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ABSTRACT: Carefully designed nanostructures can inspire new type of optomechanical 

interactions and allow surpassing limitations set by classical diffractive optical elements. Apart 
from strong near-field localization, nanostructured environment allows controlling scattering 
channels and might tailor many-body interactions. Here we investigate an effect of optical binding, 
where several particles demonstrate a collective mechanical behaviour of bunching together in a 
light field. In contrary to classical binding, where separation distances between particles are 
diffraction limited, an auxiliary hyperbolic metasurface is shown here to break this barrier by 
introducing several controllable near-field interaction channels. Strong material dispersion of the 
hyperbolic metamaterial along with high spatial confinement of optical modes, which it supports, 
allow achieving superior tuning capabilities and efficient control over binding distances on the 
nanoscale. In addition, a careful choice of the metamaterial slab’s thickness enables decreasing 
optical binding distances by orders of magnitude compared to free space scenarios due to the 
multiple reflections of volumetric modes from the substrate. Auxiliary tunable metamaterials, 
which allow controlling collective optomechanical interactions on the nanoscale, open a venue for 
new investigations including collective nanofluidic interactions, triggered bio-chemical reactions 
and many others.  
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INTRODUCTION 
 
Optomechanical manipulation 1 is a widely used technique across many disciplines 2,3, where it is utilized 

for many fundamental and applied investigations. The capability to manipulate small objects with focused 
light beams and measure pico- and even femto- 4,5 Newton-scale forces opens a venue for studies of new 
light-matter interaction regimes 6,7 and bio-molecular processes8,9 to name just few. Conventional optical 
tweezers realisations rely on diffractive optical elements and, as the result, have limited trapping capabilities 
in application to nano-scale particles. As a promising paradigm solution, auxiliary nanostructures have been 
introduced. So-called plasmonic tweezers 10,11, utilize the capability of noble metal structures to confine 
light beyond the diffraction limit, e.g. 12,13, and provide improved trap stiffness with relatively low optical 
powers. While majority of plasmonic tweezers configurations utilise nanoantenna arrays, optomechanical 
surfaces 14,15, metasurfaces 16, and metamaterials 17,18 have been recently proposed. Those types of 
configurations with less structured features (in comparison to antenna arrays) might provide additional 
capabilities, such as optical attraction 19, and are less sensitive to accurate positioning of trapping beams in 
respect to a structure.  

In general, functionalities of auxiliary structures can be split into three main categories. The first one is 
related to the ability of near-field concentration beyond the diffraction limit, which is traced back to the 
first generation of plasmonic tweezers 20–22. Here the main tool for analysis is based on dipolar 
approximation, where the manipulated particle’s size is small compared with the fastest spatial intensity 
variation. It is also important that this model assumes the local field to remain unperturbed by a small 
particle. The next level of sophistication in auxiliary structures design is to account for a modified density 
of photonic states, which governs scattering channels from the particle. For example, if a nearby structure 
significantly modifies a scattering pattern, the particle takes the recoil in order to conserve the entire linear 
momentum. One of the main functions of metasurfaces and metamaterials 16–18 is to tailor scattering into 
high density of states modes. Apparently, the most complex approach to optomechanical manipulation 
utilises active feedback, where a Brownian particle in an optical fields modifies the trapping potential 
dynamically and experiences a back action effect 23.      

An important niche in the field of the opto-mechanical manipulation is devoted to the investigation of 
many-body interactions mediated by self-consistent optical fields. Light-induced binding of micro- and 
nanosized objects can provide stable configurations of particles due to light re-scattering and their self-
organization under external illumination 24,25. Capabilities to achieve simultaneous sorting and ordering of 
particles’ clusters without a need to structure the incident beam makes optical binding advantageous over 
holographic tweezing techniques 3,26,27. Various binding scenarios have been investigated and include 
studies of interactions under Gaussian and Bessel shaped beams illumination 28,29, pattern creation with 
several interfering beams 30,31, evanescent fields excitations, and self-organization of several optically-
interacting plasmonic particles 32. However, those methods rely on either high field intensities or specific 
particles’ materials, which may limit their generality. Increasing optical trap stiffness without a need to use 
high-intensity illumination, flexible control over interparticle distances as well as anisotropic optical 
binding in different directions are among the long-standing challenges, valuable from both fundamental 
and practical standpoints 33. Parameters of optical binding can be significantly influenced by introducing a 
nearby interface. It modifies both the incident field due to Fresnel reflection and effective particles’ 
polarizabilities owing to near-field interactions, qualitatively understood with the help of the image theory 
20,34,35. It was shown, that metal-dielectric interfaces supporting the propagation of surface plasmon-
polariton modes (SPPs) can increase optical trapping stiffness and reduce particle-interface separation 
distances owing to strong interactions with SPPs 10,36–38.  

