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Abstract Therate for Higgs (H) bosons production in asso-
ciation with either one (tH) or two (ttH) top quarks is mea-
sured in final states containing multiple electrons, muons,
or tau leptons decaying to hadrons and a neutrino, using
proton—proton collisions recorded at a center-of-mass energy
of 13TeV by the CMS experiment. The analyzed data cor-
respond to an integrated luminosity of 137 fb~!. The anal-
ysis is aimed at events that contain H - WW, H — 11,
or H — ZZ decays and each of the top quark(s) decays
either to lepton+jets or all-jet channels. Sensitivity to sig-
nal is maximized by including ten signatures in the analysis,
depending on the lepton multiplicity. The separation among
tH, ttH, and the backgrounds is enhanced through machine-
learning techniques and matrix-element methods. The mea-
sured production rates for the ttH and tH signals correspond
£00.92=0.19 (stat) 13 (syst) and 5.742.7 (stat)£3.0 (syst)
of their respective standard model (SM) expectations. The
corresponding observed (expected) significance amounts to
4.7 (5.2) standard deviations for ttH, and to 1.4 (0.3) for tH
production. Assuming that the Higgs boson coupling to the
tau lepton is equal in strength to its expectation in the SM, the
coupling y; of the Higgs boson to the top quark divided by
its SM expectation, k; = y;/ ytSM, is constrained to be within
—0.9 <k < —0.70r 0.7 < k¢ < 1.1, at 95% confidence
level. This result is the most sensitive measurement of the
ttH production rate to date.

1 Introduction

The discovery of a Higgs (H) boson by the ATLAS and CMS
experiments at the CERN LHC [1-3] opened a new field for
exploration in the realm of particle physics. Detailed mea-
surements of the properties of this new particle are important
to ascertain if the discovered resonance is indeed the Higgs
boson predicted by the standard model (SM) [4-7]. In the SM,
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the Yukawa coupling yr of the Higgs boson to fermions is pro-
portional to the mass my of the fermion, namely yr = mg /v,
where v = 246 GeV denotes the vacuum expectation value of
the Higgs field. With a mass of m; = 172.76 £0.30 GeV [8],
the top quark is by far the heaviest fermion known to date,
and its Yukawa coupling is of order unity. The large mass of
the top quark may indicate that it plays a special role in the
mechanism of electroweak symmetry breaking [9—11]. Devi-
ations of y; from the SM prediction of m/v would indicate
the presence of physics beyond the SM.

The measurement of the Higgs boson production rate in
association with a top quark pair (ttH) provides a model-
independent determination of the magnitude of y;, but not
of its sign. The sign of y; is determined from the associ-
ated production of a Higgs boson with a single top quark
(tH). Leading-order (LO) Feynman diagrams for ttH and tH
production are shown in Figs. 1 and 2, respectively. The dia-
grams for tH production are separated into three contribu-
tions: the 7-channel (tHq) and the s-channel, that proceed via
the exchange of a virtual W boson, and the associated pro-
duction of a Higgs boson with a single top quark and a W
boson (tHW). The interference between the diagrams where
the Higgs boson couples to the top quark (Fig. 2 upper and
lower left), and those where the Higgs boson couples to the
W boson (Fig. 2 upper and lower right) is destructive when
y¢ and gw have the same sign, where the latter denotes the
coupling of the Higgs boson to the W boson. This reduces
the tH cross section and influences the kinematical proper-
ties of the event as a function of y; and gw. The interference
becomes constructive when the coupling of the gw and y;
have opposite signs, causing an increase in the cross section
of up to one order of magnitude. This is referred to as inverted
top quark coupling.

Indirect constraints on the magnitude of y; are obtained
from the rate of Higgs boson production via gluon fusion and
from the decay rate of Higgs bosons to photon pairs [12],
where in both cases, y; enters through top quark loops. The
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Fig. 1 Feynman diagrams at LO for ttH production

H — yy decay rate also provides sensitivity to the sign of
vt [13], as does the rate for associated production of a Higgs
boson with a Z boson [14]. The measured rates of these pro-
cesses suggest that the Higgs boson coupling to top quarks is
SM-like. However, contributions from non-SM particles to
these loops can compensate, and therefore mask, deviations
of y; from its SM value. A model-independent direct mea-
surement of the top quark Yukawa coupling in ttH and tH
production is therefore very important. The comparison of
the magnitude and sign of y; obtained from the measurement
of the ttH and tH production rates, where y, enters at low-
est “tree” level, with the value of y; obtained from processes
where y; enters via loop contributions can provide evidence
about such contributions.

This manuscript presents the measurement of the ttH
and tH production rates in final states containing multiple
electrons, muons, or t leptons that decay to hadrons and a
neutrino (ty). In the following, we refer to T, as “hadron-
ically decaying t”. We also refer to electrons and muons
collectively as “leptons” (£). The measurement is based on
data recorded by the CMS experiment in pp collisions at
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/s = 13 TeV during Run 2 of the LHC, that corresponds to
an integrated luminosity of 137 fb~!.

The associated production of Higgs bosons with top quark
pairs was previously studied by the ATLAS and CMS exper-
iments, with up to 24.8fb~! of data recorded at \/s = 7
and 8 TeV during LHC Run 1 [15-19], and up to 79.8 fb~!
of data recorded at /s = 13 TeV during LHC Run 2 [20-
26]. The combined analysis of data recorded at /s = 7, 8,
and 13 TeV resulted in the observation of ttH production by
CMS and ATLAS [27,28]. The production of Higgs bosons
in association with a single top quark was also studied using
the data recorded during LHC Run 1 [29] and Run 2 [30,31].
These analyses covered Higgs boson decays to bb, yy, WW,
77, and tT.

The measurement of the ttH and tH production rates pre-
sented in this manuscript constitutes their first simultane-
ous analysis in this channel. This approach is motivated by
the high degree of overlap between the experimental signa-
tures of both production processes and takes into account the
dependence of the ttH and tH production rates as a func-
tion of y;. Compared to previous work [23], the sensitivity
of the present analysis is enhanced by improvements in the
identification of Tt decays and of jets originating from the
hadronization of bottom quarks, as well as by performing
the analysis in four additional experimental signatures, also
referred to as analysis channels, that add up to a total of ten.
The signatures involve Higgs boson decays to WW, tt, and
77, and are defined according to the lepton and t, multiplic-
ities in the events. Some of them require leptons to have the
same (opposite) sign of electrical charge and are therefore
referred to as SS (OS). The signatures 2¢SS + Oty, 3¢+ 01y,
2¢SS + 11, 200S 4 11y, 1€ 4 211, 4¢ + Oy, 34 + 11y, and
2¢ + 27y, target events where at least one top quark decays
viat — bW — beTv,, whereas the signatures 1£ + 11y,
and 0¢ 4 21y, target events where all top quarks decay via
t — bWt — bqq. We refer to the first and latter top
quark decay signatures as semi-leptonically and hadronically
decaying top quarks, respectively. Here and in the follow-
ing, the term top quark includes the corresponding charge-
conjugate decays of top antiquarks. As in previous analyses,
the separation of the ttH and tH signals from backgrounds is
improved through machine-learning techniques, specifically
boosted decision trees (BDTs) and artificial neural networks
(ANNS) [32-34], and through the matrix-element method
[35,36]. Machine-learning techniques are also employed to
improve the separation between the ttH and tH signals. We
use the measured ttH and tH production rates to set limits on
the magnitude and sign of y;.

This paper is organized as follows. After briefly describ-
ing the CMS detector in Sect. 2, we proceed to discuss the
data and simulated events used in the measurement in Sect. 3.
Section 4 covers the object reconstruction and selection from
signals recorded in the detector, while Sect. 5 describes the
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Fig. 2 Feynman diagrams at LO for tH production via the z-channel
(tHq in upper left and upper right) and s-channel (middle) processes,
and for associated production of a Higgs boson with a single top quark

selection criteria applied to events in the analysis. These
events are grouped in categories, defined in Sect. 6, while the
estimation of background contributions in these categories is
described in Sect. 7. The systematic uncertainties affecting
the measurements are given in Sect. 8, and the statistical anal-
ysis and the results of the measurements in Sect. 9. We end
the paper with a brief summary in Sect. 10.

o

Y

W

and a W boson (tHW in lower left and lower right). The tHq and tHW
production processes are shown for the five-flavor scheme

2 The CMS detector

The central feature of the CMS apparatus is a supercon-
ducting solenoid of 6 m internal diameter, providing a mag-
netic field of 3.8 T. A silicon pixel and strip tracker, a lead
tungstate crystal electromagnetic calorimeter (ECAL), and a
brass and scintillator hadron calorimeter (HCAL), each com-
posed of a barrel and two endcap sections, are positioned
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within the solenoid volume. The silicon tracker measures
charged particles within the pseudorapidity range |n| < 2.5.
The ECAL is a fine-grained hermetic calorimeter with quasi-
projective geometry, and is segmented into the barrel region
of |n| < 1.48 and in two endcaps that extend up to |n| < 3.0.
The HCAL barrel and endcaps similarly cover the region
[n] < 3.0. Forward calorimeters extend the coverage up to
[n] < 5.0. Muons are measured and identified in the range
[n] < 2.4 by gas-ionization detectors embedded in the steel
flux-return yoke outside the solenoid. A two-level trigger
system [37] is used to reduce the rate of recorded events to a
level suitable for data acquisition and storage. The first level
of the CMS trigger system, composed of custom hardware
processors, uses information from the calorimeters and muon
detectors to select the most interesting events with a latency of
4 us. The high-level trigger processor farm further decreases
the event rate from around 100 kHz to about 1 kHz. Details of
the CMS detector and its performance, together with a defi-
nition of the coordinate system and the kinematic variables
used in the analysis, are reported in Ref. [38].

3 Data samples and Monte Carlo simulation

The analysis uses pp collision data recorded at /s = 13 TeV
at the LHC during 2016-2018. Only the data-taking periods
during which the CMS detector was fully operational are
included in the analysis. The total integrated luminosity of
the analyzed data set amounts to 137 fb~!, of which 35.9
[39], 41.5 [40], and 59.7 [41]fb~! have been recorded in
2016, 2017, and 2018, respectively.

The event samples produced via Monte Carlo (MC) sim-
ulation are used for the purpose of calculating selection effi-
ciencies for the ttH and tH signals, estimating background
contributions, and training machine-learning algorithms. The
contribution from ttH signal and the backgrounds arising
from tt production in association with W and Z bosons (ttW,
ttZ), from triboson (WWW, WWZ, WZZ, ZZZ., WZ) pro-
duction, as well as from the production of four top quarks
(tttt) are generated at next-to-LO (NLO) accuracy in per-
turbative quantum chromodynamics (pQCD) making use of
the program MADGRAPHS_aMC@NLO 2.2.2 or 2.3.3 [42—
45], whereas the tH signal and the tty, tty*, tZ, ttWW,
W+jets, Drell-Yan (DY), Wy, and Zy backgrounds are gen-
erated at LO accuracy using the same program. The symbols
y* and y are employed to distinguish virtual photons from
the real ones. The event samples with virtual photons also
include contributions from virtual Z bosons. The DY pro-
duction of electron, muon, and t lepton pairs are referred
to as Z/y* — ee, Z/y* — W, and Z/y* — 11, respec-
tively. The modeling of the ttW background includes addi-
tional g electroweak corrections [46,47], simulated using
MADGRAPHS5_aMC@NLO. The NLO program POWHEG v2.0
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[48-50] is used to simulate the backgrounds arising from
tt+jets, tW, and diboson (WiWﬁ WZ,ZZ) production, and
from the production of single top quarks, and from SM Higgs
boson production via gluon fusion (ggH) and vector boson
fusion (qqH) processes, and from the production of SM Higgs
bosons in association with W and Z bosons (WH, ZH) and
with W and Z bosons along with a pair of top quarks (ttWH,
ttZH). The modeling of the top quark transverse momentum
(pr) distribution of tt+jets events simulated with the pro-
gram POWHEG is improved by reweighting the events to the
differential cross section computed at next-to-NLO (NNLO)
accuracy in pQCD, including electroweak corrections com-
puted at NLO accuracy [51]. We refer to the sum of WH plus
ZH contributions by using the symbol VH and to the sum
of ttWH plus ttZH contributions by using the symbol ttVH.
The SM production of Higgs boson pairs or a Higgs boson
in association with a pair of b quarks is not considered as a
background to this analysis, because its impact on the event
yields in all categories is found to be negligible. The pro-
duction of same-sign W pairs (SSW) is simulated using the
program MADGRAPH5_aMC@NLO in LO accuracy, except
for the contribution from double-parton interactions, which
is simulated with PYTHIA v8.2 [52] (referred to as PYTHIA
hereafter). The NNPDF3.0LO (NNPDF3.0NLO) [53-55] set
of parton distribution functions (PDF) is used for the simu-
lation of LO (NLO) 2016 samples, while NNPDF3.1 NNLO
[56] is used for 2017 and 2018 LO and NLO samples.

Different flavor schemes are chosen to simulate the tHq
and tHW processes. In the five-flavor scheme (5 FS), bot-
tom quarks are considered as sea quarks of the proton and
may appear in the initial state of proton—proton (pp) scatter-
ing processes, as opposed to the four-flavor scheme (4 FS),
where only up, down, strange, and charm quarks are consid-
ered as valence or sea quarks of the proton, whereas bottom
quarks are produced by gluon splitting at the matrix-element
level, and therefore appear only in the final state [57]. In the
5 FS the distinction of tHq, s-channel, and tHW contribu-
tions to tH production is well-defined up to NLO, whereas at
higher orders in perturbation theory the tHq and s-channel
production processes start to interfere and can no longer be
uniquely separated [58]. Similarly, in the same regime the
tHW process starts to interfere with ttH production at NLO.
In the 4 FS, the separation among the tHq, s-channel, and
tHW (if the W boson decays hadronically) processes holds
only up to LO, and the tHW process starts to interfere with
ttH production already at tree level [58].

