpretation.
Let

L := {ξ · Y, ξ ∈ R
d} =

{
d∑

i=1

ξi Y
i, (ξ1, . . . , ξd) ∈ R

d

}
(1.7)

be the subspace generated by the vectors (functions) Y i, i = 1, . . . , d. By L1+ we denote
the cone of nonnegative functions

L1+ := {f ∈ L1(Ω, P ), f ≥ 0}. (1.8)

Lemma 1.1 means that

a market is arbitrage free ⇔ L ∩ L1+ = {0}. (1.9)
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The foregoing observations make it natural to consider L1+ as the cone of arbitrage pos-
sibilities (profit cone) and consider L as the subspace of financial market strategies.

Evidently it is important to obtain description of (geometric, algebraic and etc.) con-
ditions under which the equality L ∩ L1+ = {0} takes place. The most known market
arbitrage freeness condition in financial mathematics is given below in Theorem 1.2 (fun-
damental theorem of asset pricing). To formulate this theorem we recall a number of
notions.

A measure Q is said to be absolutely continuous with respect to the initial measure
P (the notation Q ≺ P ), if Q and P are defined on the same σ-algebra F , and P (A) =
0 ⇒ Q(A) = 0.

It is said that Q is equivalent to P (the notation Q ≈ P ), if Q ≺ P and P ≺ Q that
is P (A) = 0 ⇔ Q(A) = 0.

By the Radon – Nikodim theorem we have that if Q ≺ P , then there exists a function
ψ ∈ L1+, such that

Q(A) =

∫

A

ψ(ω) d P for every A ∈ F .

This function ψ is called the Radon – Nikodim derivative of measure Q with respect to
measure P and is denoted by dQ

dP
.

Theorem 1.2. [fundamental theorem of asset pricing; [6], Theorem 1.6]
In terms of the objects described above the next relation takes place:

a market is arbitrage free ⇔ there exists a measure P ∗ ≈ P with a bounded dP ∗

dP
,

such that
EP ∗(Y i) = 0, i = 1, . . . , d , (1.10)

here EP ∗(Y i) is the expectation of Yi, i.e.

EP ∗(Y i) =

∫

Ω

Yi d P
∗ =

∫

Ω

Yi

(
d P ∗

d P

)
d P . (1.11)

If condition (1.10) is satisfied then P ∗ is called a martingale (or risk-neutral) measure.

Thus Theorem 1.2 can be rewritten in the following way:

a market is arbitrage free ⇔ there exists a martingale measure P ∗ ≈ P with a
bounded dP ∗

dP
.

Now let us implement a geometric reformulation of Theorem 1.2. This will enable us to
uncover in what follows (in Section 2) a general geometric nature of this type phenomena
and, in particular, to refine directly the mentioned fundamental theorem of asset pricing
(see Theorem 3.10).

Let us consider a Banach space L1(Ω, P ). As usually, elements of this space are
equivalence classes of integrable functions, where the equivalence of two functions is given
by their equality almost everywhere; and the norm is given by the integral. Thus, all the
equalities and inequalities are understood as ’almost everywhere’.

As is known, for the dual space L1(Ω, P )
∗ we have L1(Ω, P )

∗ = L∞(Ω, P ) (where
L∞(Ω, P ) is the Banach space of equivalence classes of essencially bounded functions
with essup–norm). In this case elements x∗ ∈ L∞(Ω, P ) are identified with functionals
(elements of L1(Ω, P )

∗) by means of coupling

< x∗, u >=

∫

Ω

u x∗ d P, u ∈ L1(Ω, P ). (1.12)
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This relation also shows that a functional x∗ ∈ L1(Ω, P )
∗ can be identified with an

absolutely continuous with respect to P charge F , such that dF
dP

= x∗ ∈ L∞(Ω, P ),
namely,

< x∗, u >=

∫

Ω

u dF =

∫

Ω

u

(
d F

dP

)
d P =

∫

Ω

u x∗ d P , u ∈ L1(Ω, P ). (1.13)

On this base we identify

L1(Ω, P )
∗ ∋ F ↔

d F

dP
∈ L∞(Ω, P ). (1.14)

Let us also note that condition (1.10) (i.e. martingalness) is nothing else than the record

P ∗ ⊥ Y i, i = 1, . . . , d , (1.15)

where Y i ∈ L1(Ω, P ), P ∗ is identified with the functional EP ∗ on L1(Ω, P ) (see (1.11)),
and ⊥ denotes orthogonality between P ∗ and Y i, that is the equality < P ∗, Y i >= 0.

Clearly condition (1.15) is equivalent to the condition

P ∗ ⊥ L , (1.16)

where L is the subspace (1.7) generated by the vectors Y i, i = 1, . . . , d; and (1.16) is
nothing else than the record

P ∗ ∈ L⊥, (1.17)

where L⊥ ⊂ L1(Ω, P )
∗ is the subspace of functionals annihilating on L.

