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A B S T R A C T

We consider the joint operation of two multi-server queueing systems. Both systems provide the same type of
service and compete for customers. It is assumed that the first system is controlled by ourselves while the second
one is controlled by our competitor. The arriving customers are shared between the systems depending on the
comparative rating of our system. The stationary behavior of the considered model under the fixed parameters of
both systems and the fixed mechanism of calculation of the rating is described by a continuous-time multi-
dimensional Markov chain. The stationary distribution of this Markov chain is computed. Expressions for the key
performance measures of the systems are derived. Obtained results provide an opportunity to analyse possible
consequences of various managerial actions aiming to maximize the profit of our system. A numerical experi-
ment illustrates the application of the results for making a decision about the rationality of establishing and
maintaining a service system while an alternative system providing the same type of service already exists.

1. Introduction

Situations when the same (or at least similar) type of service can be
provided to customers (clients, users, etc) by different systems and
these alternative systems compete for the customers are typical in real
life. We can mention competition of various producers, shops, online
stores, banks, insurance companies, retailers, airlines, fast food services,
etc. Typically, in many such systems there are two types of customers.
One of the types is the indifferent customers. If such a customer needs
to obtain service and has several options of choosing a service provider,
he/she makes a choice randomly, probably depending on the current
availability and crowding of the corresponding service facilities.
Another type of customers are the non-indifferent customers. Such
customers have certain a priori preferences and make their choice de-
pending on their taste, previous own experience or information about
the providers received from the Internet. The latter information is fre-
quently presented at some specialized web pages integrating informa-
tion about the similar services. In many such information systems, the
registered providers of service dynamically obtain likes or dislikes from
the customers and the weighted resulting grade of each provider in
some scale (e.g., in the range from 1 to 5 or from 1 to 10) is presented
on the web page. The non-indifferent customer can take into account
these grades in making the decision regarding the choice of the suitable
service provider. Thus, the average arrival rate of such customers to the

concrete system may essentially vary depending on its rating.
In our paper, we consider a situation when the number of competing

providers (systems) is equal to two. Without loss of generality, instead
of separate ratings of the providers we consider a comparative rating of
one provider (we call it as System-1) with respect to another one
(System-2). It is natural that the customer that did not succeed to re-
ceive service, e.g., he/she did not succeed to enter System-1 because it
is overloaded or he/she left the queue due to a very long waiting time,
may give negative evaluation of quality of service (which may cause the
decrease of relative rating of System-1). Analogously, the failure of a
customer in attempt to receive service at System-2 may imply the in-
crease of the comparative rating of System-1. In this paper, we assume a
concrete specific count of the comparative rating of System-1 and de-
rive formulas for computation of the main performance measures of the
systems under any fixed set of the systems parameters. Results can be
used for managerial goals aiming to increase the profit of System-1.
These results can be also used for searching the equilibrium points
when System-1 and System-2 will cooperate.

Models with competing queues are discussed in the literature. For
some survey of the state-of-art, see the recent papers [8] and [14]. In
[14], a competition of two single-server queues arising in modeling
two-tier healthcare service system consisting of two different service
providers is analysed. The service in the system is provided by two
different providers. One of them is a public service provider and the
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second is a private one. One service provider offers a subsidy or charges
a premium while the other maintains the fixed service fee.