Structured interfaces can provide an additional flexibility in tailoring scattering channels via a pre-
designed dispersion of surface and bulk modes. Anisotropic response is one among many possibilities. 
Generally, anisotropic metamaterials 39–41, proved to be useful in various types of applications i.e. cloaking 
42–44, super-resolution 45,46, energy transfer 47–49, and recently have opened a venue for flexible 
optomechanical control. Specifically, it has been shown that hyperbolic dispersion of bulk modes causes 
optical pulling forces 17, can lead to levitation 50, repulsion 51 and can even generate negative lateral optical 
forces along the surface 16. 
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Here we investigate capabilities of hyperbolic metamaterials substrates in application to optical binding. 
Typical scenario is depicted in Figure 1, where a pair of small particles are linked together by an optical 
field, mediated by a structured surface. In contrary to free space binding scenarios, layered metal-dielectric 
substrate opens additional interaction channels, mediated by surface and volumetric modes. As it will be 
shown, the interplay between the surface geometry and the modes within the bulk, will allow achieving 
optical binding with deeply subwavelength separation distances and even efficiently tune the latter by 
exploiting strong chromatic dispersion of the metamaterial.  

 

Figure 1. The general concept of optical binding above a metamaterial slab. Highly confined optical 
modes inside the layered hyperbolic metamaterial open additional interaction channels and allow for the 
formation of dimers and chains with separation distances below the diffraction limit.  

 

The manuscript is organized as follows: Green’s function approach to optomechanical interactions is 
revised first and then followed by the analysis of optical binding next to semi-infinite hyperbolic substrate 
and finite thickness slab.  

 

GREEN’S FUNCTIONS FORMALISM IN APPLICATION TO OPTICAL BINDING NEAR 
INTERFACES 

 
The considered scenario is depicted in Figure 1 - a plane wave illuminates two subwavelength 

nanoparticles placed in a vicinity of an anisotropic substrate. Particles’ locations in Cartesian coordinates 
are (0,0, )a  and ( , , )x y a , where 0 / 30a    is the radius of the particles, and 0  is the incident light 
wavelength. Light-matter interactions with the particles will be analysed under the dipolar approximation. 
There are three types of channels, which govern the binding phenomenon: (i) particle-particle interaction 
via the substrate modes, (ii) particle-particle interaction via free space modes, and (iii) individual coupling 
between each particle and the substrate. 

Optical force on a particle in the dipolar approximation can be written as follows: 
*1 Re ( ) ( , ) ( , ),

2 i i
i

F E r E r     
     (1) 

where iE  corresponds to the thi  component of the self-consistent electric field, , ,i x y z are coordinates, 
and ( )   is the dipolar particle’s polarizability in vacuum, including the radiation correction 
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. 0  is the vacuum permittivity, p  is the permittivity of the particle, 

1  is the permittivity of the surrounding media. 

In our notations, where 1 (0,0, )r a
  and 2 ( , , )r x y a

 , the self-consistent electric field is given by: 
2 2
0 0

1 1 1 2 2 2
0 0

( ) ( ) ( , ) ( ) ( , ) ( ),   1, 2.j inc j j j
k k

E r E r G r r E r G r r E r j     
 

             (2) 

The first term here represents the incident field with the substrate reflection taken into account, the 
second and the third terms are the contributions of the dipoles. The Green’s function G


 encapsulates the 

entire information of the interaction of the dipole with the substrate, e.g., 34. Substituting the solution of 
self-consistently formulated Eq. 2 into Eq. 1 allows for calculating the optical force.  

 
TAILORING GREEN’S FUNCTIONS NEAR HYPERBOLIC SUBSTRATES  
 
Investigation of different particle-substrate interaction channels can be performed by analyzing the 

corresponding Green’s function in reciprocal space (k-space). This integral representation, as it will be 
shown hereinafter, can be split into three parts corresponding to the interaction channels with different 
physical origin. In particular, propagating (non-evanescent in the upper half-space) modes, surface 
plasmons, and bulk hyperbolic modes can be involved 16,44,52–54. Further, we will consider layered realization 
of the metamaterial depicted in Fig. 1. The permittivity tensor linked to the chosen set of layers is diagonal 
and obtained via standard homogenization theory 55,56 with xx yy zz      where hyperbolic dispersion 

occurs when  Re 0xx   and  Re 0zz  . Those components also have strong chromatic dispersion, which 
will be subsequently used for achieving tunability in binding parameters (see section “Chromatic Tuning 
of Binding”).  