Let us consider now the cone L1+ (1.8) of nonnegative functions in L1(Ω, P ). By
L∗
1+ ⊂ L1(Ω, P )

∗ = L∞(Ω, P ) we denote the cone of nonnegative functionals on L1+, i.e.

L∗

1+ := {x∗ ∈ L∞(Ω, P ) :< x∗, u >≥ 0 for every u ∈ L1+}. (1.18)

Evidently, L∗
1+ coincides with the cone L∞+ of nonnegative functions from L∞(Ω, P ), i.e.

L∗

1+ = L∞+ := {x∗ ∈ L∞(Ω, P ), x∗ ≥ 0}. (1.19)

We denote by L̃∞+ the cone

L̃∞+ := {x∗ ∈ L∞(Ω, P ), x∗ >a.e. 0}. (1.20)

Recalling the identification of functionals with charges (cf. (1.13), (1.14)) we note that the
equivalence between the initial measure P and a functional x∗ ∈ L∞(Ω, P ) = L1(Ω, P )

∗

is recorded by the next relation

P ≈ x∗ ⇔ x∗ ∈ L̃∞+ . (1.21)

Now taking into account the record (1.15), (1.17), (1.21) along with Lemma 1.1 (con-
ditions (1.9)) one can rewrite Theorem 1.2 in the form of

Theorem 1.3. [fundamental theorem of asset pricing: geometric formulation]
For the objects described above the following two conditions are equivalent:
1) L ∩ L1+ = {0} (= absence of arbitrage);
2) L⊥ ∩ L̃∞+ 6= ∅ (= existence of a martingale measure).
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The foregoing observations show that it is natural to consider equality

L ∩K = {0}, (1.22)

where L is a subspace and K is a certain cone in a given Banach space E as relation
describing absence of arbitrage; and relation

L⊥ ∩ K̃ 6= ∅, (1.23)

where K̃ is a certain cone belonging to K∗ (K∗ is the cone of nonnegative functionals
on K) as describing existence of a martingale measure.

It will be the starting point of our further analysis of geometry of arbitrage free markets
that will be implemented in the subsequent sections.

2 Separation theorems, plasterable cones and reflex-

ive subspaces

To describe the geometric nature of arbitrage freeness, that is to find criteria for fulfilment
of (1.22) we need a number of known results related to convex sets, separation theorems,
cones and subspaces. For the sake of convenience of presentation we recall them in this
auxuliary section.

Let X be a topological linear space and A, B ⊂ X . One says that a linear continuous
functional l separates the sets A and B if the following relation holds

inf
u∈A

< l, u > ≥ sup
u∈B

< l, u > . (2.1)

Here and henceforth < l, u > denotes the value of functional l at point u.
The basic result on convex sets separation is given by the next Mazur’s theorem (see,

for example, [5], Theorem V.1.12)

Theorem 2.1. [Mazur] Let A and B be convex nonintersecting sets in a topological lin-

ear space and
◦

A 6= ∅ (A has a nonempty interior). Then there exists a nonzero linear
continuous functional separating these sets.

If B = L is a linear subspace then condition supu∈L < l, u > < ∞ is equivalent
to condition < l, u >= 0, u ∈ L, i.e. l ∈ L⊥. Under the satisfaction of this condition
relation (2.1) transforms into inequality

inf
u∈A

< l, u > ≥ 0.

Thus Mazur’s theorem implies

Corollary 2.2. Let A be a convex set in a topological linear space X such that
◦

A 6= ∅ and
L be a linear subspace of X. If A ∩ L = ∅, then there exists a nonzero continuous linear
functional l ∈ L⊥, such that infu∈A < l, u > ≥ 0.

Note also an evident property: in Mazur’s theorem for every point u0 ∈
◦

A and the
separating functional l mentioned one has

< l, u0 > > sup
u∈B

< l, u >;
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and so in Corollary 2.2 we have
< l, u0 > > 0. (2.2)

One more useful separation theorem which in fact also follows from Mazur’s theorem
sounds as follows.

Theorem 2.3. Let A and B be convex closed nonintersecting sets in a topological linear
space and B be a compact set. Then there exists a nonzero linear continuous functional l
strongly separating these sets, i.e.

inf
u∈A

< l, u > > sup
u∈B

< l, u > . (2.3)

The initial objects in our further analysis are a Banach space E and a cone K ⊂ E.
Recall that a cone in a vector space is a set K possessing the following two properties:

1) K is a convex set;
2) for every x ∈ K and any 0 < λ ∈ R one has λx ∈ K.

We denote by K∗ the cone of nonnegative functionals on K, i.e.