The tHq process is simulated at LO in the 4 FS and the
tHW process in the 5 FS, so that interference contributions of
latter with ttH production are not present in the simulation.
The contribution from s-channel tH production is negligible
and is not considered in this analysis.

Parton showering, hadronization, and the underlying event
are modeled using PYTHIA with the tune CP5, CUETP8MI,
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CUETP8M2, or CUETP8M2T4 [59-61], depending on the
dataset, as are the decays of t leptons, including polarization
effects. The matching of matrix elements to parton showers
is done using the MLM scheme [42] for the LO samples
and the FxFx scheme [44] for the samples simulated at NLO
accuracy.

The modeling of the ttH and tH signals, as well as of
the backgrounds, is improved by normalizing the simulated
event samples to cross sections computed at higher order in
pQCD. The cross section for tH production is computed in
the SFS. The SM cross section for tHq production has been
computed at NLO accuracy in pQCD as 74.3 fb [62], and the
SM cross section for ttH production has been computed at
NLO accuracy in pQCD as 506.5 fb with electroweak cor-
rections calculated at the same order in perturbation theory
[62]. Both cross sections are computed for pp collisions at
A/s = 13TeV. The tHW cross section is computed to be
15.2fb at NLO in the 5FS, using the DR2 scheme [63] to
remove overlapping contributions between the tHW process
and ttH production. The cross sections for tt+jets, W+jets,
DY, and diboson production are computed at NNLO accuracy
[64-66].

Event samples containing Higgs bosons are normalized
using the SM cross sections published in Ref. [62]. Event
samples of ttZ production are normalized to the cross sec-
tions published in Ref. [62], while ttW simulated samples
are normalized to the cross section published in the same
reference increased by the contribution from the aser® elec-
troweak corrections [46,47]. The SM cross sections for the
ttH and tH signals and for the most relevant background pro-
cesses are given in Table 1.

The ttH and tH samples are produced assuming all cou-
plings of the Higgs boson have the values expected in the
SM. The variation in kinematical properties of tH signal
events, which stem from the interference of the diagrams
in Fig. 2 described in Sect. 1, for values of y; and gw that
differ from the SM expectation, is accounted for by apply-
ing weights calculated for each tH signal event with MAD-
GRAPHS5_aMC@NLO, following the approach suggested in
[67,68]. No such reweighting is necessary for the ttH signal,
because any variation of y; would only affect the inclusive
cross section for ttH production, which increases propor-
tional to ytz, leaving the kinematical properties of ttH signal
events unaltered.

The presence of simultaneous pp collisions in the same or
nearby bunch crossings, referred to as pileup (PU), is mod-
eled by superimposing inelastic pp interactions, simulated
using PYTHIA, to all MC events. Simulated events are weighed
so the PU distribution of simulated samples matches the one
observed in the data.

All MC events are passed through a detailed simulation
of the CMS apparatus, based on GEANT4 [69,70], and are

processed using the same version of the CMS event recon-
struction software used for the data.

Simulated events are corrected by means of weights or by
varying the relevant quantities to account for residual differ-
ences between data and simulation. These differences arise
in: trigger efficiencies; reconstruction and identification effi-
ciencies for electrons, muons, and ty; the energy scale of
1, and jets; the efficiency to identify jets originating from
the hadronization of bottom quarks and the corresponding
misidentification rates for light-quark and gluon jets; and
the resolution in missing transverse momentum. The cor-
rections are typically at the level of a few percent [71-75].
They are measured using a variety of SM processes, such as
Z/y* — ee, Z/y* — pw, Z/y* — 11, ti+jets, and y+jets
production.

4 Event reconstruction

The CMS particle-flow (PF) algorithm [76] provides a global
event description that optimally combines the information
from all subdetectors, to reconstruct and identify all indi-
vidual particles in the event. The particles are subsequently
classified into five mutually exclusive categories: electrons,
muons, photons, and charged and neutral hadrons.

Electrons are reconstructed combining the information
from tracker and ECAL [77] and are required to satisfy
pr > 7GeV and || < 2.5. Their identification is based
on a multivariate (MVA) algorithm that combines observ-
ables sensitive to: the matching of measurements of the elec-
tron energy and direction obtained from the tracker and the
calorimeter; the compactness of the electron cluster; and
the bremsstrahlung emitted along the electron trajectory.
Electron candidates resulting from photon conversions are
removed by requiring that the track has no missing hits in the
innermost layers of the silicon tracker and by vetoing candi-
dates that are matched to a reconstructed conversion vertex.
In the 2¢SS + Oty and 2£SS + 11y, channels (see Sect. 5 for
channel definitions), we apply further electron selection cri-
teria that demand the consistency among three independent
measurements of the electron charge, described as “selective
algorithm” in Ref. [77].

The reconstruction of muons is based on linking track seg-
ments reconstructed in the silicon tracker to hits in the muon
detectors that are embedded in the steel flux-return yoke [78].
The quality of the spatial matching between the individual
measurements in the tracker and in the muon detectors is
used to discriminate genuine muons from hadrons punch-
ing through the calorimeters and from muons produced by
in-flight decays of kaons and pions. Muons selected in the
analysis are required to have pt > 5GeV and || < 2.4. For
events selected in the 2¢SS + Oty and 2£SS + 1714 channels,
the relative uncertainty in the curvature of the muon track is
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Table 1 Standard model cross sections for the ttH and tH signals as well as for the most relevant background processes. The cross sections are
quoted for pp collisions at /s = 13 TeV. The quoted value for DY production includes a generator-level requirement of my sy > 50GeV

Process Cross section (fb) Process Cross section (fb)

ttH 507 [62] ttZ 839 [62]

tHq 74.3 [62] ttW 650 [46,47,62]

tHW 15.2 [63] ttWW 6.98 [45]

ggH 4.86 x 10* [62] tt+jets 8.33 x 10° [65]

qqH 3.78 x 10° [62] DY 6.11 x 107 [64]

WH 1.37 x 10° [62] WW 1.19 x 10° [64]

ZH 884 [62] wZ 4.50 x 10* [64]
77 1.69 x 10* [64]

required to be less than 20% to ensure a high-quality charge
measurement.

The electrons and muons satisfying the aforementioned
selection criteria are referred to as “loose leptons” in the
following. Additional selection criteria are applied to dis-
criminate electrons and muons produced in decays of W and
Z bosons and leptonic T decays (“prompt”) from electrons
and muons produced in decays of b hadrons (“nonprompt”).
The removal of nonprompt leptons reduces, in particular, the
background arising from tt+jets production. To maximally
exploit the information available in each event, we use MVA
discriminants that take as input the charged and neutral par-
ticles reconstructed in a cone around the lepton direction
besides the observables related to the lepton itself. The jet
reconstruction and b tagging algorithms are applied, and the
resulting reconstructed jets are used as additional inputs to
the MVA. In particular, the ratio of the lepton prt to the recon-
structed jet pt and the component of the lepton momentum
in a direction perpendicular to the jet direction are found to
enhance the separation of prompt leptons from leptons orig-
inating from b hadron decays, complementing more conven-
tional observables such as the relative isolation of the lepton,
calculated in a variable cone size depending on the lepton pr
[79,80], and the longitudinal and transverse impact param-
eters of the lepton trajectory with respect to the primary pp
interaction vertex. Electrons and muons passing a selection
on the MVA discriminants are referred to as “tight leptons”.

Because of the presence of PU, the primary pp interac-
tion vertex typically needs to be chosen among the several
vertex candidates that are reconstructed in each pp collision
event. The candidate vertex with the largest value of summed
physics-object p% is taken to be the primary pp interaction
vertex. The physics objects are the jets, clustered using the jet
finding algorithm [81,82] with the tracks assigned to candi-
date vertices as inputs, and the associated missing transverse
momentum, taken as the negative vector sum of the pt of
those jets.

@ Springer

While leptonic decay products of t leptons are selected
by the algorithms described above, hadronic decays are
reconstructed and identified by the “hadrons-plus-strips”
(HPS) algorithm [74]. The algorithm is based on recon-
structing individual hadronic decay modes of the t lep-
ton: T — h7v, 1T — h_no\)t, T = h_nono\)r,
1~ — h~h*h~ v, 1~ — h~h*h~x°, and all the charge-
conjugate decays, where the symbols h™ and h* denotes
either a charged pion or a charged kaon. The photons result-
ing from the decay of neutral pions that are produced in the t
decay have a sizeable probability to convert into an electron-
positron pair when traversing the silicon tracker. The conver-
sions cause a broadening of energy deposits in the ECAL,
since the electrons and positrons produced in these conver-
sions are bent in opposite azimuthal directions by the mag-
netic field and may also emit bremsstrahlung photons. The
HPS algorithm accounts for this broadening when it recon-
structs the neutral pions, by means of clustering photons and
electrons in rectangular strips that are narrow in 1 but wide
in ¢. The subsequent identification of ty, candidates is per-
formed by the “DeepTau” algorithm [83]. The algorithm is
based on a convolutional ANN [84], using as input a set
of 42 high-level observables in combination with low-level
information obtained from the silicon tracker, the electro-
magnetic and hadronic calorimeters, and the muon detec-
tors. The high-level observables comprise the pr, 1, ¢, and
mass of the 1, candidate; the reconstructed t, decay mode;
observables that quantify the isolation of the t}, with respect
to charged and neutral particles; as well as observables that
provide sensitivity to the small distance that a T lepton typ-
ically traverses between its production and decay. The low-
level information quantifies the particle activity within two
n X ¢ grids, an “inner” grid of size 0.2 x 0.2, filled with cells
of size 0.02 x 0.02, and an “outer” grid of size 0.5 x 0.5
(partially overlapping with the inner grid) and cells of size
0.05 x 0.05. Both grids are centered on the direction of the ty,
candidate. The 1y, considered in the analysis are required to
have pt > 20 GeV and |n| < 2.3 and to pass a selection on



Eur. Phys. J. C (2021) 81:378

Page 7 of 51 378

the output of the convolutional ANN. The selection differs
by analysis channel, targeting different efficiency and purity
levels. We refer to these as the very loose, loose, medium, and
tight Ty, selections, depending on the requirement imposed on
the ANN output.

Jets are reconstructed using the anti-kT algorithm [81,82]
with a distance parameter of 0.4 and with the particles recon-
structed by the PF algorithm as inputs. Charged hadrons asso-
ciated with PU vertices are excluded from the clustering. The
energy of the reconstructed jets is corrected for residual PU
effects using the method described in Refs. [85,86] and cal-
ibrated as a function of jet pt and n [72]. The jets consid-
ered in the analysis are required to: satisfy pr > 25GeV
and || < 5.0; pass identification criteria that reject spuri-
ous jets arising from calorimeter noise [87]; and not over-
lap with any identified electron, muon or hadronic t within
AR = vV (An)? + (A9)? < 0.4. We tighten the requirement
on the transverse momentum to the condition pt > 60 GeV
for jets reconstructed within the range 2.7 < |n| < 3.0,
to further reduce the effect of calorimeter noise, which is
sizeable in this detector region. Jets passing these selection
criteria are then categorized into central and forward jets,
the former satisfying the condition || < 2.4 and the latter
2.4 < |n] < 5.0. The presence of a high-pr forward jet in
the event is a characteristic signature of tH production in the
t-channel and is used to separate the ttH from the tH process
in the signal extraction stage of the analysis.

Jets reconstructed within the region |n| < 2.4 and origi-
nating from the hadronization of bottom quarks are denoted
as b jets and identified by the DEEPJET algorithm [88]. The
algorithm exploits observables related to the long lifetime of
b hadrons as well as to the higher particle multiplicity and
mass of b jets compared to light-quark and gluon jets. The
properties of charged and neutral particle constituents of the
jet, as well as of secondary vertices reconstructed within the
jet, are used as inputs to a convolutional ANN. Two different
selections on the output of the algorithm are employed in the
analysis, corresponding to b jet selection efficiencies of 84
(“loose”) and 70% (“tight”). The respective mistag rates for
light-quark and gluon jets (c jet) are 11 and 1.1% (50% and
15%).

The missing transverse momentum vector, denoted by the
symbol ﬁ{“iss, is computed as the negative of the vector pr
sum of all particles reconstructed by the PF algorithm. The
magnitude of this vector is denoted by the symbol p?iss.
The analysis employs a linear discriminant, denoted by the
symbol Lp, to remove backgrounds in which the recon-
structed pf}liss arises from resolution effects. The discrimi-
nant also reduces PU effects and is defined by the relation
Lp=0.6 p%liss + 0.4H{-niss, where the observable Hﬁrniss cor-
responds to the magnitude of the vector pt sum of electrons,
muons, Ty, and jets [23]. The discriminant is constructed to

combine the higher resolution of p‘T]fliSS with the robustness
to PU of HM.