In order to split the spectral integral representing the Green’s function in the k-space, dispersion of the 
contributing modes should be derived first. Longitudinal component of the wavevector of bulk metamaterial 
mode has the form of 54:  

2 2
2 0( ) ,xx

z zz x
zz

k k k


  


 (3) 

where 0k  is the wave number of an incident wave, xk  is the component of the wavevector of a bulk 

mode along substrate surface (transversal component). While  
 

Re
0

Re
xx

zz





, the wave propagation in a bulk 

hyperbolic material is possible as long as  xk  surpasses a critical value  

0cr zzk k   , (4) 

and zk  becomes real.  

In order to reveal the contribution of different types of modes (free space, plasmons, hyperbolic modes), 
Fresnel coefficients should be analysed 54. The reflection coefficient from semi-infinite hyperbolic substrate 
for s- and p-polarized wave is given by: 

1 1 2 1 2

1 1 2 1 2
,     ,p sxx z z z z

xx z z z z

k k k k
r r

k k k k
   

 
   

    (5) 

here 1  denotes the dielectric permittivity of the upper half-space, 2zk , 1zk  – longitudinal (perpendicular 
to the substrate) wavevector components in the hyperbolic metamaterial and in the upper half-space 
respectively.  
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Examination of the Fresnel coefficients allows identifying conditions for excitation of two types of 
modes in the structure: volumetric hyperbolic modes in metamaterial and surface plasmon-polariton (SPP) 
on its interface. From the reflection coefficient for p-polarization it is possible to obtain SPP propagation 
constant (note, that SPP is naturally p-polarized): 

 1 1
0 2

1

xxSPP
x

xx
zz

k k
   




 


 . (6) 

SPP exists only if Re[ߝ௭௭] > Re[ߝଵ], resulting in imaginary z and real x components of the SPP 
wavevector. Surface-plasmon polariton resonance condition corresponds to the zero denominator of Eq. (6)
, but it is not possible as far as    Re 0, Re 0xx zz    . The minimal value of the denominator corresponds 
to the Re[ߝ௫௫] → 0 and Re[ߝ௭௭] → ∞, which is close to the surface plasmon-polariton excitation. For the 
opposite case    Re 0,Re 0xx zz     surface plasmon-polariton does not exist, as perpendicular to the 
surface wavevector component is real.  

Let us consider in details the hyperbolic case of    Re 0, Re 0xx zz    . Figure 2 (a) is presented to 
provide better understanding of the modal structure of the system. Imaginary part of the reflection 
coefficient contains information about all of the modes 54. Here the dispersion for homogenized multi-
layered Ag/Ta2O5 is presented (filling factor of the structure is 0.133). The imaginary part of the reflection 
coefficient over the parallel to substrate wavevector component and frequency   is presented. White lines 
(solid and dash-dotted) correspond to the light line ( 0 ( ) /k c  ) and critical wavevector ( )crk   from Eq. 

(4), blue line illustrates the dispersion characteristic of the surface plasmon-polariton ( )spp
xk   from Eq. (6)

, and hyperbolic modes are marked with white dashed lines (just a few examples). Behaviour of the Im pr 
   

is in a perfect agreement with the dispersion characteristics.  
Therefore, there are three important regions governing the interaction of a nanoparticle with a hyperbolic 

metamaterial. Hyperbolic modes are contributing for x crk k , surface plasmon-polaritons are supported 

between 0k  and crk , so the distance between them defines the overall contribution of SPPs, and free-space 

modes are allowed at 00 xk k  . In the particular case of 0crk k  the SPP is negligible and hyperbolic 
modes and free-space modes play the main role. This scenario (among many others) is considered on Fig. 
2 (b) (red line) to underline the contribution of hyperbolic modes at the absence of SPPs. 