K∗ := {x∗ ∈ E∗ :< x∗, u >≥ 0 for any u ∈ K},

here E∗ is the space dual to E.

If K∗ has a nonempty interior
◦

K∗ 6= ∅ (that is K∗ is a solid cone) then one can easily
observe the next property:

if u ∈ E is such that for every x∗ ∈
◦

K∗ one has < x∗, u >≥ 0, then u ∈ K. (2.4)

Indeed. Firstly, it holds K∗ =
(
K
)∗
, and in addition we have

◦

K∗ = K∗. If u /∈ K

then according to Theorem 2.3 there exists a functional x∗ ∈
(
K
)∗

= K∗ such that

< x∗, u > < 0. Therefore for the functionals x∗′ ∈
◦

K∗ that are sufficiently close to x∗ the
inequality < x∗′, u > < 0 holds as well.

Cones K with the property
◦

K∗ 6= ∅ will play a principal role in the article and
henceforth we recall the corresponding known results.

Let E be a Banach space and K ⊂ E be a certain nonzero cone. The cone K is called
plasterable if there exist a cone K̃ such that K̃ ∩ (−K̃) = {0} and a positive number ρ
such that

for every 0 6= x ∈ K B(x, ρ‖x‖) ⊂ K̃,

where B(x, δ) := {y ∈ E : ‖x− y‖ < δ}.

The next figure illustrates the plasterability property.
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A functional x∗ ∈ E∗ is said to be uniformly positive on K if there exists a constant
c > 0, such that

< x∗, u >≥ c‖u‖, u ∈ K. (2.5)

Let F ⊂ E be a bounded, convex, and closed set that does not contain zero. We
denote by K(F ) Krasnosel’skij’s cone that is the cone generated by vectors from F . The
set F in this case is called a base of K(F ).

The next figure illustrates the notion of K(F ).
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Plasterable cones were introduced and studied in detail by Krasnosel’skij [7, 8]. Certain
additional analysis is also implemented in [2].

The next theorem presents a number of criteria that characterize property
◦

K∗ 6= ∅ in
terms of the objects introduced above (for the proof see [7] §§ 4, 6; [8] §5 and [2], Ch. 2,
§§ 8–10).

Theorem 2.4. Let E be a Banach space and K ⊂ E be a nonzero closed cone such that
K ∩ (−K) = {0}. The following six conditions are equivalent:

1)
◦

K∗ 6= ∅;
2) K is a plasterable cone;

3) there exists a functional x∗ ∈ E∗ which is uniformly positive on K (in fact
◦

K∗

coincides with the set of such functionals);
4) there exists a convex bounded closed set F not containing zero such that K = K(F )

(K is Krasnoselskij’s cone);
5) the set F := co (K ∩ {u : ‖u‖ = 1}) (where co(A) is the convex hull of A) does

not contain zero (in this case F is the base of K);
6) if xn ∈ K, ‖xn‖ = 1, and xn converges weakly to x∗, then x∗ 6= 0.

Remark 2.5. 1. Let K := Lp+ be the cone of nonnegative functions in Lp, 1 ≤ p ≤ ∞.
For 1 ≤ p <∞ one has K∗ = L∗

p+ = Lq+, where
1

p
+ 1

q
= 1 and for q = ∞ we assume that

1

∞
= 0. Thus

◦

K∗ =
◦

L∗
p+ 6= ∅ only when p = 1.

2. The foregoing remark shows that property
◦

K∗ 6= ∅ is rather special. On the other
hand Theorem 2.4 tells that in any Banach space there are a lot of cones possessing the
mentioned property, namely one can take any Krasnosel’skij’s cone (see condition 4).

Example 2.6. Let E = R
n. Note that a closed coneK ⊂ R

n is plasterable iff K ∩ (−K) = {0}.
Indeed, let us verify that in this situation condition 5) of Theorem 2.4 is satisfied, that

is
0 /∈ F, where F = co (K ∩ {u : ‖u‖ = 1}) . (2.6)

Recall that by Caratheodory’s theorem on convex hull for every y ∈ co (K ∩ {u : ‖u‖ = 1})
one has

y =

n+1∑

i=1

λiyi , (2.7)

where λi ≥ 0, i ∈ {1, . . . , n+ 1},
∑n+1

i=1
λi = 1, and yi ∈ (K ∩ {u : ‖u‖ = 1}).

Now if x ∈ F then there exists a sequence xk ∈ co (K ∩ {u : ‖u‖ = 1}) such that

xk → x.

By (2.8) for every xk we have

xk =
n+1∑

i=1

γikxik , (2.8)

where γik ≥ 0, i ∈ {1, . . . , n+ 1},
∑n+1

i=1
γik = 1, and xik ∈ (K ∩ {u : ‖u‖ = 1}).