5 Event selection

The analysis targets ttH and tH production in events where
the Higgs boson decays via H — WW, H — =11, or
H — ZZ, with subsequent decays WW — £1vyqq’ or
LTVl Vp; 1T — £Vl VeV, £V VTV, OF TV Th V)
Z7Z — £727qq or £7¢~Vvv; and the corresponding charge-
conjugate decays. The decays H — ZZ — £Y¢~£7¢~ are
covered by the analysis published in Ref. [20]. The top quark
may decay either semi-leptonically viat — bW+ — betv,
or hadronically via t — bW — bqq’/, and analogously for
the top antiquarks. The experimental signature of ttH and
tH signal events consists of: multiple electrons, muons, and
Th; p%liss caused by the neutrinos produced in the W and Z
bosons, and tau lepton decays; one (tH) or two (ttH) b jets
from top quark decays; and further light-quark jets, produced
in the decays of either the Higgs boson or of the top quark(s).
The events considered in the analysis are selected in ten
nonoverlapping channels, targeting the signatures 2¢SS +
Otyh, 3¢ +01h, 26SS + 1th, 1£ 4 11, 0€ + 211, 200S + 11y,
14 + 21, 4€ + O, 34 + 17, and 24 + 21y, as stated earlier.
The channels 1£+ 1ty and 0€ 421y, specifically target events
in which the Higgs boson decays via H — 1t and the top
quarks decay hadronically, the other channels target a mixture
of H—- WW,H — tt,and H — ZZ decays in events with
either one or two semi-leptonically decaying top quarks.
Events are selected at the trigger level using a combination
of single-, double-, and triple-lepton triggers, lepton+ty, trig-
gers, and double-Tty, triggers. Spurious triggers are discarded
by demanding that electrons, muons, and T, reconstructed at
the trigger level match electrons, muons, and Ty, reconstructed
offline. The pt thresholds of the triggers typically vary by
a few GeV during different data-taking periods, depending
on the instantaneous luminosity. For example, the threshold
of the single-electron trigger ranges between 25 and 35 GeV
in the analyzed data set, and that of the single-muon trigger
varies between 22 and 27 GeV. The double-lepton (triple-
lepton) triggers reduce the pr threshold that is applied to
the lepton of highest pt to 23 (16) GeV in case this lepton
is an electron and to 17 (8) GeV in case it is an muon. The
electron+1ty, (muon-+1y) trigger requires the presence of an
electron of pr > 24 GeV (muon of pt > 19 or 20GeV) in
combination with a T, of pr > 20 or 30GeV (pr > 20
or 27 GeV), where the lower pr thresholds were used in
2016 and the higher ones in 2017 and 2018. The threshold of
the double-ty, trigger ranges between 35 and 40 GeV and is
applied to both ty,. In order to attain these pt thresholds, the
geometric acceptance of the lepton+ty, and double-ty, trig-
gers is restricted to the range || < 2.1 for electrons, muons,
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and 1. The pr thresholds applied to electrons, muons, and
1}, in the offline event selection are chosen above the trigger
thresholds.

The charge of leptons and 1y, is required to match the sig-
nature expected for the ttH and tH signals. The 0¢ + 21,
and 1¢ + 27y, channels target events where the Higgs boson
decays to a t lepton pair and both t leptons decay hadron-
ically. Consequently, the two Ty, are required to have OS
charges in these channels. In events selected in the chan-
nels 4¢ + Oty, 3¢ + 11y, and 2¢ + 21y, the leptons and Ty,
are expected to originate from either the Higgs boson decay
or from the decay of the top quark—antiquark pair and the
sum of their charges is required to be zero. In the 3¢ + Oty,
2SS + 1tp, 200S + 11y, and 1€ + 213, channels the charge-
sum of leptons plus Ty, is required to be either +1 or —1.
No requirement on the charge of the lepton and of the Ty, is
applied in the 1£ + 11, channel, because studies performed
with simulated samples of signal and background events indi-
cate that the sensitivity of this channel is higher when no
charge requirement is applied. The 2¢SS + Oty channel tar-
gets events in which one lepton originates from the decay of
the Higgs boson and the other lepton from a top quark decay.
Requiring SS leptons reduces the signal yield by about half,
but increases the signal-to-background ratio by a large factor
by removing in particular the large background arising from
tt+jets production with dileptonic decays of the top quarks.
The more favorable signal-to-background ratio for events
with SS, rather than OS, lepton pairs motivates the choice
of analyzing the events containing two leptons and one Ty,
separately, in the two channels 2¢SS 4 11, and 2¢0S + 11y,.

The selection criteria on b jets are designed to maintain
a high efficiency for the ttH signal: one b jet can be outside
of the pt and 5 acceptance of the jet selection or can fail
the b tagging criteria, provided that the other b jet passes
the tight b tagging criteria. This choice is motivated by the
observation that the main background contributions, arising
from the associated production of single top quarks or top
quark pairs with W and Z bosons, photons, and jets, feature
genuine b jets with a multiplicity resembling that of the ttH
and tH signals.

The requirements on the overall multiplicity of jets,
including b jets, take advantage of the fact that the multi-
plicity of jets is typically higher in signal events compared to
the background. The total number of jets expected in ttH (tH)
signal events with the H boson decaying into WW, ZZ, and
ttamounts to Nj = 10 —2Ny — 2N (Nj = 7—2N; —2N,),
where Nj, N¢ and Ny denote the total number of jets, electrons
or muons, and hadronic t decays, respectively. The require-
ments on Nj applied in each channel permit up to two jets
to be outside of the pt and 1 acceptance of the jet selection.
In the 2¢SS + Oty channel, the requirement on Nj is relaxed
further, to increase the signal efficiency in particular for the
tH process.
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Background contributions arising from ttZ, tZ, WZ, and
DY production are suppressed by vetoing events containing
OS pairs of leptons of the same flavor, referred to as SFOS
lepton pairs, passing the loose lepton selection criteria and
having an invariant mass mg¢ within 10 GeV of the Z boson
mass, mz = 91.19 GeV [8]. We refer to this selection crite-
rion as “Z boson veto”. In the 2¢£SS + Oty and 2¢SS + 1ty
channels, the Z boson veto is also applied to SS electron pairs,
because the probability to mismeasure the charge of electrons
is significantly higher than the corresponding probability for
muons.

Background contributions arising from DY production in
the 2¢SS + Oth, 3¢ + Oth, 2¢SS + 11, 4 + Oy, 36 + 11y,
and 2¢ + 2ty channels are further reduced by imposing a
requirement on the linear discriminant, Lp > 30 GeV. The
requirement on Lp is relaxed or tightened, depending on
whether or not the event meets certain conditions, in order
to either increase the efficiency to select ttH and tH signal
events or to reject more background. In the 2¢SS + Oty and
2¢SS+ 17y channels, the requirement on Lp is only applied to
events where both reconstructed leptons are electrons, to sup-
press the contribution of DY production entering the selec-
tion through a mismeasurement of the electron charge. In the
3¢+ 01y, 4€ + 01y, 3€ + 11, and 2£ + 214, channels, the dis-
tribution of N; is steeply falling for the DY background, thus
rendering the expected contribution of this background small
if the event contains a high number of jets; we take advantage
of this fact by applying the requirement on Lp only to events
with three or fewer jets. If events with Nj < 3 contain an
SFOS lepton pair, the requirement on Lp is tightened to the
condition Lp > 45 GeV. Events considered in the 3¢ + Oty,,
4¢ + Otp, 3¢ + 11y, and 2¢ 4 27y, channels containing three
or fewer jets and no SFOS Ilepton pair are required to satisfy
the nominal condition Lp > 30 GeV.

Events containing a pair of leptons passing the loose selec-
tion criteria and having an invariant mass mg, of less than
12 GeV are vetoed, to remove events in which the leptons
originate from quarkonium decays, cascade decays of heavy-
flavor hadrons, and low-mass DY production, because such
events are not well modeled by the MC simulation.

In the 3¢ + Oty and 4¢ + Oty channels, events containing
four leptons passing the loose selection criteria and having an
invariant mass of mg4, of the four-lepton system of less than
140 GeV are vetoed, to remove ttH and tH signal events in
which the Higgs boson decays via H — ZZ — £T¢=¢1¢~,
thereby avoiding overlap with the analysis published in Ref.
[20].

A summary of the event selection criteria applied in the
different channels is given in Tables 2, 3 and 4.
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Table 2 Event selections applied in the 2¢SS + Oty, 2¢SS + 114, 3¢ + Oty, and 3¢ + 1ty channels. The pt thresholds applied to the lepton of

highest, second-highest, and third-highest pr are separated by slashes. The symbol *

AR

indicates that no requirement is applied

Selection step

2SS + Oty

2£SS + 1ty

Targeted ttH decay

Targeted tH decays

Trigger

Lepton pt
Lepton n

Th PT

Th

1 identification

Charge requirements

Multiplicity of central jets

b tagging requirements

t — blv, t — bqq’ with

H—> WW — ¢vqq’

t — blv,

H—> WW — fvqq’

Single- and double-lepton triggers
pr > 25/15GeV

n] < 2.5(e)or2.4 ()

2 SS leptons and charge quality
requirements

>3 jets

>1 tight b-tagged jet or >2 loose
b-tagged jets

t — beév, t — bqq’ with

H — 1t — fvvtyy

t — blv,

H— tt— {1, + Vs

Single- and double-lepton triggers
pt > 25/15GeV (e) or 10 GeV ()
In] < 2.5 (e)or2.4(n)

pr > 20GeV

In] <2.3

Very loose

2 SS leptons and charge quality
requirements ) , . g = =+I

>3 jets

>1 tight b-tagged jet or >2 loose
b-tagged jets

Missing transverse momentum Lp > 30GeV' Lp > 30GeV'
Dilepton invariant mass |mee —mz| > 10GeVF and myp > 12 GeV
Selection step 3¢ 4+ 0ty 3¢+ 1t

Targeted ttH decays

Targeted tH decays
Trigger

Lepton pr

Lepton n

Th PT

Th

1 identification

Charge requirements
Multiplicity of central jets

b tagging requirements

Missing transverse momentum

Dilepton invariant mass

Four-lepton invariant mass

t — blv, t — blv with
H—> WW — fvqq’

t — blv,t — bqq with H —
WW — £véy

t — blv, t — bqq’ with
H — ZZ — ttqq’ or £&vv
t = blv,H—> WW — vy

Single-, double- and triple-lepton
triggers

pr > 25/15/10GeV
In] <2.5()or2.4(n)

>rg ==l
>2 jets

>1 tight b-tagged jet or >2 loose
b-tagged jets

Lp > 0/30/45 GeV*

mee > 12GeV and |mgy — mz| >
10 GeVv?®

mae > 140 GeV1

t — blv, t — blv with

H — 1t — fvvtyv

Single-, double- and triple-lepton
triggers

pr > 25/15/10GeV

In] <2.5(e)or2.4(n)

pr > 20GeV

In] <2.3

Very loose

2 d=0

>2 jets

>1 tight b-tagged jet or >2 loose
b-tagged jets

Lp > 0/30/45 GeV*

Myy > 12 GeV and |mu — mz| >
10 GeV$

A complete description of this requirement can be found in the main text

+ Applied to all SFOS lepton pairs and to pairs of electrons of SS charge

§ Applied to all SFOS lepton pairs

T1f the event contains two SFOS pairs of leptons that pass the loose lepton selection criteria
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Table 3 Event selections applied in the 0¢ + 21y, 1£ + 11y, 1€ + 21y, and 2¢ 4 21y, channels. The pt thresholds applied to the lepton and to the

”»

Th of highest and second-highest pt are separated by slashes. The symbol “~” indicates that no requirement is applied

Selection step

0¢ + 21y,

14+ 11y

Targeted ttH decays

Trigger

Lepton pt

Lepton n

Th PT

Th

14 identification

Charge requirements
Multiplicity of central jets
b tagging requirements

Dilepton invariant mass

t — bgq/, t — bqq’ with
H— tt - vty

Double-ty, trigger

pt > 40GeV

Inl <2.1

Loose

2q,q=0

>4 jets

>1 tight b-tagged jet or >2 loose b-tagged jets
mee > 12GeV

t — bgq/, t — bqq’ with

H — tt — fvvtyy

Single-lepton and lepton+1y, triggers
pt > 30 (e) or 25GeV ()

Inl <2.1

pt > 30GeV

Il <2.1

Medium

2id=0

>4 jets

>1 tight b-tagged jet or >2 loose b-tagged jets
mee > 12GeV

Selection step

1€+ 21

20 421y

Targeted ttH decays

Trigger

Lepton pr

Lepton n

Th PT

Th N

T identification
Charge requirements
Multiplicity of central jets
b tagging requirements
Missing transverse
momentum

Dilepton invariant mass

t — blv, t — bqq’ with

H— ttt™ — vy
Single-lepton and lepton+ty, triggers
pt > 30 (e) or 25GeV ()

In] < 2.1

pt > 30/20GeV

Il < 2.1

medium

Z“h qg==*1

>3 jets

>1 tight b-tagged jet or >2 loose b-tagged jets

mee > 12GeV

t — blv, t — blv with

H— tht™ — vy

Single- and double-lepton triggers
pr > 25710 (15) GeV (e)

[nl <2.5()or2.4(n)

pT > 20GeV

Inl < 2.3

medium

Zz,Th q=0

>2 jets

>1 tight b-tagged jet or >2 loose b-tagged jets
Lp > 0/30/45GeV’

myy > 12GeV

T A complete description of this requirement can be found in the main text

6 Event classification, signal extraction, and analysis
strategy

Contributions from background processes that pass the event
selection criteria detailed in Sect. 5, significantly exceed the
expected ttH and tH signal rates. The ratio of expected sig-
nal to background yields is particularly unfavorable in chan-
nels with a low multiplicity of leptons and ty,, notwithstand-
ing that these channels also provide the highest acceptance
for the ttH and tH signals. In order to separate the ttH and
tH signals from the background contributions, we employ a
maximume-likelihood (ML) fit to the distributions of a number
of discriminating observables. The choice of these observ-
ables is based on studies, performed with simulated samples
of signal and background events, that aim at maximizing the
expected sensitivity of the analysis. Compared to the alterna-
tive of reducing the background by applying more stringent
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event selection criteria, the chosen strategy has the advan-
tage of retaining events reconstructed in kinematic regions
of low signal-to-background ratio for analysis. Even though
these events enter the ML fit with a lower “weight” com-
pared to the signal events reconstructed in kinematic regions
where the signal-to-background ratio is high, the retained
events increase the overall sensitivity of the statistical anal-
ysis, firstly by increasing the overall ttH and tH signal yield
and secondly by simultaneously constraining the background
contributions. The likelihood function used in the ML fit
is described in Sect. 9. The diagram displayed in Fig. 3
describes the classification employed in each of the cate-
gories, which defines the regions that are fitted in the signal
extraction fit.