 

Figure 2. (a): colour map of the imaginary part of the reflection coefficient over wavevector’s x-
component and incident wave frequency. From this graph one can, e. g., pick out frequencies 152.05 10    
and 151.4 10    rad/s as points A and B correspondingly (shown with dotted red lines). A corresponds to 

0 920  nm and effective medium parameters 1.714 0.075 ,   5.392 0.0084xx zzi i        and for B 
0 1350  nm, 8.94 0.33 ,   5.19 0.0118xx zzi i       . (b): Imaginary part of the reflection coefficient as the 
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function of the wavevector x-component. The dependence is plotted for three sets of parameters: A with 
blue, B with black and C (ideal case without the SPPs contribution for 0 920   nm, 

2 0.066 ,   0.5 0.0084xx zzi i       ) with red lines. Characteristic regions to underline the contributions of 
different interaction channels are:  00;xk k  for propagating free-space modes,  0;x crk k k  for SPP, 

 ,x crk k   for hyperbolic modes.  

Thus, Green’s function for particles-substrate interaction can be decomposed as follows:  
0

00

( , ) ( ) ( ) ( ) ,      j 1,2;  i=1,2.
cr

cr

k k
subs subs subs subs

i j x x x x x x
k k

G r r M k dk M k dk M k dk


     
      (7) 

The integrand matrix subsM


 in the Green’s function is presented in Supplementary Material (Section 
1).  

In accordance with the aforementioned: 
0

0

k

I   - the free-space propagating modes contribution, 

0

crk

k

II    - the surface plasmon-polariton contribution (if SPPs are supported 1zz   ), and 
crk

III


  - 

volumetric (hyperbolic) modes of the substrate. The hyperbolic modes contribution is usually estimated 
with the approximation 0/xk k  , where reflection from a substrate depends only on the dielectric 
permittivities, as long as 0xk k  16,50,51. Moreover, the interplay between plasmonic and hyperbolic 
contributions could be efficiently tailored via adjusting material parameters  zz  and, consequently, crk . 

In order to demonstrate this capability, the imaginary part of the reflection coefficient for p-polarized 
wave as the function of xk  has been plotted in Fig. 2 (b) for different   corresponding to different material 
parameters: Line A ( 0 920   nm, 1.714 0.075 ,   5.392 0.0084xx zzi i       ), where crk  is quite large and 
the SPP contribution is dominating, Line B ( 0 920  nm, 1.714 0.075 ,   5.392 0.0084xx zzi i       ), where 
SPPs peak is much narrower, and bulk modes contribution is more pronounced, and Line C for arbitrary 
metamaterial with ( 0 920   nm, 2 0.066 ,   0.5 0.0084xx zzi i       ), where crk  is less then 0k , the SPP 
contribution is absent, and, consequently, the interaction is governed by free space modes and bulk 
hyperbolic modes (magnitudes are related as 2.5III I ). These particular scenarios will be further 
investigated in terms of optical forces. We should stress, that each of these integrals is taken into account 
twice via effective field Eq. (1), so the overall difference in force is bigger. 

Noteworthy, the interval-based integration given by Eq. (7) stays clear only for a standalone particle. 
Introducing another one involves cross-coupling between different terms, e.g., SPP generated by the first 
particle could be scattered by another one into bulk hyperbolic modes and vice versa. This effect will be 
considered in the next section and shown to have minor impact on the overall trapping and binding 
efficiency. 

 

RESULTS 
Having identified the contribution of different interaction channels to the Green’s function, we can 

proceed with the self-consistent scattering problem (Eq. (2)).  
 
Semi-infinite substrate 
 
Influence of a semi-infinite anisotropic multi-layered metamaterial on optical binding will be analysed 

next. The most significant parameters for binding are the period and stiffness allowing for effective 
structuring of nanoparticles in many different 2D and even 3D architectures 25,31,57. Recently, we revealed 
the possibility to bind nanoparticles with subwavelength separation distances via the interference of surface 
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plasmon-polaritons 34. Introducing additional metamaterial bulk modes seems promising for the further 
enhancement of binding.  

Let us consider a pair of nanoparticles, one of which is fixed at the origin of the coordinates as in the 
previous scenario. For the sake of simplicity, we consider the second particle to have the same parameters 
as the first one. Effective field at the nanoparticle follows from Eq. (2) and is given in Supplementary 
(Section 2). 

The period of  optical binding can now be defined as a distance between two nearest stable equilibrium 
positions, and the stiffness is the ratio of the restoring force to the particle’s displacement /xF x     (in 
a close vicinity of a stable position, where  xF x  is close to a linear profile). Hereinafter the period bindL  

and distances will be normalized over the incident wavelength 0 , and the optical forces - over the radiation 

pressure 
2

0 0
Im( )

2 incF k E



.  