Since (K ∩ {u : ‖u‖ = 1}) is a compact set we can assume (passing if necessary to a
subsequence) that

γik → γi, where γi ≥ 0, i ∈ {1, . . . , n+ 1},
n+1∑

i=1

γi = 1 , (2.9)
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and
xik → xi, where xi ∈ (K ∩ {u : ‖u‖ = 1}) , i ∈ {1, . . . , n+ 1} . (2.10)

That is any x ∈ F has the form

x =
n+1∑

i=1

γixi . (2.11)

where γi ≥ 0, i ∈ {1, . . . , n + 1},
∑n+1

i=1
γi = 1, and xi ∈ (K ∩ {u : ‖u‖ = 1}) , i ∈

{1, . . . , n+ 1}.
Now the proof goes by contradiction. Suppose that x = 0 ∈ F . If, for example, γ1 > 0

in (2.11) then we have

−K ∋ −γ1x1 =
n+1∑

i=2

γixi ∈ K ,

that is
0 6= −γ1x1 ∈ K ∩ (−K)

and we arrived at a contradiction with the assumption of example.

Among important objects in the article are also reflexive subspaces.

Let L be a linear subspace of a Banach space E. We call L a reflexive subspace and
use the notation L = L∗∗ if for every linear continuous functional h ∈ L∗ (here L∗ is the
dual space to L) there exists x ∈ L such that

h(f) = < f, x >, f ∈ L∗. (2.12)

By a standard argument equality (2.12) automatically implies the norms equality

‖ h ‖L∗∗ = ‖ x ‖L, (2.13)

that approves the term reflexive.

Note, in particular, that every finite dimensional subspace L is reflexive.
A general description of reflexive subspaces is well known. It is based on Eberlein’s –

Šmul’jan’s Banach space reflexivity criterium.

Theorem 2.7. [Eberlein – Šmul’jan, [5], Theorem V.4.7] A Banach space is reflexive if
and only if its closed unit ball is compact in weak topology.

This result in turn implies

Corollary 2.8. A Banach space is reflexive if and only if any its bounded and weakly
closed set is compact in weak topology.

Remark 2.9. If E is a Banach space and L is any its closed subspace then the closed
unit ball of L is nothing else than intersection of the closed unit ball of E with L. Thus
Theorem 2.7 implies the following observations:

1) a closed subspace L ⊂ E is reflexive L = L∗∗ iff its closed unit ball is compact in
weak topology;

2) if E is a reflexive Banach space then any its closed subspace L is reflexive as well.

Now we proceed to the main part of the article.
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3 Arbitrage free markets geometry

We start with an alternative description of existence of a martingale measure condition.

Theorem 3.1. Let E be a Banach space, K ⊂ E be a plasterable cone, F be any of
its bases, and L ⊂ E be a linear subspace (not necessarily closed). The following three
conditions are equivalent:

1) L⊥ ∩
◦

K∗ 6= ∅ (= existence of a martingale measure ’refined condition’);
2) ρ(F, L) > 0, here ρ(A,B) = infx∈A, y∈B ‖x− y‖;

3) L⊥ +
◦

K∗ = E∗, here E∗ is the dual space to E.

Proof. 1) ⇒ 2). Let x∗ ∈ L⊥ ∩
◦

K∗. By Theorem 2.4 (condition 3)) x∗ is uniformly
positive on K. Since F is closed and F 6∋ 0 there exists δ > 0 such that for every u ∈ F
one has ‖u‖ > δ. Therefore for every u ∈ F we have < x∗, u >≥ cδ > 0 where c is the
constant mentioned in (2.5). Thus

ρ(F, L) ≥ ρ({u :< x∗, u >= cδ}, {u :< x∗, u >= 0}) > 0.

2) ⇒ 1). Let ρ(F, L) = δ > 0. Consider the set M := F + B
(
0, δ

2

)
. Clearly M is

a convex set, M =
◦

M , and M ∩ L = ∅. Thus by Mazur’s theorem (Theorem 2.1) there

exists a functional x∗ separating M and L. One can easily verify that x∗ ∈ L⊥ ∩
◦

K∗.

1) ⇒ 3). Take any x∗ ∈ L⊥ ∩
◦

K∗. For this x∗ there exists ε > 0 such that

B(x∗, ε) ⊂
◦

K∗,

where B(x∗, ε) := {y∗ ∈ E∗ : ‖x∗ − y∗‖ < ε}. Therefore

L⊥ +
◦

K∗ ⊃ (−x∗) +B(x∗, ε) = B(0, ε).

And since L⊥ +
◦

K∗ is a cone it follows that L⊥ +
◦

K∗ = E∗.

3) ⇒ 1). The proof goes ’ad absurdum’.