The chosen discriminating observables are the outputs of
machine-learning algorithms that are trained using simulated
samples of ttH and tH signal events as well as ttW, ttZ,
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Table 4 Event selections applied in the 2¢0S + 1ty and 4¢ + Oty channels. The symbol “~” indicates that no requirement is applied

Selection step 2008 + 11 44 + Oty
Targeted ttH decays t — blv, t — bqq with t — blv, t — blv with
H— tht™ — fvvtyy H—> WW — £vlv

t — bfv, t — blv with
H — ZZ — ¢£qq’ or £&vv

Trigger Single- and double-lepton triggers Single-, double- and triple-lepton triggers
Lepton pt pT > 25/15GeV (e) or 10GeV () pr >25/15/15/10GeV

Lepton n In] <2.5()or2.4(n) In] <2.5()or2.4(n)

Th PT pT > 20GeV -

T 7 Inl <23 -

Ty, identification Tight -

Charge requirements >q=0and}, g==I1 >eq=0

Multiplicity of central jets >3 jets >2 jets

b tagging requirements >1 tight b-tagged jet or >2 loose b-tagged jets >1 tight b-tagged jet or >2 loose b-tagged jets
Missing transverse momentum Lp > 30GeV' Lp > 0/30/45GeV#

Dilepton invariant mass mee > 12GeV |mee —mz| > 10 GeVS and myp > 12GeV
Four-lepton invariant mass - may > 140 GeV1

T Only applied to events containing two electrons

¥ A complete description of this requirement can be found in the main text

§ Applied to all SFOS lepton pairs

1 1f the event contains two SFOS pairs of leptons passing the loose lepton selection criteria

i

eee | eep | eu | Hu

Maximum Likelihood Fit

Fig. 3 Diagram showing the categorization strategy used for the signal extraction, making use of MVA-based algorithms and topological variables.
In addition to the ten channels, the ML fit receives input from two control regions (CRs) defined in Sect. 7.3

* bl (bt): < 2 (2 2) tight b-jets
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tt+jets, and diboson background samples. For the purpose
of separating the ttH and tH signals from backgrounds, the
2SS + Oty, 3¢ + Otp, and 24SS + 11y channels employ
ANNSs, which allows to discriminate among the two signals
and background simultaneously, while the other channels use
BDTs.

The observables used as input to the ANNs and BDTs
are outlined in Table 5. These are chosen to maximize the
discrimination power of the discriminators, with the objec-
tive of maximizing the expected sensitivity of the analysis.
The optimization is performed separately for each of the ten
analysis channels. Typical observables used are: the number
of leptons, ty,, and jets that are reconstructed in the event,
where electrons and muons, as well as forward jets, central
jets, and jets passing the loose and the tight b tagging crite-
ria are counted separately; the 3-momentum of leptons, Ty,
and jets; the magnitude of the missing transverse momen-
tum, quantified by the linear discriminant Lp; the angular
separation between leptons, T, and jets; the average AR
separation between pairs of jets; the sum of charges for dif-
ferent combinations of leptons and ty; observables related
to the reconstruction of specific top quark and Higgs boson
decay modes; as well as a few other observables that provide
discrimination between the ttH and tH signals. A boolean
variable that indicates whether the event has an SFOS lepton
pair passing looser isolation criteria is included in regions
with at least three leptons in the final state.

Input variables are included related to the reconstruc-
tion of specific top quark and Higgs boson decay modes
comprise the transverse mass of a given lepton, mt =
x/2p%prT“iSS (1 — cos A¢g), where A¢ refers to the angle in
the transverse plane between the lepton momentum and the
ﬁ{mss vector; the invariant masses of different combinations
of leptons and tp; and the invariant mass of the pair of jets
with the highest and second-highest values of the b tagging
discriminant. These observables are complemented by the
outputs of MVA-based algorithms, documented in Ref. [23],
that reconstruct hadronic top quark decays and identify the
jets originating from H — WW — £%v,qq’ decays.

In the 0¢ 4 21y, channel, we use as additional inputs the
invariant mass of the t lepton pair, which is expected to be
close to the Higgs boson mass in signal events and is recon-
structed using the algorithm documented in Ref. [89] (SVFit),
in conjunction with the decay angle, denoted by cos 6*, of
the two tau leptons in the Higgs boson rest frame.

In the 2SS + Oty, 3¢ + Oty, and 2¢SS + 11y, channels,
the pt and 5 of the forward jet of highest pr, as well as the
distance An of this jet to the jet nearest in pseudorapidity,
are used as additional inputs to the ANN, in order to improve
the separation of the tH from the ttH signal. The presence
of such a jet is a characteristic signature of tH production
in the #-channel. The forward jet in such tH signal events is

@ Springer

expected to be separated from other jets in the event by a
pseudorapidity gap, since there is no color flow at tree level
between this jet and the jets originating from the top quark
and Higgs boson decays.

The number of simulated signal and background events
that pass the event selection criteria described in Sect. 5
and are available for training the BDTs and ANNSs typically
amount to a few thousand. In order to increase the number of
events in the training samples, in particular for the channels
with a high multiplicity of leptons and t, where the amount
of available events is most limited, we relax the identifica-
tion criteria for electrons, muons, and hadronically decaying
tau leptons. The resulting increase in the ratio of misidenti-
fied to genuine leptons and Ty, is corrected. We have checked
that the distributions of the observables used for the BDT and
ANN training are compatible, within statistical uncertainties,
between events selected with relaxed and with nominal lep-
ton and Tt selection criteria, provided that these corrections
are applied.

The ANNSs used in the 2¢SS + Ot, 3¢ + Otp, and
2¢SS + 17y, channels are of the multiclass type. Such ANNs
have multiple output nodes that, besides discriminating the
ttH and tH signals from backgrounds, accomplish both the
separation of the tH from the ttH signal and the distinction
between individual types of backgrounds. In the 2¢SS + Oty
channel, we use four output nodes, to distinguish between ttH
signal, tH signal, ttW background, and other backgrounds.
No attempt is made to distinguish between individual types
of backgrounds in the 3¢ + Oty, and 2¢SS + 1ty channels,
which therefore use three output nodes. The ANNSs in the
2SS + Otp, 3¢ + Otp, and 2SS + 171, channels implement
16, 5 and 3 hidden layers, respectively, each one of them
containing 8 to 32 neurons. The softmax [90] function is
chosen as an activation function for all output nodes, permit-
ting the interpretation of their activation values as probabil-
ity for a given event to be either ttH signal, tH signal, ttW
background, or other background (ttH signal, tH signal, or
background) in the 2¢SS + Oty channel (in the 3¢ + Oty and
2¢SS + 11y, channels). The events selected in the 2SS + 01y,
channel (3¢ + Oty and 2¢SS + 1715 channels) are classified
into four (three) categories, corresponding to the ttH signal,
tH signal, ttW background, or other background (ttH sig-
nal, tH signal, or background), according to the output node
that has the highest such probability value. We refer to these
categories as ANN output node categories. The four (three)
distributions of the probability values of the output nodes in
the 2¢SS + Oty channel (in the 3¢ 4+ Oty and 24SS + 1ty
channels) are used as input to the ML fit. Events are pre-
vented from entering more than one of these distributions by
assigning each event only to the distribution corresponding
to the output node that has the highest activation value. The
rectified linear activation function [91] is used for the hid-
den layers. The training is performed using the TENSORFLOW
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Table 5 Input variables to the multivariate discriminants in each of the ten analysis channels. The symbol “~” indicates that the variable is not
used. For all objects, the three-momentum is constituted by the pr, 1, and ¢ components of the object momentum

2¢SS + Oty 2¢SS + 1ty 3¢ 4+ 0t 1€+ 1ty 0€ 4+ 21, 208 + 1ty 1€ + 21, 4 4 Oty 3€ + 11 20 + 21

Electron multiplicity v v v

Three-momenta of leptons and/or t,s v/ v v

pr of leptons and/or t,s
Transverse mass of leptons and/or t,s v/ v -
Invariant mass of leptons and/or tys v/

SVFit mass of leptons and/or ts

AR between leptons and/or tps v v v
cosf* of leptons and ts - - -

Charge of leptons and/or ts v v v
Has SFOS lepton pairs - - v
Jet multiplicity v v v
Jets three-momenta v v v
Average AR between jets v v v
Forward jet multiplicity v v v
Leading forward jet three-momenta v/ v v
Minimum |An| - v v
between lead-

ing forward jet

and jets

b jet multiplicity v v v
Invariant mass of b jets v v v
Linear discriminant Lp v v v
Hadronic top quark tagger v v v
Hadronic top pt - v v
Higgs boson jet tagger v - -

Number of variables 36 41 37

v v v v - v v
_ — _ _ v _ —
v v v v - - -
v v v v v v v
v v - - - - -
v v v v - - v
v v - v - - v
v _ _ _ _ _ —
— _ — — v v —
v v v v - - v
v v v v - - v
v v v v v v v
v v v v - - -
— _ v v — _ —
16 15 18 17 7 9 9

[92] package with the KERAS [93] interface. The objective
of the training is to minimize the cross-entropy loss function
[94]. Batch gradient descent is used to update the weights of
the ANN during the training. Overtraining is minimized by
using Tikhonov regularization [95] and dropout [96].

The sensitivity of the 2¢SS + Oty and 3¢ + Oty chan-
nels, which are the channels with the largest event yields
out of the three using multiclass ANN, is further improved
by analyzing selected events in subcategories based on the
flavor (electron or muon) of the leptons and on the number
of jets passing the tight b tagging criteria. The motivation
for distinguishing events by lepton flavor is that the rate for
misidentifying nonprompt leptons as prompt ones and, in
the 2¢SS 4 Oty channel, also the probability for mismea-
suring the lepton charge is significantly higher for electrons
compared to muons. Distinguishing events by the multiplic-
ity of b jets improves in particular the separation of the ttH
signal from the tt+jets background. This occurs because if
a nonprompt lepton produced in the decay of a b hadron
gets misidentified as a prompt lepton, the remaining particles

resulting from the hadronization of the bottom quark are less
likely to pass the b jet identification criteria, thereby reduc-
ing the number of b jets in such tt+jets background events.
The distribution of the multiplicity of b jets in tt+jets back-
ground events in which a nonprompt lepton is misidentified
as prompt lepton (“nonprompt”) and in tt+jets background
events in which this is not the case (“prompt”) is shown in
Fig. 4. The figure also shows the distributions of pt and 7
of bottom quarks produced in top quark decays in ttH signal
events compared to in tt+jets background events. The ttH
signal features more bottom quarks of high pt, whereas the
distribution of 7 is similar for the ttH signal and for the tt+jets
background.

The number of subcategories is optimized for each of
the four (three) ANN output categories of the 2£SS + Oty
(3¢ + Oty) channel individually. In the 2£SS + Oty channel,
each of the 4 ANN output node categories is subdivided into
three subcategories, based on the flavor of the two leptons (ee,
e, ). In the 3£ + Oty channel, the ANN output node cate-
gories corresponding to the ttH signal and to the tH signal are
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Fig. 4 Transverse momentum (left) and pseudorapidity (middle) dis-
tributions of bottom quarks produced in top quark decays in ttH signal
events compared to tt+jets background events, and multiplicity of jets
passing tight b jet identification criteria (right). The latter distribution is

subdivided into two subcategories, based on the multiplicity
of jets passing tight b tagging criteria (bl: <2 tight b-tagged
jets, bt: >2 tight b-tagged jets), while the output node cat-
egory corresponding to the backgrounds is subdivided into
seven subcategories, based on the flavor of the three leptons
and on the multiplicity of jets passing tight b tagging criteria
(eee; eepu bl, eepu bt; epLu bl, e u bt; o bl, pLpL e bt), where
bl (bt) again corresponds to the condition of <2 (>2) tight
b-tagged jets. The eee subcategory is not further subdivided
by the number of b-tagged jets, because of the lower num-
ber of events containing three electrons compared to events
in other categories. The aforementioned event categories are
constructed based on the output of the BDTs and ANNs with
the goal of enhancing the analysis sensitivity, while keeping
a sufficiently high rate of background events for a precise
estimation.

The BDTSs used in the 1£ + 11y, 0€ 4+ 21, 2£0S + 114,
14+ 21y, 4¢ 4+ 01y, 34 + 11, and 2¢ + 21, channels address
the binary classification problem of separating the sum of ttH
and tH signals from the aggregate of all backgrounds. The
training is performed using the SCIKIT- LEARN [34] package
with the XGBOOST [33] algorithm. The training parameters
are chosen to maximize the integral, or area-under-the-curve,
of the receiver-operating-characteristic curve of the BDT out-
put.