The important contributions of our paper over the existing ones are:
(i) the consideration of a more general queueing model, assuming a
more general, state dependent, potentially bursty and correlated arrival
process, multi-server service systems, possible abandonment and jock-
eying of customers from one system to another; (ii) introducing the
relative rating as the natural mechanism defining the choice made by
the customers depending on the comparison of the current levels of the
quality of service in the competing systems and illustration of the work
of this mechanism. As a quite general model of the heterogeneous
customers arrival, the so-called marked Markovian arrival process
(MMAP), see [10], is considered in the existing literature. This arrival
flow is the extension of the well-known Markovian arrival process
(MAP), see [3,12,13], that is now very popular for modeling real-world
arrival flows to the case when arriving customers are heterogeneous.
But, due to the necessity to account of the comparative rating, which
dynamically changes the distribution of types of arriving customers, the
arrival flows of customers entering System-1 and System-2 are essen-
tially more complicated than the MAP or MMAP. Such arrival processes
were not considered in the existing literature. In this paper, we in-
troduce a new heterogeneous arrival process with rating dependent
arrivals which is a significant and important generalization of the
MMAP. It is worth to stress that arrival processes entering both systems
are strongly dependent and the exact mathematical analysis of the
considered queueing model via its decomposition into two separate
systems is not possible.

In some sense, the considered model is close to the queueing net-
works with parallel servers, see, e.g., [9]. However, in consideration of
the networks with alternative routing of the customers it is usually
assumed that the choice of the route does not dynamically depend on
the state of the network. In our model, if it would be interpreted as the
queueing network with two parallel multi-server stations, the choice of
the station by each non-indifferent customer permanently depends on
the evaluation (relative rating) of the quality of service by the custo-
mers at the alternative stations. This implies, in particular, the depen-
dence of the stochastic processes describing the operation of the com-
petitive service systems. In turn, this does not allow simplification of
the required analysis via decomposition of the system and obtaining a
product form solution. Note that queueing networks with the MAP ar-
rival process are insufficiently explored in the existing literature. For
references, see the recent papers [5,11] and references therein.

The remainder of the paper consists of the following. In Section 2,
the mathematical model is described in detail. In Section 3, the beha-
vior of the considered system is described by a continuous-time multi-
dimensional Markov chain. The generator of this chain is presented and
its derivation is explained. Formulas for computation of the key per-
formance measures of the system are presented in Section 4. Section 5
contains the numerical results illustrating application of the results of
the paper for making a decision about the reasonability of establishing
and maintaining the service system in presence of already existing al-
ternative system (by another owner) providing the same type of service.
Section 6 concludes the paper.

2. Mathematical model

We consider a queueing model consisting of two competitive
queueing systems. The first system (System-1) represents an N1-server
queue with a finite buffer of capacity N N1. The second system
(System-2) is an R1-server queue with a finite buffer of capacity R R .1
The structure of the model is depicted in Fig. 1.

It is assumed that both queueing systems provide the same type of
service and compete for customers. The service time of a customer at
System-l has an exponential distribution with the parameter

=µ l, 1, 2.l System-1 operates under our control and we aim to max-
imize the profit of System-1 by means of the optimal choice of its

parameters. We assume that we know the parameters of System-2,
however, we cannot control this system.

The arriving customers are divided into two kinds and the arrivals
are defined by the marked Markovian arrival process (MMAP), see He
[10]. Let us denote the underlying process of the MMAP as νt, t≥0.
This process is an irreducible continuous-time Markov chain with a fi-
nite state space {0, 1, ..., W}. The behaviour of the MMAP is described
by the matrices D0,D, D3. The non-diagonal entries of the matrix D0
define the intensities of transitions of the Markov chain νt which are not
accompanied by customer arrival. The modules of the negative diagonal
entries of the matrix D0 define the parameters of the exponential dis-
tribution of the sojourn time of the Markov chain νt in the corre-
sponding states. The entries of the non-negative matrix D define the
intensities of transitions of the Markov chain νt that are accompanied by
arrival of non-indifferent customers. These customers decide to which
system to enter depending on the rating of System-1 as it is explained
below. The entries of the non-negative matrix D3 define the intensities
of transitions of the Markov chain νt that are accompanied by arrival of
indifferent customers.

The intensities of transitions of this Markov chain are defined by the
generator = + +D D D D(1) .0 3 The average rate non indif of non-in-
different customers is calculated as = Denon indif where θ is the row
vector of the stationary state probabilities of the process νt defined as
the unique solution of the system = =D 0 e(1) , 1. Here, e is a
column vector of an appropriate size consisting of 1’s and 0 is a row
vector of an appropriate size consisting of zeroes.