Suppose that L⊥ ∩
◦

K∗ = ∅. Then by Mazur’s theorem there exists 0 6= y∗∗ ∈ (E∗)∗

separating
◦

K∗ and L⊥. By the reasoning that follows Mazur’s theorem one has

y∗∗ ∈ (L⊥)⊥ and < y∗∗,
◦

K∗ >≥ 0,

which in turn implies

< y∗∗, L⊥ +
◦

K∗ >≥ 0

and therefore L⊥ +
◦

K∗ 6= E∗.
The proof is finished.

It is natural to call property ρ(F, L) > 0 remoteness of a base of arbitrage possibilities
from the financial strategies space.

The term ’refined condition’ used for the first condition of the theorem will be clarified
in what follows (see Theorem 3.10 and its comment).

As an immediate corollary of the theorem just proved one gets the next sufficient
condition of market arbitrage freeness.
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Corollary 3.2. Let any of equivalent conditions 1), 2), or 3) of Theorem 3.1 be fulfilled
then L ∩K = {0} (= the market is arbitrage free).

Indeed. Let, for example, x∗ ∈ L⊥ ∩
◦

K∗. Then x∗(L) = 0 and by condition 3) of
Theorem 2.4 we conclude that x∗ > 0 on K \ {0}, that is L ∩K = {0}.

Remark 3.3. Unfortunately, as the next example shows, for an arbitrary subspace L the
sufficient conditions just obtained are not necessary conditions.

Example. Let E = l1 = {(ξ1, ξ2, . . . ) :
∑

i |ξi| < ∞} and let K ⊂ l1 be the
cone of nonnegative sequences and L be the subspace generated by vectors of the form
e2n−

1

2n
e2n−1, n = 1, 2, . . . , where ek, k = 1, 2, . . . is the canonical base in l1. Evidently L

is nothing else than the space of vectors of the form
∑

∞

n=1
ξn(e2n−

1

2n
e2n−1) :

∑
∞

n=1
|ξn| <

∞. Clearly
K ∩ L = {0}.

The dual space to l1 is the space l∞ of bounded sequences and the action of an element
f = (ν1, ν2, . . . ) ∈ l∞ on x = (ξ1, ξ2, . . . ) ∈ l1 is given by the coupling f(x) =

∑
i ξi νi. In

this example K∗ ⊂ l∞ is the cone of nonnegative bounded sequences and
◦

K∗ is the set of
sequences separated from zero. Moreover, if f = (ν1, ν2, . . . ) ∈ L⊥ then ν2n−1 = 1

2n
ν2n.

This along with the boundness of the sequence (ν2n) implies ν2n−1 → 0. Therefore f /∈
◦

K∗,
that is

L⊥ ∩
◦

K∗ = ∅.

The next (principal) result of the paper distinguishes, in particular, the class of sub-
spaces for which the conditions mentioned in Theorem 3.1 prove to be necessary for market
arbitrage freeness.

Theorem 3.4. [arbitrage free markets geometry: plasterable profit cones and reflexive
subspaces] Let E be a Banach space, K ⊂ E be a plasterable cone, F be any of its bases,
and L ⊂ E be a closed subspace such that its closed unit ball is compact in weak topology
(i.e. L is a reflexive subspace L = L∗∗). For the objects mentioned above the following
four conditions are equivalent:

1) L ∩K = {0} (= absence of arbitrage);
2) ρ(F, L) > 0 (= any base of arbitrage possibilities is remote from the market financial

strategies space);

3) L⊥ ∩
◦

K∗ 6= ∅ (= existence of a martingale measure ’refined condition’);

4) L⊥ +
◦

K∗ = E∗, where E∗ is the dual space to E.

Proof. By Theorem 3.1 and Corollary 3.2 it suffice to prove any of the implications
1) ⇒ 2), 1) ⇒ 3), or 1) ⇒ 4). Henceforce we give two qualitatively different proofs of
implication 1) ⇒ 3) each having (from our point of view) its own value and exploiting in
different ways Mazur’s theorem along with Eberlein’s – Šmul’jan’s theorem, Theorems 3.1
and 2.4.

The first proof of 1) ⇒ 3).
Let us consider the set

C :=

{
x∗|L, x

∗ ∈
◦

K∗

}
⊂ L∗, (3.1)
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i.e. the set of restrictions of functionals from
◦

K∗ onto L.

Note that C =
◦

C is an open set. Indeed. Let C ∋ h = x∗|L where x∗ ∈
◦

K∗. By the
Hahn – Banach theorem (on existence of norm nonincreasing extension of a functional)
for every g ∈ L∗ with ‖g‖ < ε there exists y∗ ∈ E∗ with ‖y∗‖ < ε such that g = y∗|L.
Now taking sufficiently small ε one has

h + g = (x∗ + y∗)|L ,

where (x∗ + y∗) ∈
◦

K∗. Thus h + g ∈ C.