7 Background estimation
The dominant background in most channels comes from the

production of top quarks in association with W and Z bosons.
We collectively refer to the sum of ttW and ttWW back-
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shown separately for tt+jets background events in which a nonprompt
lepton is misidentified as a prompt lepton and for those background
events in which all reconstructed leptons are prompt leptons. The events
are selected in the 2¢SS + Oty channel

grounds using the notation ttW (W). In ttW (W) and ttZ back-
ground events selected in the signal regions (SRs), recon-
structed leptons typically originate from genuine prompt lep-
tons or reconstructed b jets arising from the hadronization of
bottom quarks, whereas reconstructed T are a mixture of
genuine hadronic t decays and misidentified quark or gluon
jets. Background events from ttZ production may pass the Z
boson veto applied in the 2¢SS + Oty,, 3¢ 4+ Oty,, 2SS + 11y,
2¢00S + 1tp, 4€ 4+ Otp, and 3¢ + 17, channels in the case
that the Z boson either decays to leptons and one of the lep-
tons fails to get selected, or the Z boson decays to t leptons
and the t leptons subsequently decay to electrons or muons.
In the latter case, the invariant mass my, of the lepton pair
is shifted to lower values because of the neutrinos produced
in the t decays. Additional background contributions arise
from off-shell tty* and ty* production: we include them in
the ttZ background. The tt+jets production cross section is
about three orders of magnitude larger than the cross sec-
tion for associated production of top quarks with W and
Z bosons, but in most channels the tt+jets background is
strongly reduced by the lepton and 1y, identification criteria.
Except for the channels 1€ + 1ty and 0¢ + 21y, the tt+jets
background contributes solely in the cases that a nonprompt
lepton (or a jet) is misidentified as a prompt lepton, a quark
or gluon jet is misidentified as t, or the charge of a gen-
uine prompt lepton is mismeasured. Photon conversions are
a relevant background in the event categories with one or
more reconstructed electrons in the 2¢SS + 0ty and 3¢ + Oty
channels. The production of WZ and ZZ pairs in events with
two or more jets constitutes another relevant background in
most channels. In the 1¢ + 1t and 0¢ + 2t channels, an
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additional background arises from DY production of t lepton
pairs.

We categorize the contributions of background processes
into reducible and irreducible ones. A background is con-
sidered irreducible if all reconstructed electrons and muons
are genuine prompt leptons and all reconstructed ty, are gen-
uine hadronic t decays; in the 2¢SS + Oty and 2¢SS + 11y
channels, we further require that the measured charge of
reconstructed electrons and muons matches their true charge.
The irreducible background contributions are modeled using
simulated events fulfilling the above criteria to avoid double-
counting of all the other background contributions, which are
considered to be reducible and are mostly determined from
data.

Throughout the analysis, we distinguish three sources of
reducible background contributions: misidentified leptons
and 1, (“misidentified leptons”), asymmetric conversions of
a photon into electrons (“conversions”), and mismeasure-
ment of the lepton charge (“flips”).

The background from misidentified leptons and ty, refers
to events in which at least one reconstructed electron or
muon is caused by the misidentification of a nonprompt lep-
ton or hadron, or at least one reconstructed Ty, arises from
the misidentification of a quark or gluon jet. The main con-
tribution to this background stems from tt+jets production,
reflecting the large cross section for this background process.

The conversions background consists of events in which
one or more reconstructed electrons are due to the conversion
of a photon. The conversions background is typically caused
by tty events in which one electron or positron produced
in the photon conversion carries most of the energy of the
converted photon, whereas the other electron or positron is
of low energy and fails to get reconstructed. We refer to such
photon conversions as asymmetric conversions.

The flips background is specific to the 2¢SS + Oty and
2¢SS + 11y, channels and consists in events where the charge
of a reconstructed lepton is mismeasured. The main contri-
bution to the flips background stems from tt+jets events in
which both top quarks decay semi-leptonically. In case of
the 2¢SS 4+ 17y, channel, a quark or gluon jet is addition-
ally misidentified as t. The mismeasurement of the elec-
tron charge typically results from the emission of a hard
bremsstrahlung photon, followed by an asymmetric conver-
sion of this photon. The reconstructed electron is typically
the electron or positron that carries most of the energy of the
converted photon, resulting in an equal probability for the
reconstructed electron to have either the same or opposite
charge compared to the charge of the electron or positron
that emitted the bremsstrahlung photon [77]. The probability
of mismeasuring the charge of muons is negligible in this
analysis.

The three types of reducible background are made mutu-
ally exclusive by giving preference to the misidentified lep-

tons type over the flips and conversions types and by giving
preference to the flips type over the conversions type when
an event qualifies for more than one type of reducible back-
ground. The misidentified leptons and flips backgrounds are
determined from data, whereas the conversions background
is modeled using the MC simulation. The procedures for esti-
mating the misidentified leptons and flips backgrounds are
described in Sects. 7.1 and 7.2, respectively. We performed
dedicated studies in the data to ascertain that photon con-
versions are adequately modeled by the MC simulation sim-
ilar to the ones performed in Ref. [97]. To avoid potential
double-counting of the background estimates obtained from
data with background contributions modeled using the MC
simulation, we match reconstructed electrons, muons, and T,
to their generator-level equivalents and veto simulated sig-
nal and background events selected in the SR that qualify as
misidentified leptons or flips backgrounds.

Concerning the irreducible backgrounds, we refer to the
aggregate of background contributions other than those aris-
ing from ttW (W), ttZ, tt+jets, DY, and diboson backgrounds,
or from SM Higgs boson production via the processes ggH,
qqH, WH, ZH, ttWH, and ttZH as “rare” backgrounds. The
rare backgrounds typically yield a minor background contri-
bution to each of the ten analysis channels and include such
processes as tW and tZ production, the production of SSW
boson pairs, triboson, and tttt production.

We validate the modeling of the ttW (W), ttZ, WZ, and
77 backgrounds in dedicated control regions (CRs) whose
definitions are detailed in Sect. 7.3.

7.1 Estimation of the “misidentified leptons” background

The background from misidentified leptons and Ty is esti-
mated using the misidentification probability (MP) method
[23]. The method is based on selecting a sample of events
satisfying all selection criteria of the SR, detailed in Sect. 5,
except that the electrons, muons, and 1, used to construct the
signal regions are required to pass relaxed selections instead
of the nominal ones. We refer to this sample of events as the
application region (AR) of the MP method. Events in which
all leptons and Ty, satisfy the nominal selections are vetoed,
to avoid overlap with the SR.

An estimate of the background from misidentified lep-
tons and Ty, in the SR is obtained by applying suitably cho-
sen weights to the events selected in the AR. The weights,
denoted by the symbol w, are given by the expression:

w= (-1 L M

where the product extends over all electrons, muons, and ty,
that pass the relaxed, but fail the nominal selection criteria,
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and n refers to the total number of such leptons and ty,. The
symbol f; denotes the probability for an electron, muon, or
T, passing the relaxed selection to also satisfy the nominal
one. The contributions of irreducible backgrounds to the AR
are subtracted based on the MC expectation of such contri-
butions. The ttH and tH signal yields in the AR are found to
be negligible.

The probabilities f; for leptons are measured in multijet
events, separately for electrons and muons, and are binned
in pt and n of the lepton candidate. The measurement is
based on selecting events containing exactly one electron or
muon that passes the relaxed selection and at least one jet
separated from the lepton by AR > 0.7. Selected events are
then subdivided into “pass” and “fail” samples, depending
on whether the lepton candidate passes the nominal selec-
tion or not. The fail sample is dominated by the contribution
of multijet events. The contributions of other processes, pre-
dominantly arising from W-+jets, DY, diboson, and tt+jets
production, are subtracted based on MC estimates of these
contributions. The number of multijet events in the pass sam-
ple is obtained by an ML fit to the distribution of the observ-
able:

mi = \/ 2 plx piiss (1 — cos Ag), )

where p%" is a constant value set to 35 GeV, and the symbol
A¢ refers to the angle in the transverse plane between the
lepton momentum and the ﬁ{niss vector. p!f-x is used instead of
the lepton pr to reduce the correlation between ml}xand the
lepton pt. The ML fit is similar to the one used in the mea-
surement of the ttH and tH signal rates, described in Sect. 9.
The distribution of W+jets, DY, diboson, tf+jets, and rare
backgrounds in the observable m%" is modeled using the MC
simulation, whereas the distribution of multijet events in the
pass sample is obtained from data in the fail region, from
which the W+jets, DY, diboson, and tt+jets contributions
are subtracted based on their MC estimate. The observable
m%" exploits the fact that the p%‘iss reconstructed in multi-
jet events is mainly caused by resolution effects and is typi-
cally small, resulting in a falling distribution of m%", whereas
W-jets and tt+jets events exhibit a broad maximum around
mw ~ 80 GeV. Compared to the usual transverse mass, the
observable m!}x has the advantage of not depending on the
pr of the lepton, and is therefore better suited for the purpose
of measuring the probabilities f; in bins of lepton pt. For
illustration, the distributions of m%" in the pass and fail sam-
ples are shown in Fig. 5 for events containing an electron of
25 < pt < 35GeV in the ECAL barrel. The contributions
from W+jets, DY, and diboson production are assumed to
scale by a common factor with respect to their MC expecta-
tion in the fit; we refer to their sum as “clectroweak” (EWK)
background. Finally, denoting the number of multijet events
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in the pass and fail samples by the symbols Np,ss and Neai,
the probabilities f; are given by f; = Npass/(Npass + Nfail)-

The f; for 1, are determined as a function of pr and n
of the 1, candidate in a region enriched in tt+jets events
containing a reconstructed opposite-sign electron-muon pair
and at least two loose b-tagged jets in addition to the Ty
candidate. Contributions of genuine t, are modeled using
the MC simulation and subtracted.

The event samples used to measure the f; are referred to
as measurement regions (MRs) of the MP method. Potential
biases in the estimate of the background from misidentified
leptons and 1y, arising from differences between AR and MR
in the pr spectrum of the lepton and 1y, candidates and in the
mixture of nonprompt leptons and hadrons that are misidenti-
fied as prompt leptons, are mitigated as detailed in Ref. [80].
A closure test performed using simulated tt+jets and multijet
events reveals a residual difference between the probabilities
fi for electrons in tt+jets and those in multijet events. The
test is illustrated in Fig. 6, which compares the distributions
of pt of nonprompt electrons in simulated tt+jets events for
three cases: nonprompt electrons passing the nominal selec-
tion criteria (‘“nominal”); nonprompt electrons passing the
relaxed, but failing the nominal selection criteria, weighted
by probabilities f; determined in simulated tt+jets events
(“relaxed, f; from tt+jets”); and nonprompt electrons pass-
ing the relaxed, but failing the nominal selection criteria,
weighted by probabilities f; determined in simulated mul-
tijet events (“relaxed, f; from multijet”). The electron and
muon pr distributions obtained in the first and second cases
are in agreement, demonstrating the performance of the MP
method. The ratio of the distributions obtained in the sec-
ond and third cases is fitted by a linear function in pt of
the lepton and is applied as a multiplicative correction to the
fi measured in data, that accounts for the different flavor
composition of jets between AR and MR. For the lepton and
1y, selections used in this analysis, the probabilities f; range
from 0.04t00.13,0.02 t0 0.20, and 0.10 to 0.50 for electrons,
muons, and Ty, respectively.

The probabilities f; for electrons and muons obtained as
described above are validated in a CR dominated by semilep-
tonic tt+jets events. The events are selected by requiring the
presence of two SS leptons and exactly three jets, one of
which exactly passes the tight b tagging criteria. The three
jets are interpreted as originating from the hadronic decay of
one of the top quarks, while the other top quark decays semi-
leptonically. One of the two reconstructed leptons is assumed
to arise from the misidentification of a b hadron originating
from the semi-leptonically decaying top quark. A kinematic
fit using the constraints from kinematic relations between the
top quark decay products is employed to increase the purity of
semileptonic tt+jets events that are correctly reconstructed in
this CR. The level of compatibility of selected events with the
aforementioned experimental signature is quantified using a
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Fig. 5 Distributions of m%" for events containing an electron candi-
date of 25 < pr < 35GeV in the ECAL barrel, which (left) passes
the nominal selection and (right) passes the relaxed, but fails the nomi-
nal selection. The “electroweak” (EWK) background refers to the sum
of W+jets, DY, and diboson production. The “rare” backgrounds are
defined in the text. The data in the fail sample agrees with the sum of
multijet, EWK, tt+jets, and rare backgrounds by construction, as the
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Fig. 6 Transverse momentum distributions of nonprompt (left) elec-
trons and (right) muons in simulated tt+jets events, for the three cases
“nominal”, “relaxed, f; from tt+jets”, and “relaxed, f; from multijet”
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number of multijet events in the fail sample is computed by subtracting
the sum of EWK, tt+jets, and rare background contributions from the
data. The misidentification probabilities are derived separately for each
era: this figure shows, as an example, the results obtained with the 2017
data set. The uncertainty band represents the total uncertainty after the
fit has been performed
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discussed in text. The figure illustrates that a nonclosure correction
needs to be applied to the probabilities f; measured for electrons in
data, while no such correction is needed for muons
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x? criterion; events with a high value of x 2, corresponding to
apoor-quality fit, are discarded. Good agreement is observed
between semileptonic ti+jets events where both leptons pass
the nominal selection and semileptonic tt+jets events where
both leptons pass the relaxed selection, but one or both lep-
tons fail the nominal selection, provided that the weights
given by Eq. (1) are applied to the latter events by using the
probabilities f; measured in multijet events and corrected
(for electrons) as described in the previous paragraph.

The MP method is applied in all channels except for
2¢SS + 1ty and 3¢ + 17y, where a modified version of the
method is used, in which only the selections for the leptons
are relaxed in the AR, while the 1y, is required to satisfy the
nominal selection. Correspondingly, only the leptons are con-
sidered when computing the weights w, given by Eq. (1), that
are applied to events in the AR of the 2SS+ 1ty and 3¢+ 1ty
channels. Background contributions where the reconstructed
leptons are genuine prompt leptons and the reconstructed ty,
is due to the misidentification of a quark or gluon jet are mod-
eled using the MC simulation. Weights are applied to these
simulated events to correct for differences in the t;, misidenti-
fication rates between data and simulation. Using a modified
version of the MP method in the 2¢SS + 1t and 3¢ + 114
channels permits the retention as signal of those ttH and tH
signal events in which the reconstructed Ty, is not a genuine
hadronic t decay, but arises instead from the misidentifica-
tion of a quark or gluon jet. The fraction of ttH and tH signal
events retained as signal amounts to approximately 30% of
the total ttH and tH signal yield in the 2¢SS+ 11, and 3¢+ 11,
channels.