The average rate λ3 of indifferent customers is calculated as
= D e.3 3 The total rate λ of customers’ arrival is defined as

= + .non indif 3 The squared coefficient of variation cvar of the in-
tervals between successive arrivals is given by =c D e2 ( ) 1.var 0

1

The coefficient of correlation ccor of two successive intervals between
arrivals is given by =c D D D ce( ( ) (1)( ) 1)/ .cor var0

1
0

1

The non-indifferent customers are divided into two classes. Type-1
customers arrive to System-1 and type-2 customers arrive to System-2.
The arrival intensities of customers of different types to the corre-
sponding systems depend on the current value of the comparative rating
of System-1. We assume that the comparative rating admits values in
the set K{1, , }. If the comparative rating of System-1 at an arbitrary
moment is equal to k, the intensities of the flow of type-1 customers are
given by the entries of the non-negative matrix D k

1
( ) and the intensities

of the flow of type-2 customers are given by the entries of the non-
negative matrix =D D D .k k

2
( )

1
( ) Let l

k( ) be the average arrival rate of
type-l customers, =l 1, 2, when the comparative rating of System-1 is
equal to =k k K, 1, . Here and in the sequel, the notation like =k K1,

Fig. 1. Structure of the model under study.
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means that the parameter k admits the values from the set K{1, , }.
The rates l

k( ) are computed by formula = D el
k

l
k( ) ( ) and

+ = .k k
non indif1

( )
2
( ) We assume that the splitting of the matrix D into

two matrices D k
1
( ) and D ,k

2
( ) = +D D Dk k

1
( )

2
( ) for all values of

=k k K, 1, , provides the fulfillment of inequalities

=+ + k K, , 1, 1,k k k k
1
( )

1
( 1)

2
( )

2
( 1)

i.e., the higher value of the rating implies the higher (at least, not
lower) rate of customers directing to System-1 (correspondingly, the
lower rate of customers directing to System-2).

If System- =l l, 1, 2, is not full during the arrival epoch of type-l
customer, the customer joins this system. If the buffer of System-l is full,
the customer tries to enter System-l̂ , =l l l^ 1, 2, ^ , with probability
pl and with the complimentary probability this customer leaves the
system (it is assumed to be lost). If the customer chooses to enter
System-l̂ but this system is full, the customer is also lost.

The indifferent (type-3) customers do not have any preference in
making a choice of a system. If there are free servers in both systems at
the type-3 customer arrival epoch, the customer chooses the system
equiprobable. If all servers in one of the systems are busy while another
system has idle servers, the customer occupies one of these idle servers.
If all the servers in System-1 and System-2 are busy but buffers are not
full, the type-3 customer joins the system with the shortest queue
length. If the numbers of customers in the buffers are equal and there
are free places in each buffer, the customer chooses the system equi-
probable. If one of the systems is full but the other system has free
places, the customer is admitted to the system that is not full. If at the
arrival epoch of a type-3 customer both systems are full, the customer is
lost.

We assume that customers are impatient. Impatience of customers,
i.e., abandonment of the service in case of too long waiting in the
queue, is the inherent feature of many real-world systems, see, e.g., [4].
We assume that the customer staying in the buffer of System-l leaves
this system after an exponentially distributed waiting time described by
the parameter < =l, 0 , 1, 2.l l After leaving System-l, the
customer tries to obtain service in System- =l l l l^, ^ 1, 2, ^ , with
probability pl and with the complimentary probability this customer is
assumed to be lost. If the customer chooses to enter System-l̂ , but this
system is full, the customer is lost.