Evidently,

L⊥ ∩
◦

K∗ 6= {∅} ⇔ C ∋ 0, (3.2)

where 0 ∈ L∗.
Relations (3.2) show that to prove 1) ⇒ 3) it is enough to verify relation

0 /∈ C ⇒ L ∩K 6= {0}. (3.3)

So henceforth we prove (3.3).

Since
◦

K∗ is a cone it follows that C =
◦

C is a cone in L∗.
By assumption we have L = L∗∗.

As
◦

C is a cone and 0 /∈
◦

C it follows (according to Mazur’s theorem, along with equality
L = L∗∗, and inequality (2.2)) that there exists u0 ∈ L, such that

for every x∗ ∈
◦

K∗ < x∗, u0 >> 0.

On the one hand these inequalities mean that u0 ∈ K (see (2.4), and recall that by
assumption we have K = K); and on the other hand they imply u0 6= 0. Thus, 1) ⇒ 3)
is proved.

The second proof of implication 1) ⇒ 3).

The proof goes by contradiction. Since K is a plasterable cone one has
◦

K∗ 6= ∅

(see Theorem 2.4). Suppose that L⊥ ∩
◦

K∗ = ∅. In this case, by Theorem 3.1, we have
ρ(F, L) = 0. This equality means that there exist sequences un ∈ F and vn ∈ L such that

un − vn → 0. (3.4)

Since F is a bounded set the sequence {un} is bounded as well and so in view of (3.4) the
sequence {vn} is also bounded.

By assumption L is a reflexive subspace. Since {vn} is a bounded sequence one con-
cludes by Corollary 2.8 (passing if necessary to a subsequence of {vn}) that there exists
a vector v ∈ L such that vn → v weakly, that is for every x∗ ∈ E∗ we have

< x∗, vn >→ v . (3.5)

This relation along with relation (3.4) implies that for every x∗ ∈ E∗ we also have

< x∗, un >→ v . (3.6)

Recall that F is a closed convex set, so it is weakly closed (by Theorem 2.3). Therefore
(3.6) means that v ∈ F . Note in addition that since K is plasterable we have 0 6∈ F . So
finally we have

0 6= v ∈ (F ∩ L) ⊂ (K ∩ L),
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thus arriving at a contradiction. The proof is complete.

Let us comment on conditions of Theorem 3.4 and their relation to certain other fields
of analysis.

Both conditions 3) and 4) of Theorem 3.4 have deep and long mathematical history
(that does not only concern Mathematical Finance). Namely, both of them are related
to this or that sort of Separation Theorems (not only Mazur’s theorem, which serves as a
corner stone of the proof).

In particular, not to mention Mathematical Finance in connection with conditions 1)
and 3) of Theorem 3.4 may be it is reasonable to recall the classical Lagrange Multipliers
Principle, which in Banach space terms can be formulated as follows.

Theorem 3.5. [Lagrange Multipliers Principle] Let K be an open cone in a Banach space
E and L ⊂ E be a linear subspace. Then the following two conditions are equivalent.

1) L ∩K = ∅,
2) L⊥ ∩K∗ 6= {0}.

In optimisation problems K describes increase directions of a function that is opti-
mized and L is the subspace of tangent directions of the domain at a point x that is
suspected for extremum. Thus here property 1) means that the function may attain
minimum at x. And property 2) is usually written in the form of Lagrange Multipliers
Equation: there exist nonzero functionals ϕ1 ∈ L⊥, ϕ2 ∈ K∗ such that ϕ1 + ϕ2 = 0.

As for equivalence of conditions 1) and 4) of Theorem 3.4 one could mention as a
classical source theorem on bipolar (cf. Theorems 4.1 and 4.2 of the present article)
which in turn serves, in particular, as a mathematical instrument for the proof of the
mentioned Lagrange Multipliers Principle.

Moreover, it should be emphasized that in a general situation conditions of type 2), 3)
and 4) of Theorem 3.4 are not equivalent: they have different mathematical nature: see,
in particular, Section 4 of the article where condition 3) (martingalness) disapears at all
while certain versions of conditions 2) and 4) are still in play, and therefore one can think
of conditions 2) and 4) as of ’more stable’ ones.

Remark 3.6. Note that if E is a reflexive space then by Remark 2.9 one can completely
relax condition on L in the foregoing theorem, namely, in this case L can be any closed
subspace of E.

Continuing the preceding remark we observe in the next theorem that one can relax
condition on L not only by means of the whole of the space E but simply by appropriate
choice of a profit cone K.