7.2 Estimation of the “flips” background

The flips background, relevant for events containing either
one or two reconstructed electrons in the 2¢SS + Oty and
2¢SS + 11y, channels, is estimated using a procedure similar
to the MP method. A sample of events passing all selection
criteria of the SR, except that both leptons are required to
be of OS instead of SS, are selected and assigned appropri-
ately chosen weights. In the 2¢SS + Oty channel, the weight
is given by the sum of the probabilities for the charge of
either lepton to be mismeasured, whereas in the 2¢SS + 1ty
channel, only the lepton that has the same charge as the 1y, is
considered, since only those events in which the charge of this
lepton is mismeasured satisfy the condition ) 0, 4 = 1
that is applied in the SR of this channel.

The probability for the charge of electrons to be mismea-
sured, referred to as the electron charge misidentification
rate, is determined using Z/y* — ee events. The events
are selected by requiring the presence of an electron pair of
invariant mass mee within the range 60 < me. < 120 GeV.
No requirement is imposed on the charge of the electron
pair. Contributions to the selected event sample arising from
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processes other than DY production of electron pairs are
determined by performing an ML fit to the m.. distribution.
Referring to the number of Z/y* — ee events containing
reconstructed SS and OS electron pairs, respectively, by the
symbols Ngs and Nog, the electron charge misidentification
rate is given by the ratio Nss/(Nos + Nss). The ratio is mea-
sured as a function of electron pt and n and varies between
5.1 x 107 for electrons of low pr in the ECAL barrel and
1.6 x 1073 for electrons of high pt in the ECAL endcap.
For illustration, the m., distributions for SS and OS electron
pairs are shown in Fig. 7 for events in which both electrons
are reconstructed in the ECAL barrel and have pt within the
range 25 < pt < 50GeV.

7.3 Control regions for irreducible backgrounds

The accuracy of the simulation-based modeling of the main
irreducible backgrounds, arising from ttW (W), ttZ, WZ, and
ZZ production, is validated in three CRs. The first CR is
based on the SR for the 3¢ + 07, channel and targets the
ttZ and WZ backgrounds. We refer to this CR as the 3¢-
CR. The selection criteria applied in the 3¢-CR differ from
those applied in the SR of the 3¢ + Oty channel in that: no Z
boson veto is applied in the 3¢-CR; the presence of at least
one SFOS lepton pair of invariant mass mge with |mg, —
myz| < 10GeV is demanded instead; the requirement on the
multiplicity of jets is relaxed to demanding the presence of
at least one jet; and no requirement on the presence of b-
tagged jets is applied. The contributions arising from ttZ
and from WZ production are separated by binning the events
selected in the 3¢-CR in the flavor of the three leptons (eee,
eepl, e, L) and in the multiplicity of jets and of b-
tagged jets. The second CR targets the ZZ background. We
refer to it as the 4¢-CR, since it is based on the SR for the
4£ 4 Oty, channel. Compared to the latter, the event selection
criteria applied in the 4¢-CR are modified by applying no
Z veto, instead requiring the presence of at least one SFOS
lepton pair of invariant mass mge with |mep —myz| < 10 GeV,
and applying no requirements on the multiplicity of jets and
of b-tagged jets. To separate the ZZ background from other
backgrounds, predominantly arising from ttZ production, the
events selected in the 4¢-CR are binned in the multiplicity of
SFOS lepton pairs of invariant mass |mgy — mz| < 10 GeV
and in the number of jets passing tight b tagging criteria. The
third CR targets the ttW (W) background and is identical to
the SR of the 2¢ SS+ 01y, channel, except that the output node
of the ANN that has the highest activation value is required
to be the output node corresponding to the ttW background.

The numbers of events observed in the 3¢- and 4¢-CRs and
in the CR for the ttW (W) background are given in Table 6.
The contributions arising from the misidentified leptons and
flips backgrounds are estimated using the methods described
in Sects. 7.1 and 7.2, respectively. The uncertainties include
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Fig. 7 Distributions of m. for (left) SS and (right) OS electron
pairs in Z/y* — ee candidate events in which both electrons are
in the ECAL barrel and have transverse momenta within the range
25 < pr < 50GeV, for data recorded in 2018, compared to the

both statistical and systematic sources, added in quadrature.
The systematic uncertainties that are relevant for the CRs are
similar to the ones applied to the SR. The latter are detailed
in Sect. 8.

Figure 12, discussed in Sect. 9, shows the distributions of
events selected in the 3¢- and 4¢-CRs in the binning scheme
employed to separate the WZ and ZZ backgrounds from the
ttZ backgrounds. The events selected in the 3¢-CR are first
subdivided by lepton flavor and then by the multiplicity of
jets and b-tagged jets. For each lepton flavor, 12 bins are used,
defined as follows (in order of increasing bin number): 0 jets
passing the tight b tagging criteria with 1, 2, 3, or >4 jets in
total; 1 jet passing the tight b tagging criteria with 2, 3, 4, or
>5 jets in total; >2 jets passing the tight b tagging criteria
with 2, 3, 4, or >5 jets in total. In the 4¢-CR, 4 bins are used
in total, defined as (again in order of increasing bin number):
2 SFOS lepton pairs of invariant mass |m ¢ —myz| < 10 GeV;
1 such SFOS Iepton pair with 0, 1, or >2 jets passing the tight
b tagging criteria.

The data in the 3¢- and 4¢-CRs and in the CR for the
ttW (W) background are in agreement with the background
estimates within the quoted uncertainties.

8 Systematic uncertainties

The event rates and the distributions of the discriminating
observables used for signal extraction may be altered by
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expectation. Uncertainties shown are statistical only. A similar level of
agreement is present in all the other momentum ranges and data-taking
periods

several experiment- or theory-related effects, referred to as
systematic uncertainties. Experimental sources comprise the
uncertainties in auxiliary measurements, performed to vali-
date and, if necessary, correct the modeling of the data by the
MC simulation, and the uncertainties in the data-driven esti-
mates of the misidentified leptons and flips backgrounds. The
latter are largely unaffected by potential inaccuracies of the
MC simulation. Theoretical uncertainties mainly arise from
missing higher-order corrections to the perturbative expan-
sions employed for the computation of cross sections and
from uncertainties in the PDFs.

The efficiencies of triggers based on the presence of one,
two, or three electrons or muons are measured as a function
of the lepton multiplicity with an uncertainty ranging from 1
to 2%, using samples of tt+jets and diboson events that have
been recorded using triggers based on pmlsS

The efficiencies for electrons and muons to pass the offline
reconstruction and identification criteria are measured as a
function of the lepton pt and n by applying the “tag-and-
probe” method detailed in Ref. [71] to Z/y* — ee and
Z/v* — ww events. Additionally, we cross-check these effi-
ciencies in a CR enriched in tt+jets events to account for dif-
ferences in event topology between DY events and the events
in the SR of this analysis, which may cause a change in the
efficiencies for electrons and muons to pass isolation require-
ments. Events in the tt+jets CR are selected by requiring the
presence of an OS e+ pair and at least two jets. Nonprompt-
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Table 6 Number of events selected in the 3¢- and 4¢-CRs and in the
CR for the ttW (W) background, compared to the event yields expected
from different types of background and from the ttH and tH signals,

after the fit to data is performed as described in Sect. 9. Uncertainties
shown include all systematic components. The symbol “~” indicates
that the corresponding background does not apply

Process 3¢-CR 4¢-CR ttW(W) CR
ttH 159+44 1.4+£04 62+ 14

tH 44+£30 - 22 £ 18
tZ + tty* 550 +£43 41.5+3.0 100.3 + 8.1
ttW + ttWw 26.8 £ 1.7 - 588 £+ 35
WZ 4320 £ 120 - 51.6£7.5
77 298 + 18 1030 £+ 32 0.2£0.1
Nonprompt leptons 210 £ 20 - 102 + 14
Flips - - 249+4.0
Rare backgrounds 311 £61 17.0£3.4 58 £13
Conversions 1.0+£0.3 0.1+0.1 1.4+0.6
ggH + qqH + VH + ttVH 42.8 £3.1 58+£04 1.6£0.3
Total expected background 5761 £ 99 1094 £+ 33 949 + 33
Data 5778 1089 986

lepton backgrounds in the CR are subtracted using a sideband
region SS e+ events. The difference between the efficiency
measured in the tt+jets CR and the one measured in DY
events is included as a systematic uncertainty, amounting to
1-2%. The 1, identification efficiency and energy scale are
measured with respective uncertainties of 5 and 1.2% using
Z/y* — ttevents [74].

The energy scale of jets is measured with an uncer-
tainty amounting to a few percent, depending on the jet pt
and 7, using the pr-balance method, which is applied to
Z/y* — ee, Z/y* — uw, ytets, dijet, and multijet events
[72]. The resulting effect on signal and background expecta-
tions is evaluated by varying the energies of jets in simulated
events within their uncertainties, recalculating all kinematic
observables, and reapplying the event selection criteria. The
effect of uncertainties in the jet energy resolution is evalu-
ated in a similar way, but is smaller than the effect of the
uncertainties in the jet energy scale.

The b tagging efficiency is measured with an uncertainty
of a few per cent in tt+jets and multijet events as a function of
jet pt and n. The heavy-flavor content of the multijet events
is enriched by requiring the presence of a muon in the event.
The mistag rates for light-quark and gluon jets are measured
in multijet events yielding an uncertainty of 5-10% for the
loose and 20-30% for the tight b tagging criteria, depending
on pr and n [73].

The integrated luminosities of the 2016, 2017, and 2018
data-taking periods are individually known with uncertainties
in the 2.3-2.5% range [39—41], while the total Run 2 (2016—
2018) integrated luminosity has an uncertainty of 1.8%, the
improvement in precision reflecting the (uncorrelated) time
evolution of some systematic effects.
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The uncertainties related to the number of PU interactions
are evaluated by varying the number of inelastic pp interac-
tions that are superimposed on simulated events by 4.6%
[98]. The resulting effect on the ttH and tH signal yields and
on the yields of background contributions modeled using the
MC simulation amounts to less than 1%.

The effect of theory-related uncertainties on the event
yields and on the distributions of the BDTs and ANNSs classi-
fier outputs that are used for the signal extraction is assessed
for the ttH and tH signals, as well as for the main irreducible
backgrounds that arise from ttW, ttWW, and ttZ production.
The uncertainties in the production cross sections amount

to fg:g and Jj:;% for the ttH and tH signals, and to ﬂgg,

‘_H];'I(g, and f%é;;% for the ttW, ttWW, and ttZ backgrounds,
respectively. These uncertainties are taken from Ref. [62] and
consist of the sum in quadrature of three sources: missing
higher-order corrections in the perturbative expansion, dif-
ferent choices of PDFs, and uncertainties in the value of the
strong coupling constant as. The uncertainties in the cross
sections are relevant for the purpose of quoting the measured
production rates with respect to their SM expectations for
these rates. In addition, the uncertainty in the ttH and tH
production cross sections is relevant for setting limits on the
coupling of the Higgs boson to the top quark. The effect of
missing higher-order corrections on the distributions of the
discriminating observables is estimated by varying the renor-
malization and factorization scales up and down by a factor
of two with respect to their nominal value, following the rec-
ommendations of Refs. [99-101], avoiding cases in which
the two variations are done in opposite directions. The effect
of uncertainties in the PDFs on these distributions is evalu-
ated following the recommendations given in Ref. [102]. The
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uncertainties in the branching fractions of the Higgs boson
decay modes H - WW, H — 11, and H — ZZ are taken
from Ref. [62] and amount to 1.5, 1.7, and 1.5%, respectively.

In the 1¢ + 11, and 0¢ + 21y, channels, the tt+jets and
DY production may contribute as irreducible backgrounds
and are modeled using the MC simulation. The tt+jets and
DY production cross sections are known to an uncertainty of
5 [65] and 4% [103], respectively. An additional uncertainty
on the modeling of top quark pr distribution of tt+jets events
is considered, defined as the difference between the nominal
POWHEG sample and that sample reweighed to improve the
quality of the top quark pt modeling, as described in Sect. 3.
The modeling of the multiplicity of jets and of b-tagged jets
in simulated DY events is improved by comparing these mul-
tiplicities between MC simulation and data using Z/y* — ee
and Z/y* — pp events. The average ratio of data and MC
simulation in the Z/y* — ee and Z/y* — . event sam-
ples is taken as a correction, while the difference between the
ratios measured in Z/y* — ee and Z/y* — uu events is
taken as the systematic uncertainty and added in quadrature
to the statistical uncertainties in these ratios. The Z/y* — ee
and Z/y* — pp event samples used to determine this cor-
rection have little overlap with the SRs of the 1¢ + 1ty and
0€ 427y, channels, since most of the DY background in these
channels arises from Z/y* — tt events.

Other background processes, notably the conversions and
rare backgrounds, are modeled using the MC simulation; the
uncertainty in their event yields is conservatively taken to
be 50%. This choice accounts for the extrapolation from the
inclusive phase space to the phase space relevant for this
analysis, in particular to events with a high multiplicity of
jets and b-tagged jets, as required to pass the event selection
criteria detailed in Sect. 5. The inclusive cross sections for
most of these background processes have been measured with
uncertainties amounting to significantly less than 50% by
previous analyses of the LHC data.

The extrapolation of the WZ and ZZ background rates
from the 3¢- and 4¢-CRs to the SR depends on the heavy-
flavor content of WZ and ZZ background events. According
to the MC simulation, most of the b jets reconstructed in
WZ and ZZ background events arise from the misidentifica-
tion of light-quark or gluon jets rather than from charm or
bottom quarks. We assign an uncertainty of 40% to the mod-
eling of the heavy-flavor content in WZ and ZZ background
events, accounting for the differences in the jet multiplic-
ity distribution between data and simulation in the 3¢ CR.
The misidentification of light quark or gluon jets as b jets is
covered by a separate systematic uncertainty.