The material parameters are taken to be the same as for lines A, C in Fig. 2 (b) corresponding to the 
dominating contributions of SPPs (A), and hyperbolic modes (C). In Fig. 3 the optical forces for both 
principally different scenarios are shown. The blue lines correspond to the total optical force, the black lines 
correspond to the contribution of modes with 0xk k  (propagating free-space modes in the upper half-
space). The SPP contribution for A is given by the red line (it is zero for C case by definition, see the 
previous section). HM contribution is depicted by grey circles.  

In the case A governed by the strong impact of surface plasmon-polaritons the optical forces are fully 
driven by these surface waves, and the contribution of other modes is insufficient. Moreover, in the case C 
with the predominating influence of the hyperbolic modes, optical binding has almost nothing special in 
comparison with the free-space scenario. In this case, HMs contribution just increases the force almost 
twice (which is still 2 orders of magnitude less than that of SPPs) and slightly shifts equilibrium positions 
almost not affecting bindL . In this case of a semi-infinite metamaterial for normally incident light the 
hyperbolic modes excited by the first particle just propagate symmetrically in the volume not interacting 
with the second particle, and vice versa.  

However, the still existing nonzero contribution of HMs can be explained via the aforementioned cross-
terms, when modes excited by one particle are scattered by another one giving rise to additional HMs with 
broken symmetry, which, in turn, lead to the optical force shift 16.  

  

 

Figure 3. Dependence of the optical binding force on the distance between the particles. (a) is for 
parameters A from Fig. 2 (b). (b) is for line C. The blue line corresponds to the total optical binding force 
near anisotropic substrate, the red line is for the surface plasmon-polariton modes contribution only, grey 
circles depict contribution of hyperbolic modes, and the black lines show optical binding via propagating 
in the upper half-space modes only.  
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Thus, the hyperbolic modes even being dominating in the interaction with the semi-infinite metamaterial 
do not provide a sufficient contribution to binding in this case. 

 
Finite thickness metamaterial slabs 
 
The main reason for the weak influence of HMs on binding is the lack of a feedback from the bulk 

modes, which propagate away from the particles to infinity. However, as it will be shown hereinafter, strong 
optical binding can be obtained utilizing anisotropic finite thickness slab due to reflections of hyperbolic 
modes from the boundaries. The structure under consideration appears in Figure 4. 

 

Figure 4. The scheme of optical binding near anisotropic hyperbolic metamaterial (HM) slab. 
Reflections from the boundaries of the slab form high intensity regions and result in optical binding with 
separation distances bindL  below the diffraction limit. 

 

 In contrast to conventional waveguides, xk  in hyperbolic slabs can achieve rather high values, 
which, together with highly confined shape of the modes, could allow for very small pdistances beween the 
hot-spots driven by multiple reflections. This, in turn, paves a way for strongly subwavelength binding of 
nanopartiles and also provides tunability via changing material parameters, slab thickness, excitation 
wavelength etc. 

The formalism developed for the semi-infinite substrate is also applicable for the finite-thickness slab. 
The main difference is in the Fresnel reflection coefficient, which in the latter case is given by: 

2
2

2

exp(2 )
1 ( ) exp(2 )

z
slab

z

r r ik d
r

r ik d





   (8) 

 
where d  represents the thickness of the slab. It is clearly seen, that additional periodical maxima will 

be present in ( )p
xslabr k  (reflection of p-polarised wave). These peaks are related to the additional boundary, 

which causes multiple reflections between upper and lower interfaces. The distance between hot spots at 
the interface, and, thus, between the bound particles depends on the parameter d  and angle between group 
velocity of the hyperbolic modes and the normal to the surface. Noteworthy, that hyperbolic modes are not 
usual “geometric” beams, thus exact calculations are needed to find actual binding period bindL . 