Theorem 3.7. Let E be a Banach space, K ⊂ E be a plasterable cone such that its base
F is compact in weak topology, and L ⊂ E be a closed subspace. For the objects mentioned
above the following four conditions are equivalent:

1) L ∩K = {0},
2) ρ(F, L) > 0,

3) L⊥ ∩
◦

K∗ 6= ∅,

4) L⊥ +
◦

K∗ = E∗.

Proof. By Theorem 3.1 and Corollary 3.2 one has 2) ⇔ 3) ⇔ 4) ⇒ 1). So it is
enough to verify, for example, 1) ⇒ 2). This moment is the only one where one needs
weak compactness of the base F .
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The proof goes by contradiction and is similar to the second proof implication 1) ⇒
3) given in the proof of Theorem 3.4.

Suppose that ρ(F, L) = 0. This means that there exist sequences un ∈ F and vn ∈ L
such that

un − vn → 0. (3.7)

By weak compactness of F one concludes (passing if necessary to a subsequence of {un})
that there exists a vector u ∈ F such that un → u weakly, that is for every x∗ ∈ E∗ we
have

< x∗, un >→ u .

This relation along with relation (3.7) implies that for every x∗ ∈ E∗ we also have

< x∗, vn >→ u .

L being a closed subspace is weakly closed. Thus u ∈ L and we obtain

0 6= u ∈ (F ∩ L) ⊂ (K ∩ L)

thus arriving to a contradiction.

The foregoing results and discussion presented above convince us that Theorem 3.4
manifests certain equilibrium between conditions in the play. Namely, they show that

once you start to shift one of these conditions (either L = L∗∗ or
◦

K∗ 6= ∅) the second one
shifts as well (cf. Remark 3.6 and Theorem 3.7)

By Example 2.6 one has that in the case when E = R
n a nonzero closed cone K is

plasterable iff K ∩ (−K) = {0}. This observation along with condition 5) of Theorem 2.4
shows that in a finite-dimensional situation Theorem 3.4 looks as follows.

Theorem 3.8. Let K ⊂ R
n be a closed nonzero cone such that K ∩ (−K) = {0}. For a

linear subspace L ⊂ R
n the following four conditions are equivalent:

1) L ∩K = {0};
2) L ∩ F = {0};

3) L⊥ ∩
◦

K∗ 6= ∅, where L⊥ the orthogonal complement to L;

4) L⊥ +
◦

K∗ = R
n.

Remark 3.9. 1. Condition 2) of Theorem 3.4 turned into condition 2) of Theorem 3.8
in view of compactness of the base F in the situation under consideration.

2. Of course, here equivalence 1) ⇔ 3) is nothing else than Stiemke’s Lemma for the
situation considered.

Note also that as an immediate simple corollary of Theorem 3.4 one can obtain a
certain refinement of Theorem 1.3.

Let us consider the cone

◦

L∞+ = {x∗ ∈ L∞+, x
∗ essentially separated from zero 0}. (3.8)

Clearly,
◦

L∞+ ⊂ L̃∞+ and
◦

L∞+ is nothing else as the interior of the cone L∞+ (1.19).

Theorem 3.10. [refinement of Theorem 1.3] Let L ⊂ L1 be a closed linear reflexive
subspace L = L∗∗ and F := co (L1+ ∩ {u : ‖u‖ = 1}). The following four conditions are
equivalent:
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1) L ∩ L1+ = {0} (= absence of arbitrage);
2) ρ(F, L) > 0 (= the base of arbitrage possibilities is remote from the market financial

strategies space);

3) L⊥ ∩
◦

L∞+ 6= ∅ (= existence of a martingale measure (refined condition));

4) L⊥ +
◦

L∞+ = L∞.

Proof. Take E = L1(Ω, P ) and K = L1+. For this cone we have K∗ = L∗
1+ = L∞+

(cf. (1.19)). Now apply Theorem 3.4 keeping in mind condition 5) of Theorem 2.4.

The figure illustrates the difference between condition 2) in Theorem 1.3 and condition
3) in Theorem 3.10 (it also approves the term’refined condition’).

0 1 0 1 0 1

◦

L∞+ L̃∞+ L∞+

Note also that any finite-dimensional subspace L is a reflexive subspace L = L∗∗. Thus
Theorem 1.3 follows from the equivalence of 1) ⇔ 3) in Theorem 3.10.

Remark 3.11. Since in l1 any closed infinite-dimensional subspace L ⊂ l1 is not reflexive
it follows that in this case condition L = L∗∗ reduces to finite-dimensionality of L. On the
other hand the situation with L1(Ω, P ) is qualitatively different: as is known even ℓ2 can
be embedded in L1[0, 1] (see in this connection, for example, [1], 5.6 and 6.4). Therefore,
in general condition L = L∗∗ of Theorem 3.10 is essentially more general than condition
dimL <∞ of Theorem 1.3.