The uncertainties in the rate and in the distribution of the
discriminating observables for the background from misiden-
tified leptons and ty, stem from statistical uncertainties in the
events selected in the MR and AR as well as from systematic
uncertainties related to the subtraction of the prompt-lepton

contributions from the data selected in the MR and AR of the
MP method. The effect of these uncertainties on the analysis
is evaluated by applying independent variations of the proba-
bilities f; for electrons and muons in different bins of lepton-
candidate pt and n and determining the resulting change in
the yield and distribution of the misidentified leptons back-
ground estimate. We introduce an additional uncertainty in
the nonclosure correction to the f; for electrons and muons,
accounting for differences between the probabilities f; in
tt+jets and multijet events shown in Fig. 6. The size of this
uncertainty is equal to the magnitude of the correction. In
case of ty,, the misidentification rates f; measured in each
bin in 1 and reconstructed 1, decay mode are fitted by a lin-
ear function in pt of the t, candidate and the uncertainty
in the slope and offset of this fit is propagated to the final
result. The uncertainty in the rate of the misidentified leptons
background is, in general, higher for channels with ty,. The
uncertainty varies between 10% in the 2¢SS + Oty channel
and 60% in the 2¢ + 21y, channel. The resulting uncertainty
in the distribution of the discriminating observables is of
moderate size. Additional nonclosure uncertainties account
for small differences between the misidentified leptons back-
ground estimate obtained by computing the probabilities f;
for simulated events and applying the weights w given by
Eq. (1) to simulated events selected in the AR, and the back-
ground estimates obtained by modeling the background from
misidentified leptons and ty, in the SR using the MC simula-
tion directly.

The uncertainty in the flips background in the 2¢SS + Oty
and 2¢SS + 17, channels is evaluated in a similar way: it
amounts to 30% in each channel.

The effects of systematic uncertainties representing the
same source are treated as fully correlated between all ten
analysis channels. Theoretical uncertainties are furthermore
treated as fully correlated among all data-taking periods,
whereas the uncertainties arising from experimental sources
are treated as uncorrelated between the data recorded in each
of the years 2016, 2017, and 2018. The latter treatment is
justified by the fact that the uncertainties related to the aux-
iliary measurements that are performed to validate, and if
necessary correct, the modeling of the data by the MC simu-
lation, are mainly of statistical origin and hence independent
for measurements that are performed independently for each
of the three data-taking periods because of the changes in the
detector conditions from one period to another.

The impact of the systematic and statistical uncertainties
on the measurement of the ttH and tH signal rates is summa-
rized in Table 7. The largest impacts are due to: the statistical
uncertainty of observed data; the uncertainty in the efficiency
to reconstruct and identify ty; the uncertainties related to
the estimation of the misidentified leptons and flips back-
grounds; and the theoretical uncertainties, which affect the
yield and the distribution of the discriminating observables
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Table 7 Summary of the sources of systematic and statistical uncer-
tainties and their impact on the measurement of the ttH and tH signal
rates, and the measured value of the unconstrained nuisance parame-
ters. The quantity Auy/py corresponds to the change in uncertainty
when fixing the nuisance parameters associated with that uncertainty

in the fit. Under the label “MC and sideband statistical uncertainty” are
the uncertainties associated with the limited number of simulated MC
events and the amount of data events in the application region of the
MP method

Source Apn/mu (%) At/ 1w (%) Apgw /1w (%) Az / iz (%)
Trigger efficiency 23 8.1 1.2 1.9
e, b reconstruction and identification efficiency 29 7.1 1.7 32
1y, identification efficiency 4.6 9.1 1.7 1.3
b tagging efficiency and mistag rate 3.6 13.6 1.3 2.9
Misidentified leptons and flips 6.0 36.8 2.6 1.4
Jet energy scale and resolution 34 8.3 1.1 1.2
MC sample and sideband statistical uncertainty 7.1 27.2 24 2.3
Theory-related sources affecting acceptance and shape of distributions 4.6 18.2 2.0 4.2
Normalization of MC-estimated processes 133 12.3 13.9 11.3
Integrated luminosity 2.2 4.6 1.8 3.1
Statistical uncertainty 20.9 48.0 5.9 5.8

for the ttH and tH signals as well as for the main irreducible
backgrounds, arising from ttW, ttWW, tW, ttZ, and tZ pro-
duction.

8.1 Additional checks

As a cross-check, and to highlight the enhancement in sen-
sitivity provided by machine-learning techniques, a comple-
mentary measurement of the ttH signal rate is performed
using a set of alternative observables in the ML fit. We refer
to this cross-check as the control analysis, as distinguished
from the analysis previously discussed, which we refer to
as the main analysis. The control analysis (CA) is restricted
to the 2¢SS + Oz, 3€ + Oz, 2¢SS + 11, and 42 + Oty
channels. The production rate of the tH signal is fixed to its
SM expectation in the CA. In the 2¢SS + Oty channel, the
invariant mass of the lepton pair is used as the discriminating
observable. The event selection criteria applied in the CA in
this channel are modified to the condition Nj > 4 and the
events are analyzed in subcategories based on lepton flavor,
the charge-sum of the leptons (4-2 or —2), and the multiplic-
ity of jets. In the 3¢ 4 Oty channel, the invariant mass of
the three-lepton system is used as discriminating observable
and the events are analyzed in subcategories based on the
multiplicity of jets and on the charge-sum of the leptons (+1
or —1). A discriminant based on the matrix-element method
[35,36]is used as discriminating observable in the 2¢ SS+ 11y,
channel and the events are analyzed in two subcategories
based on the multiplicity of jets, defined by the conditions
Nj = 3 and Nj > 4, and referred to as the “missing-jet” and
“no-missing-jet” subcategories. The computation of the dis-
criminant exploits the fact that the differential cross sections
for the ttH signal, as well as for the dominant background
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processes in the 2¢SS + 1ty channel, are well known; this
permits the computation of the probabilities for a given event
to be either signal or background, given the measured values
of kinematic observables in the event and taking into account
the experimental resolution of the detector. The probabilities
are computed for the ttH signal hypothesis and for three types
of background hypotheses: ttZ events in which the Z boson
decays into a pair of T leptons; ttZ events in which the Z boson
decays into a pair of electrons or muons and one lepton is
misidentified as t; and tt — blvbtv events with one addi-
tional nonprompt lepton originating from a b hadron decay.
Details on the computation of these probabilities are given
in Ref. [23]. The ratio of the probability for a given event to
be ttH signal to the sum of the probabilities for the event to
be one of the three backgrounds constitutes, according to the
Neyman-Pearson lemma [104], an optimal observable for the
purpose of separating the ttH signal from backgrounds and
is taken as the discriminant used for the signal extraction. In
the 4¢ 4 Oty channel, the invariant mass of the four-lepton
system, ma4y, is used as the discriminating observable.

9 Statistical analysis and results

The production rates of the ttH and tH signals are deter-
mined through a binned simultaneous ML fit to the total of
105 distributions: the outputs of the BDTs in each of the
seven channels 1¢ + 11y, 0€ + 21y, 200S + 11y, 1€ 4+ 271,
40 4+ Oty, 3¢ + 11, and 2€ + 21y; the distributions of the 10
output nodes of the ANNS in the 2¢SS + Oty, 3¢ 4 Oty, and
2£SS+ 11, channels in the categories described in Fig. 3; and
the distributions of the observables that discriminate the (tZ
background from each of the WZ and ZZ backgrounds in the
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Fig. 8 Distributions of the activation value of the ANN output node processes are shown for the values of the parameters of interest and of
with the highest activation value for events selected in the 2¢SS + Oty the nuisance parameters obtained from the ML fit. The best fit value of
channel and classified as ttH signal (upper left), tH signal (upper right), the ttH and tH production rates amounts to iy = 0.92 and i = 5.7
ttW background (lower left), and other backgrounds (lower right). The times the rates expected in the SM

distributions expected for the ttH and tH signals and for background
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Fig. 9 Distributions of the activation value of the ANN output node
with the highest activation value for events selected in the 3¢ + Oty
channel and classified as ttH signal (upper left), tH signal (upper right),
and background (lower left), and for events selected in the 2¢SS + 1ty
channel (lower right). In case of the 2¢SS + 11, channel, the activation
value of the ANN output nodes for ttH signal, tH signal, and background
are shown together in a single histogram, concatenating histogram bins
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as appropriate and enumerating the bins by a monotonously increasing
number. The distributions expected for the ttH and tH signals and for
background processes are shown for the values of the parameters of
interest and of the nuisance parameters obtained from the ML fit. The
best fit value of the ttH and tH production rates amounts to [ = 0.92
and /iy = 5.7 times the rates expected in the SM
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Fig. 10 Distributions of the BDT output for events selected in the
1€ + 1ty (upper left), 0€ + 21y, (upper right), and 2¢0S + 11y, (lower)
channels. The distributions expected for the ttH and tH signals and for

background processes are shown for the values of the parameters of

interest and of the nuisance parameters obtained from the ML fit. The
best fit value of the ttH and tH production rates amounts to iz = 0.92
and figg = 5.7 times the rates expected in the SM
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Fig. 11 Distributions of the BDT output used for the signal extraction
in the 1¢ + 21y, (upper left), 4¢ + Oty (upper right), 3¢ + 11, (lower
left), and 2¢ + 21, (lower right) channels. The distributions expected
for the ttH and tH signals and for background processes are shown for
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the values of the parameters of interest and of the nuisance parameters
obtained from the ML fit. The best fit value of the ttH and tH production
rates amounts to figy = 0.92 and jiy = 5.7 times the rates expected
in the SM
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Fig. 12 Distributions of discriminating observables in the 3¢ + Oty
(left) and 4¢ + Oty (right) control region. The distributions expected
for the ttH and tH signals and for background processes are shown for
the values of the parameters of interest and of the nuisance parameters

3¢- and 4¢-CRs, respectively; separately for the three data-
taking periods considered in the analysis. The 2¢SS + Oty
(3£ 4 0ty) channel contributes a total of 12 (11) distributions
per data-taking period to the ML fit, reflecting the subdivi-
sion of these channels into event categories based on lepton
flavor and on the multiplicity of b-tagged jets.

The production rates of the ttH and tH signals constitute
the parameters of interest (POI) in the fit. We denote by the
symbols iy and w the ratio of these production rates to
their SM expectation and use the notation u to refer to the
set of both POls.

The likelihood function is denoted by the symbol £ and
is given by the expression:

cdaalp.®) =[] Poulw.o) [To(5l6). &
i k

where the index i refers to individual bins of the 105 distri-
butions of the discriminating observables that are included in
the fit, and the factor P (n;| u, @) represents the probability
to observe n; events in a given bin i, where v; (i, @) events
are expected from the sum of signal and background contri-
butions in that bin. The number of expected events is a linear
function of the two POIs indicated by p7; and
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obtained from the ML fit. The best fit value of the ttH and tH production
rates amounts to gy = 0.92 and figg = 5.7 times the rates expected
in the SM

Vi, 0) = gyl 0) + v 0) + v (6), @

where the symbols v}‘H, v}H, and le denote, respectively,

the SM expectation for the ttH and tH signal contributions
and the aggregate of contributions expected from background
processes in bin i. We use the notation v; (p, #) to indicate
that the number of events expected from signal and back-
ground processes in each bin i depends on a set of parame-
ters, denoted by the symbol 6, that represent the systematic
uncertainties detailed in Sect. 8 and are referred to as nui-
sance parameters. Via the dependency of the v;(u, 8) on 0,
the nuisance parameters accommodate for variations of the
event yields as well as of the distributions of the discriminat-
ing observables during the fit. The probability P (n;| ., €) is
given by the Poisson distribution:

(vi (p, 0))"

n;!

P (nilp,0) = exp (—vi(n, 9)). &)

Individual elements of the set of nuisance parameters 6 are
denoted by the symbol 6, where each 6; represents a spe-
cific source of systematic uncertainty. The function p(J |6;)
represents the probability to observe a value 6y in an auxil-
iary measurement of the nuisance parameter, given that its
true value is 6. Systematic uncertainties that affect only the
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Table 8 Number of events selected in each of the ten analysis channels
compared to the event yields expected from the ttH and tH signals and
from background processes. The expected event yields are computed
for the values of nuisance parameters and of the POI obtained from

the ML fit. The best fit values of the POI amount to fi;;; = 0.92 and
i = 5.7. Quoted uncertainties represent the sum of statistical and sys-
tematic components. The symbol “~ indicates that the corresponding

expected contribution is smaller than 0.1 events

Process 2¢SS + Oty 3¢ 4+ Oty 2¢SS + 11y
ttH 222 +£51 61 £ 15 289 +64
tH 119 £ 85 20+ 14 12.7£9.0
tZ + tty* 322 £25 145 £ 11 29.6+33
W + ttWW 1153 + 64 171.1 +£9.5 474+£6.5
wZ 296 + 31 89.7+9.7 19.4+2.9
77 31.2+£33 162+ 1.6 1.6+£0.3
Misidentified leptons 1217 £ 91 140 =11 52.0£9.6
Flips 121+ 19 - -

Rare backgrounds 222 +£48 41.0+8.9 13.3£3.1
Conversion 42+ 12 5.6+1.6 -

ggH + qqH + VH + ttVH 353+4.0 34+03 1.8+0.3
Total expected background 3517 £ 85 627 £ 20 179 £ 13
Data 3738 744 201

Process 144+ 1ty 0f 4+ 214 2008 + 1ty 1€+ 2ty
ttH 183 £41 244 £6.0 19.1£423 19.3£4.2
tH 65 + 46 16 £12 48+34 26+£19
tZ + tty* 203 £ 24 27.1+3.8 255£29 203 £2.1
ttW + ttWW 254 +£ 34 3.8+0.5 174+24 26+04
WZ 198 +37 42.5 +£8.7 84+1.6 11.8+£2.2
77 98 £ 13 342+48 1.9+£0.3 1.8£0.3
DY 4480 + 460 1430.0 220 519 £ 28 250 £ 16
tt+jets 41900 + 1900 861 £ 98 - -
Misidentified leptons 25300 =+ 1900 3790 £ 220 - -

Rare backgrounds 1930 £ 420 60 £ 14 59+£13 56£1.3
Conversion - - 0.5+£0.2 -

ggH + qqH + VH + ttVH 385+£3.6 26.7+3.6 0.8+0.1 -

Total expected background 73550 £ 610 6290 £+ 130 584 + 27 295+ 16
Data 73736 6310 603 307
Process 40 + Oty 3¢+ 1ty 20 + 21
ttH 2005 4.0+0.9 22405
tH 02+0.2 0.8+0.6 0.3£0.2
tZ + tey* 59+£04 6.6 £0.7 25+£03
W + ttWW 0.2£0.0 1.1£0.2 -

77 0.6 £0.2 0.3£0.1 0.2£0.0
Misidentified leptons - 1.5£09 34+£09
Rare backgrounds 0.6 £0.1 1.0£03 0.3£0.1
Conversion - - -

Total expected background 7.4+£05 11.5+1.3 6.8+ 1.0
Data 12 18 3
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normalization, but not the shape of the distribution of the dis-
criminating observables, are represented by a Gamma prob-
ability density function if they are statistical in origin, e.g. if
they correspond to the number of events observed in a CR,
and otherwise by a log-normal probability density function;
systematic uncertainties that also affect the shape of distri-
butions of the discriminating observables are incorporated
into the ML fit via the technique detailed in Ref. [105] and
represented by a Gaussian probability density function.