In our model, an important role is played by the way of calculating
the comparative rating of System-1. The rating represents the estima-
tion of comparative quality of service in System-1 and System-2 and
reflects the attractiveness of System-1 over System-2 in the eyes of non-
indifferent customers. Although some more complicated ways for
computing the rating are possible (e.g., presence of some delay in re-
action of customers to the quality of service, smoothing the rating
variations, etc.) and deserve to be analysed, here we assume the fol-
lowing mechanism of establishing the rating. Let the comparative rating
of System-1 be equal to =k k K, 1, . If, at an arbitrary moment a loss of
a customer (due to the system overflow or impatience) occurs in
System-2, with probability y the rating of System-1 increases by one,
i.e., it becomes equal to +k Kmin{ 1, }. With the complimentary prob-
ability y1 the rating does not change. If, at an arbitrary moment a
loss of a customer occurs in System-1, with probability x the rating of
System-1 decreases by one, i.e., it becomes equal to kmax{1, 1}. With
the complimentary probability x1 the rating does not change. In
potential real-world applications, the parameters y and x may reflect,
e.g., the probability that a lost customer will leave a negative review in
specialized web pages. We assume that if the customer is lost in both
systems at the same time (a customer arrives when the systems are full
or tries to join the full system after the leaving the buffer of another
system), the comparative rating does not change.

It is evident that the owner or the manager of System-1 can have
essential impact on the rating of his/her system. E.g., the average value
of the rating of System-1 can be increased by means of the corre-
sponding investments via the increase of the number of servers and the
buffer capacity, the service rate, etc. It is natural that the increase of the
comparative rating of System-1 has to lead to the reduction of the ar-
rival flow to System-2. Therefore, the manager of System-2 can take
certain actions to improve the quality of service in System-2 and im-
plicitly to decrease the rating of System-1. In this paper, we analyse the
operation of the queueing model under the fixed sets of the parameters
of both systems. Based on these results, various problem formulations in
terms of game theory are possible. E.g., it is possible to check whether
or not it is possible to devastate the competing system or what is the
value of the guaranteed profit of Server-1, what is the equilibrium
point, how to reach Pareto equilibrium, etc.

3. The process of the system states

It is easily observed that the behavior of the system under study can
be described in terms of the following regular irreducible continuous-
time Markov chain

= n r k t{ , , , }, 0,t t t t t

where, at moment t, t≥0,

• nt is the number of customers in System-1, =n N0, ;t

• rt is the number of customers in System-2, =r R0, ;t

• kt is the value of comparative rating, =k K1, ;t

• νt is the state of the underlying process of the MMAP, = W0, .t

Since this Markov chain is irreducible and has a finite state space,
the stationary probabilities of the system states

= = = = = =

= = =

n r k P n n r r k k n N

r R k K W

( , , , ) lim { , , , }, 0, ,

0, , 1, , 0, ,
t

t t t t

exist for any values of the system parameters.
Let us enumerate the states of the process ξt, t≥0, in the direct

lexicographic order of the components {rt, kt, νt}. Corresponding to this
enumeration, we form the row vectors =n N, 0, ,n as follows:

= … =
= =
n r k n r k n r k n r k W n N

r R k K
( , , ) ( ( , , , 0), ( , , , 1), , ( , , , )), 0, ,

0, , 1, ,

= … = =n r n r n r n r K n N r R( , ) ( ( , , 1), ( , , 2), , ( , , )), 0, , 0, ,

= … =n n n R n N( ( , 0), ( , 1), , ( , )), 0, .n

It is well known that the probability vectors =n N, 0, ,n satisfy the
following system of linear algebraic equations:

= =G 0 e( , , , ) , ( , , , ) 1 (1)N N0 1 0 1

where G is the generator of the Markov chain ξt, t≥0.

Theorem 1. The generator G of the Markov chain ξt, t≥0, has the
following block-tridiagonal matrix structure:

=

…
…
…

…

G G O O O
G G G O O

O G G O O

O O O G G

G .