4 Arbitrage freeness criteria for markets with arbi-

trary financial market strategies subspace

This section forms a certain ’philosophical’ appendix of the paper. In the preceding section
we obtained a number of market arbitrage freeness criteria under certain assumptions on
the initial objects K and L. Here we try to relax these assumptions. As we will see in
general situations the main role is played by analogies of condition 4) of Theorem 3.4
(dual objects; cf. Theorem 4.1, 4.2) and condition 2) of Theorem 3.4 (initial objects;
cf. Theorem 4.5) while martingalness (condition 3) of Theorem 3.4) disappears. These
observations also show, in particular, that in general conditions 2) and 4) of Theorem 3.4
are more ’stable’. In addition the proof of Theorem 4.1 explains tight relation between
condition 4) of Theorem 3.4 and classical theorem on bipolar.

17



We start with a description of market arbitrage freeness by means of dual objects in
a situation when there are no constraints on K and L (thus here we do not presume any
assumption on the nature of profit cones and assets).

Theorem 4.1. [market arbitrage freeness criterium] Let E be a Banach space and K,L ⊂
E, where K is a closed cone, and L is a closed subspace. The following two conditions
are equivalent:

1) L ∩K = {0} (= absence of arbitrage);
2) *-wcl (K∗ + L⊥) = E∗;

here E∗ is the dual space to E and *-wclN denotes the closure of a set N in *-weak
topology of E∗.

Proof. In fact this follows in a routine way from theorem on bipolar ([3], Proposi-
tion IV.1.3.3). Indeed, as corollary of this theorem we have that for every family of closed
cones Ki, i = 1, . . . , n one has

(
n⋂

i=1

Ki

)∗

= *-wcl

(
n∑

i=1

K∗

i

)
,

and therefore
(L ∩K)∗ = *-wcl (K∗ + L⊥)

which finishes the proof.

Theorem 4.1 formally gives an exhaustive answer on market arbitrage freeness con-
dition in any situation. But of course in practice verification of condition 2) is rather
complicated. Let us only note here that as a corollary of Theorem 4.1 one can obtain, in
particular, the next statement.

Theorem 4.2. Let E be a reflexive Banach space and K,L ⊂ E, where K is a closed
cone, and L is a closed subspace. The following two conditions are equivalent:

1) L ∩K = {0};
2) K∗ + L⊥ = E∗,

where in the latter condition ’over-line’ means the norm closure in E∗.

Proof. For a reflexive space ∗-weak closure coincides with the weak closure. Moreover,
since K∗ + L⊥ is a convex subset its weak closure coincides with the norm closure.

Theorem 4.1 gives a description of absence of arbitrage condition in dual terms. How-
ever, one can obtain a description of such markets without any usage of dual objects
directly in the initial objects terms in the spirit of condition 2) of Theorem 3.4. This
description is presented below in Theorem 4.5, which in its turn is a corollary of the next
result.

Theorem 4.3. Let E be a Banach space and K,L ⊂ E, where K is a cone, and L is a
linear subspace.

1. If for every 0 6= u ∈ K one has (u+K) ∩ L = ∅, then L ∩K = {0}.
2. Let K ∩ (−K) = {0}. In this situation

if L ∩K = {0}, then for every 0 6= u ∈ K one has (u+K) ∩ L = ∅.

We will say that K and L are positively separated, if for every 0 6= u ∈ K one has
(u+K) ∩ L = ∅.
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Remark 4.4. Note that if condition 2) of Theorem 3.4 is satisfied, that is ρ(F, L) > 0
then for every 0 6= u ∈ K one also has ρ(u+K,L) > 0 (this can be verified, for example,
by the argument similar to that exploited in the proof of Theorem 3.1) and therefore
separateness of K and L is weakening of the property of remoteness of F from L.

Clearly Theorem 4.3 implies

Theorem 4.5. [market arbitrage freeness criterium] Let E be a Banach space and K,L ⊂
E, where K is a cone such that K∩(−K) = {0}, and L is a linear subspace. The following
two conditions are equivalent:

1) L ∩K = {0} (= absence of arbitrage);
2) for every 0 6= u ∈ K one has (u+K)∩L = ∅ (= K and L are positively separated).

Proof of Theorem 4.3. 1. If 0 6= u ∈ L ∩K, then L ∋ 2u = u+ u ∈ (u+K), that is
(u+K) ∩ L 6= ∅.

2. The proof goes by contradiction. Suppose that there exists 0 6= u ∈ K, such that
(u+K)∩L 6= ∅. It means that there exists a vector v ∈ K, such that K ∋ u+ v = h ∈ L.
Since by assumption of theorem we have L ∩ K = {0}, the latter relation means that
h = 0. This implies the equality K ∋ v = −u ∈ (−K). So we arrived at a contradiction
with the condition K ∩ (−K) = {0}.
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