Let us consider optical binding force near anisotropic slab with parameters A, C (from Fig. 2 (b)) and 
thicknesses 0 / 2d  , 0 / 8d   , 0 920   nm. Figure 5 represents imaginary part of the reflection 
coefficient (left column, (a, c)), and optical force (right column, (b, d)). Noteworthy, additional peaks 
corresponding to the multiple reflections appear in the reflection coefficient. Here we show Im pr 

   only 

for 0/ 10,xk k   because the next peaks are much weaker due to the absorption and are not necessary for 
subsequent qualitative analysis. However, the force calculations take into account all possible xk : 

00 /xk k    to provide accurate values. The distance between the reflection peaks increases (in k-space) 
with decreasing of the thickness and leads to the optical force period decrease.  
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Comparing Figs 2 (b) and 5 (a) we find SPP contribution to become much less pronounced (magnitudes 
of integrals from formula (7) 3II I  for semi-infinite case, 2.3II I  for 0 / 2d   and 2II I  for 

0 / 8d    (Fig. 5 (a) )) (where I is the integral contribution of the free-space modes from Eq. 7). For thin 
slab 0 / 8d    the contribution of SPPs 0/ 1.044xk k   and 0/ 1.84xk k   can be considered as negligible for 
small distances and almost does not influence the optical forces (Fig. 5 (b)) governed predominantly by the 
hyperbolic mode with 0/ 8.8xk k   ( 7III I ) and 1/ 8.8 0.114bindL   . For 0 / 2d  , however, we have 
more reach modes kit, e.g., SPPs ( 0/ 1.17xk k   and 0/ 1.2xk k  ) together with a set of hyperbolic modes. 
This leads to the peculiar behaviour of the optical forces: HM with 0/ 3.08xk k   enables subwavelenght 
binding with 1/ 3.08 0.32bindL    modulated by SPPs overall envelope (schematically shown with gray 
dotted line) with the period 0.85 . Note, all the distances are normalized over the wavelength of the 
incident wave 0 .   

For the parameters C (Fig. 5 (c, d)) there is no surface plasmon-polariton contribution by definition (we 
have chosen the appropriate parameters in the first section especially to emphasize the influence of 
hyperbolic modes in both semi-infinite and finite cases), because 0/ 0.7 1crk k   , so the optical forces are 
completely dependent on the free-space and volumetric modes. For the half-wavelength hyperbolic slab the 
forces are governed by free-space propagating waves ( II = 0, III I ) with small xk , and low amplitude 
HMs (high xk  ones are effectively absorbed via rather large thickness), thus, the dependence is close to 
optical binding in a free space both in terms of period and forces magnitude. For the thin slab the force is 
almost 2 orders of magnitude increased (Fig. 5 (d)) and the periodicity now is fully driven by the two most 
pronounced peaks 0/ 1.33xk k   ( 0.75bindL  ) shown by gray envelope, and 0/ 3.11xk k   corresponding to 

0.32bindL   (overall integral 6.3III I ). 
The aforementioned qualitative mode analysis of optical forces and binding period is an approximation. 

Often, several peaks contribute to the optical force and form a unique signature, either with SPP or not (e.g., 
curved and asymmetric Figs 5(b, d)). However, it allows for better understanding of the binding scenarios 
at the presence of such complicated structures as hyperbolic metamaterials and even for some quantitative 
estimations provided above.    

Moreover, comparing two principally different scenarios (with and without SPPs’ contributions), we 
find a new possibility to obtain optical binding forces, which are several orders of magnitude higher than 
in the free space binding scenarios (and about 1 order of magnitude stronger than that delivered by 
plasmonic metals 34). Furthermore, tuning the distance between bound particles beyond the diffraction limit 
is also possible. These characteristics are strongly enhanced in the case of thin slabs allowing for better 
utilizing hyperbolic modes feedback, and the proved great tolerance to the metamaterial parameters paves 
a way to a plethora of highly demanded application.  
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Figure 5. Imaginary part of the reflection coefficient over relative transversal wavevector component 
(a, c) and optical binding force (b, d). The dependence is plotted for two sets of parameters: (a, b) correspond 
to the parameters A from Fig. 2. (c, d) correspond to C from Fig. 2. The solid lines depict reflection 
coefficient and optical binding force for slab with thickness 0 / 2d  , the dash dotted lines depict the 
reflection coefficient for slab with the thickness 0 / 8d   , where 0 920   nm is the incident wavelength. 
The black arrows in the (a, c) show position of the crk . One can see that for C it is placed before 0k . Gray 
dotted lines represent envelopes (see text). The insets in (b, d) show electric component Ex of the field 
scattered by the particle above the homogeneous hyperbolic substrate with thickness 0 / 2d   (left column) 
and 0 / 8d    (right column). 