The rates of the ttW and ttZ backgrounds are separately
left unconstrained in the fit. The rate of the small ttWW back-
ground is constrained to scale by the same factor with respect
to its SM expectation as the rate of the ttW background.

Statistical fluctuations in the background predictions arise
because of a limited number of events in the MC simulation as
well as in the ARs that are used to estimate the misidentified
leptons and flips backgrounds from data. These fluctuations
are incorporated into the likelihood function via the approach
described in Ref. [106].

Further details concerning the treatment of systematic
uncertainties and concerning the choice of the functions
p(§k|9k) are given in Refs. [105,107,108].

A complication in the signal extraction arises from the
fact that a deviation in the top quark Yukawa coupling y;
with respect to the SM expectation m/v would change the
distribution of kinematic observables for the tH signal and
alter the proportion between the tH and ttH signal rates. We
address this complication by first determining the production
rates for the tH and ttH signals, assuming that the distribu-
tions of kinematic observables for the tH signal conform to
the distributions expected in the SM; we then determine the
Yukawa coupling y; of the Higgs boson to the top quark,
accounting for modifications in the interference effects for
the tH signal. These studies assume a Higgs boson mass of
125 GeV.

Assuming the distributions of the discriminating observ-
ables for the tH and ttH signals agree with their SM expecta-
tion, the production rate for the ttH signal is measured to be
Mg = 0.92 +£0.19 (stat)fgjg (syst) times the SM expecta-
tion, equivalent to a ttH production cross section for ttH pro-
duction of 466+96 (stat)fgg (syst) fb, and that of the tH signal
is measured to be pgg = 5.712.7 (stat) £ 3.0 (syst) times the
SM expectation for this production rate, equivalent to a cross
section for tH production of 510 = 200 (stat) &= 220 (syst) fb.
The corresponding observed (expected) significance of the
ttH signal amounts to 4.7 (5.2) standard deviations, assum-
ing the tH process to have the SM production rate, and that
of the tH signal to 1.4 (0.3) standard deviations, also assum-
ing the ttH process to have the SM production rate. We have
estimated the agreement between the data and our statistical
model by using a goodness-of-fit test to the saturated model,
obtaining a p-value of 0.097, showing no indication of a sig-
nificant difference between data and the assumed model.

CMS 137 fo' (13 TeV)
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é . r
(@)] L
L 0.2
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()] 0.0 - .

-5 _4 —|3 —|2 —I’I 0
log, (S/B)

Fig. 13 Distribution of the decimal logarithm of the ratio between the
expected ttH + tH signal and the expected sum of background contri-
butions in each bin of the 105 distributions that are included in the ML
fit used for the signal extraction. The distributions expected for signal
and background processes are computed for fzy = 0.92, iy = 5.7,
and the values of nuisance parameters obtained from the ML fit

The distributions that are included in the ML fit are shown
in Figs. 8,9, 10, 11 and 12. In the 2£SS + Oty and 3¢ + Oty
channels, we show the distributions of the activation values
of ANN output nodes in the different subcategories based on
lepton flavor and on the multiplicity of b-tagged jets in a sin-
gle histogram, concatenating histogram bins as appropriate,
and enumerate the bins by a monotonically increasing num-
ber. The distributions expected for the ttH and tH signals,
as well as the expected background contributions, are shown
for the value of the POI and of nuisance parameters obtained
from the ML fit. The uncertainty bands shown in the figures
represent the total uncertainty in the sum of signal and back-
ground contributions that remains after having determined
the value of the nuisance parameters through the ML fit.
These bands are computed by randomly sampling from the
covariance matrix of the nuisance parameters as determined
by the ML fit and adding the statistical uncertainties in the
background predictions in quadrature. The data are in agree-
ment with the sum of contributions estimated by the ML fit
for the ttH and tH signals and for the background processes.
The corresponding event yields are given in Table 8. In the
2¢SS + Oty, 34 + Oty, and 24SS + 1ty channels, the sums
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Fig. 14 Production rate fi;z; of the ttH signal (left) and i of tH
signal (right), in units of their rate of production expected in the SM,
measured in each of the ten channels individually and for the combi-

of events yields in all ANN output node categories are given
in the table.

The event yields of background processes obtained from
the ML fit agree reasonably well with their expected produc-
tion rate, given the uncertainties. In particular, the produc-
tion rates of the ttZ and ttW backgrounds are determined
to be iy = 1.03 &= 0.14 (stat+syst) and pgyw = 1.43 £
0.21 (stat+syst) times their SM expectation, as obtained from
the MC simulation.

The evidence for the presence of the ttH and tH signals
in the data is illustrated in Fig. 13, in which each bin of
the distributions that are included in the ML fit is classified
according to the expected ratio of the number of ttH -+ tH sig-
nal (S) over background (B) events in that bin. A significant
excess of events with respect to the background expectation
is visible in the bins with the highest expected S/B ratio.

The ttH signal rates measured in the ten individual chan-
nels are shown in Fig. 14, obtained by performing a likelihood
fit in which signal rates are parametrized with independent
parameters, one for each channel. The measurement of the
tH production rate is only shown in the 2¢SS+ 01y, 3¢+ 01y,
and 2¢SS + 1ty channels, which employ a multiclass ANN
to separate the tH from the ttH signal. The sensitivity of
the other channels to the tH signal is small. The ttH and
tH production rates obtained from the simultaneous fit of all
channels are also shown in the figure. The signal rates mea-
sured in individual channels are compatible with each other
and with the ttH and tH production rates obtained from the
simultaneous fit of all channels. The largest deviation from
the SM expectation is observed in the ttH production rate in

@ Springer
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nation of all channels. The central value of the signal strength in the
2¢ + 21yis constrained to be greater than zero

the 2¢+ 21, channel, where the best fit value of the ttH signal
rate is negative, reflecting the deficit of observed events com-
pared to the background expectation in this channel, as shown
in Fig. 11. The value and uncertainty shown in Fig. 14 are
obtained after requiring the ttH production rates in this chan-
nel to be positive. The value measured in the 2¢ 421}, channel
is compatible with the SM expectation at the level of 1.94
standard deviations when constraining the signal strength in
that channel to be larger than zero. The sensitivity of individ-
ual channels can be inferred from the size of the uncertainty
band in the measured signal strengths. The channel provid-
ing the highest sensitivity is the 2¢SS + Oty channel, which
is the channel providing the largest signal yield, followed by
the 3¢ 4+ Oty, and 2£SS + 1ty channels.

Figure 15 shows the correlations between the measured
ttH and tH signal rates and those between the signal rates
and the production rates of the ttZ and ttW backgrounds.
All correlations are of moderate size, demonstrating the per-
formance achieved by the multiclass ANN in distinguishing
between the tH and ttH signals as well as in separating the
ttH and tH signals from the ttZ and ttW backgrounds.

In the CA described in Sect. 8.1, the measured production
rate for the ttH signal is gy = 0.5 4 0.3 (stat+syst), Ly =
1.3+0.5 (stat+syst), figg = 0.910.4 (stat+syst), and 7y =
1.541.5 (stat+syst) times the SM expectation, in the 2¢SS +
Oty, 344+01th, 2SS+ 11y, and 4€+071y, channels, respectively,
while iy = 0.91 £ 0.21 (stat) £ 0.18 (syst) is obtained for
the simultaneous ML fit of all four channels. The 3¢- and 4¢-
CRs are included in each of these ML fits. The corresponding
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Fig. 15 Two-dimensional contours of the likelihood function £, given
by Eq. (3), as a function of the production rates of the ttH and tH signals
(i and ) and of the ttZ and ttW backgrounds (j5z and ww)-

observed (expected) significance of the ttH signal in the CA
amounts to 3.8 (4.0) standard deviations.

We now drop the assumption that the distributions of kine-
matic observables for the tH signal conform to the distribu-
tions expected in the SM and determine the Yukawa coupling
y¢ of the Higgs boson to the top quark. We parametrize the
production rates fi,;; and jigg of the ttH and tH signals as a
function of the ratio of the top quark Yukawa coupling y; to
its SM expectation m/v. We refer to this ratio as the cou-
pling modifier and denote it by the symbol «;. The effect
of the interference, described in Sect. 1, between the dia-
grams in Fig. 2 on the distributions of kinematic observ-
ables is parametrized as a function of «; and fully taken into
account, adjusting the event yield for the tH signal as well as
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The two production rates that are not shown on either the x or the y axis
are profiled such that the function £ attains its minimum at each point
in the x-y plane

the distributions of the outputs of the BDTs and ANNs for
each value of «. The changes in the kinematical properties
of the event affect the probability for tH signal events to pass
the event selection criteria. The effect is illustrated in Fig. 16,
which shows the variation of the product of acceptance and
efficiency for the tHq and tHW signal contributions in each
decay mode of the Higgs boson as a function of the ratio
kt/kvy, where ky denotes the coupling of the Higgs boson
to the W boson with respect to the SM expectation for this
coupling. The coupling of the Higgs boson to the Z boson
with respect to its SM expectation is assumed to scale by the
same value xv. Variations of the coupling modifier kv from
the SM expectation ky = 1 affect the interference between
the diagrams in Fig. 2 as well as the branching fractions of

@ Springer



378 Page 32 of 51

Eur. Phys. J. C (2021) 81:378

, CMS Simulation (13 TeV)

>‘ T T ‘ T T ‘ T ‘ T T T
(@] = 3
qC) r tHq process ]
g 1071; — 2I55+0T; Hos WW  —— 31407; Hos WW —— 2Iss+1t; Hos WW ;
uq:) ; == 2ss+0T; H»2Z2Z == 3401, H» 22 == 2lss+1t; H—> ZZ é
X [ 2ss+0T; Hos Tr e 30T Hos Tr 2lss+1T; Hos 11 ]
D A2
o107 E E
c E E
] r il
i
Q.
(]
Q
(&)
<

1074 e =

10—5 PRI R Lo v b v by by L

- 4 2 0 2 4 6
K/ Ky
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boson decay modes as a function of the ratio «/«xvy of the Higgs boson
couplings to the top quark and to the W boson
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Fig. 17 Dependence of the likelihood function £ in Eq. (3), as a function of i, profiling over «v (left), and as a function of «; and «y (right)

the Higgs boson decay modes H — WW and H — ZZ. We
compute the compatibility of the data with different values
of k¢ and kv, as is shown in Fig. 17. We obtain a 95% confi-
dence level (CL) region on «; consisting of the union of the
two intervals —0.9 < k¢ < —0.7 and 0.7 < k < 1.1 at
95% confidence level (CL). At 95% CL, both the inverted
top coupling scenario and the SM expectation « = 1 are in
agreement with the data.
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10 Summary

The rate for Higgs boson production in association with either
one or two top quarks has been measured in events con-
taining multiple electrons, muons, and hadronically decay-
ing tau leptons, using data recorded by the CMS experi-
ment in pp collisions at /s = 13TeV in 2016, 2017, and
2018. The analyzed data corresponds to an integrated lumi-
nosity of 137fb~!. Ten different experimental signatures
are considered in the analysis, differing by the multiplic-
ity of electrons, muons, and hadronically decaying tau lep-
tons, and targeting events in which the Higgs boson decays
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vikH - WW, H — 11, or H — ZZ, whereas the top
quark(s) decay either semi-leptonically or hadronically. The
measured production rates for the ttH and tH signals amount
t00.92£0.19 (stat) (1] (syst) and 5.7+2.7 (stat)£3.0 (syst)
times their respective standard model (SM) expectations. The
corresponding observed (expected) significance amounts to
4.7 (5.2) standard deviations for ttH, and to 1.4 (0.3) for
tH production. Assuming that the Higgs boson coupling to
the tau lepton is equal in strength to the values expected in
the SM, the coupling y; of the Higgs boson to the top quark
divided by its SM expectation, k; = y;/ ytSM, is constrained to
be within —0.9 < ky < —0.70r 0.7 < k¢ < 1.1, at 95% con-
fidence level. This result is the most sensitive measurement
of the ttH production rate to date.
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