 

Chromatic tuning of binding 
 
In the previous sections we have considered semi-infinite and finite slabs of hyperbolic metamaterials 

consisting of the Ag 58 and Ta2O5 59 layers allowing for effective tuning via adjusting material and 
geometrical parameters. Hereinafter let us consider another important degree of freedom – chromatic tuning 
of the metamaterial-assisted optical binding.  
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Figure 6. Chromatic tuning for the multilayered structure of silver and Ta2O5 58,59 layers with the slab 
thickness 115 nm and filling factor of 0.133. (a) - imaginary part of the reflection coefficient (dispersion 
diagram). (b) - optical binding period over the frequency. 

 

The figure 6 (a) shows the dependence of the reflection coefficient on the incident wave frequency and 
0/xk k  for the slab thickness 115 nm. It can be seen, that the number of HM peaks governed by the 

reflections (equally to Fabry-Perot resonances for hyperbolic modes) and contributing to optical binding is 
increased with lower frequency ( 0/d   decrease), so the optical force dependence becomes more 
complicated. 

The distance between the bound particles (Fig. 6 (b)) is now a function of the frequency, thus the 
materials dispersion plays a key role here. The binding period is proportional to the relation of the thickness 
of the slab and incident wavelength and    ,  xx zz    . In this case the permittivities are monotonically 
dependent on the frequency 39, thus the dependence of the optical binding distance is more or less 
monotonous. However, in other wavelength regions additional HMs and non-monotonous dispersion of 
optical constants could displace the stable equilibrium positions and change the dependence shown in Fig. 
6 (b). This additional degree of freedom opens a room of opportunities for tuning optical binding via “non-
invasive” way and fabricate novel designs and architectures of nanostructures on metamaterial substrates 
by adjusting optically induced forces with hyperbolic modes.  

Moreover, in Supplementary (Section 3) we consider the dependence of the optical binding force on the 
topmost layer of the slab (metal or dielectric), which also can be useful in a plethora of applications. 
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CONCLUSION 
 
In this work we describe the transverse optical binding of two particles near hyperbolic metamaterial. 

High-k volumetric modes can provide additional channels of the particles’ interaction with substrates and, 
therefore, drastically enhance capabilities of optomechanical manipulation schemes. For semi-infinite (or 
rather thick) metamaterial slab the hyperbolic modes even being dominating in scattering do not contribute 
to optical binding because of the almost absent feedback (hyperbolic modes excited by one particle do not 
interact with the second one). In contrast, thin metamaterial slabs provide multiple reflections from 
boundaries forming a set of strongly localized hot spots with huge intensity gradients governing 
nanoparticles motion at nanoscale. Furthermore, mode analysis shows the predominant impact of HMs on 
binding giving rise to several orders of magnitude increased optical forces and deeply subwavelength 
nanoparticles positioning. Moreover, the principal realization of this phenomenon appears to be rather 
tolerant to the metamaterial parameters, enabling strongly enhanced performance for a whole set of designs 
and driving broadband chromatic tuning. Novel auxiliary carefully designed metamaterials and 
metasurfaces featuring superior optomechanical mechanisms are nowadays extremely demanded in a 
variety of applications, such as microfluidics, lab-on-chip devices, and biology and medicine to name just 
few. 
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SUPPLEMENTARY 
 

GREEN’S FUNCTION FORMALISM 
 
The two particles’ interaction near the substrate can be described by three components of the Green’s 

function. The Green’s function Ĝ  from Eq. (2) can be divided into three parts: 
1 2 2 1

ˆ ˆ( , ),  ( , )fs fsG r r G r r     are responsible for particles’ interaction in a free space; 

1 2 2 1
ˆ ˆ( , ),  ( , )subs subsG r r G r r    describe particles’ interaction via the substrate, 

1 1 2 2
ˆ ˆ( , ),  ( , )si siG r r G r r     describe self-induced field, impact of the single particles’ interaction with the 

substrate. 
Thus, the expressions for these functions have the form 1: 
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where R  is the length of a vector 1 2R r r 
   , Î  is unitary dyad. 
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To simplify the form of the Green’s function for the particles’ interaction near the substrate one has to 

use normalized values 0 1 1 0 0/ , / ,x z zs k k s k k z zk    and transform the function to the cylindrical 
coordinates. Then, Bessel functions can be used. 
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where the functions can be expressed via the Bessel ones: 
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( )nJ z  is the first kind Bessel function of the order n . 
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EXPRESSIONS FOR THE EFFECTIVE FIELDS 
 
To calculate an optical force acting on a particle one should previously obtain the value of the field E


 

at a particle position. As it was mentioned in Eq. (2) of the main paper, this problem is self-consistent 1–3. 
After substituting three kinds of the Green’s function we get: 

2 2
0 0

1 1 1 1 1 1 2 1 2 1 2 2
0 0

ˆ( ) ( ) ( , ) ( ) ( , ) ( , ) ( );si fs subs
inc

k k
E r E r G r r E r G r r G r r E r 

 
     
               (S4) 

2 2
0 0

2 2 1 2 1 2 1 1 2 2 2 2
0 0

ˆ ˆ ˆ( ) ( ) ( , ) ( , ) ( ) ( , ) ( );fs subs si
inc

k k
E r E r G r r G r r E r G r r E r 

 
     

              (S5) 

where 1 2,   are polarizabilities of the particles. As long as we use identical particles, these values are 
equal. These equations should be viewed as a system. After substituting Eq. (S5) into Eq. (S4) or vice versa 
we get the final form of the expression: 

 11 1
1 1 1 1 2 2 2 2 1 1 1 2 2 2 2

ˆ ˆ ˆˆ ˆ ˆ( ) ( , ) ( , ) ( , ) ( , ) ( ) ( , ) ( , ) ( )inc incE r g r r G r r g r r G r r E r G r r g r r E r


     
                

 (S6) 

 11 1
2 2 2 2 1 1 1 1 2 2 2 1 1 1 1

ˆ ˆ ˆˆ ˆ ˆ( ) ( , ) ( , ) ( , ) ( , ) ( ) ( , ) ( , ) ( ) ;inc incE r g r r G r r g r r G r r E r G r r g r r E r


     
                  (S7) 

where 
2

0
1 1 1 1 1

0
2

0
2 2 2 2 2

0
2

0
1 2 2 1 2 1 2

0
2

0
2 1 1 2 1 2 1

0

ˆˆˆ ( , ) ( , );

ˆˆ ( , ) ( , );

ˆ ˆ( , ) ( , ) ( , ) ;

ˆ ˆ ˆ( , ) ( , ) ( , ) .

si

si

fs subs

fs subs

k
g r r G r r

k
g r r G r r

kG r r G r r G r r

kG r r G r r G r r













 

 

   

   

I

I

   

   

     

     

 

 
THE IMPACT OF THE TOPMOST LAYER 
One of the possible realization of hyperbolic metamaterial is metal-dielectric multilayered structure. We 

consider a multilayered structure with Ag 4 and Ta2O5 5 layers, filling factor 1: 7.5f   and thickness of the 
slab is 0 / 8d  . The reflection from the structure of this type can be calculated with the help of transfer 
matrix formalism 6. One can compare the optical binding force near the structure with 10 periods with metal 
(Figure 1S, red line) or dielectric (Figure 1S, blue line) layer on top. One can see that for the silver layer on 
top of the structure optical binding force is greater than for the case of the dielectric layer. The topmost 
metallic layer provides better coupling between the surface and volumetric modes, which leads to the 
hyperbolic mode contribution increase. 

 

Figure 1S. Optical binding force near hyperbolic metamaterial slab. Red and blue lines correspond to 
the multilayered structure with metal or dielectric top layer correspondingly. The Figure represents the 
structure with 0 / 8d   . Incident light wavelength is 920 nm, 1: 7.5f  . 
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SPATIAL DISTRIBUTION OF THE ELECTROMAGNETIC FIELD ABOVE THE THIN SLAB 
 
The specific character of optical binding force near anisotropic slab is defined by electrical field 

distribution. Here we consider x-component of this field near the slab with 0 / 8d   , and parameters 
corresponding to A and C ( 0  = 920 nm) from the main paper (Figure 5). Single particle near the substrate 
is illuminated by a plane wave, and field distributions in two planes (top ((a), (b)) and front view ((c), (d))) 
are shown. In Figure 2S high-intensity regions of volumetric modes are clearly seen in both views. The 
high-intensity regions are aligned along incident light polarization. Figures 2S (a), (c) correspond to A while 
(b), (d) correspond to C. The result is obtained in COMSOL Multiphysics package. 

 

Figure 2S. Field distribution for a single particle above the metamaterial layer. (a), (b) XY plane, top 
view; (c), (d) XZ plane, front view. Field intensity is given in arbitrary units. 
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