N N N N

0,0 0,1

1,0 1,1 1,2

2,1 2,2

, 1 ,

The non-zero blocks have the following form:
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=

…
…

…
…

G

G G O O O
G G G O O

O O O G G
O O O G G

(2)n n

n n n n

n n n n n n

n n
R R

n n
R R

n n
R R

n n
R R

,

,
0,0

,
0,1

,
1,0

,
1,1

,
1,2

,
1, 1

,
1,

,
, 1

,
,

where

=

+ + +> >(
)

G I D

n N r R n N µ

r R µ I

( ) ( ) min{ , } min

{ , } ,

n n
r r

K

n N r R

KW

,
,

0

1 1 2 1 1 1

1 2 ¯

1 1

= =r R n N0, 1, 0, 1,

=

+ + + +>( )
G I D

n N R R n N µ R µ I( ) ( ) min{ , }
n n
R R

K

n N KW

,
,

0

1 1 2 1 1 1 1 2 ¯1

+ + =+p yE y I I n N(1 ) (( (1 ) ) ), 0, 1,K K W2 2 ¯

=

+ + + +>( )
G I D

N N r R N µ r R µ I( ) ( ) min{ , }
N N
r r

K

r R KW

,
,

0

1 1 2 1 1 1 1 2 ¯1

+ + =p xE x I I r R(1 ) (( (1 ) ) ), 0, 1,K K W1 1 ¯

= + + + +G I D N N R R N µ R µ I( ( ) ( ) )N N
R R

K KW,
,

0 1 1 2 1 1 1 1 2 ¯

+ + + +p xE x I I p(1 ) (( (1 ) ) )K K W1 1 ¯ 1 1

+ + + ++p yE y I I p I D(1 ) (( (1 ) ) ) ,K K W K2 2 ¯ 2 2 3

= + + ++
< < <G (0.5n n

r r
r R n N r R n N,

, 1
2 ( ) ( ) ( ) ( )1 1 1 1

+ +

= =
= < I D

r R n N

0.5 ) ,

0, 1, 0, 1,
r R n N r R n N r R n N r R n N K( ) ( ) ( ) ( ) ( ) ( ) 31 1 1 1 1 1 1 1

= + + +

= =

+G I D p xE x I I

r R n N

(( (1 ) ) ),

0, 1, 0, 1,
N N
r r

K K K W,
, 1

2 3 1 1 ¯

= + + =

=
> +G r R µ I r R p yE y I I r R

n N

min{ , } ( )(1 )( (1 ) ) , 1, ,

0, 1,
n n
r r

KW r R K K W,
, 1 1 2 ¯ 1 2 1 2 ¯

= + + +

=

> +G r R µ I r R p yE y I p I I

r R

min{ , } ( )((1 )( (1 ) ) ) ,

1, .
N N
r r

KW r R K K K W,
, 1 1 2 ¯ 1 2 1 2 2 ¯

=

…
…

…
…

+

+

+ +

+

+ +

G

G O O O O
G G O O O

O O O G O
O O O G G

(3)n n

n n

n n n n

n n
R R

n n
R R

n n
R R

, 1

, 1
0,0

, 1
1,0

, 1
1,1

, 1
1, 1

, 1
, 1

, 1
,

where

= + + ++ < < <G (0.5n n
r r

r R n N r R n N, 1
,

1 ( ) ( ) ( ) ( )1 1 1 1

+ +

= =
= > I D

r R n N

0.5 ) ,

0, 1, 0, 1,
r R n N r R n N r R n N r R n N K( ) ( ) ( ) ( ) ( ) ( ) 31 1 1 1 1 1 1 1

= + + +

=
+

+G I D p yE y I I

n N

(( (1 ) ) ),

0, 1,
n n
R R

K K K W, 1
,

1 3 2 2 ¯

= + =

=
+ >

+G p r R yE y I I r R

n N

( )( (1 ) ) , 1, ,

0, 1.
n n
r r

r R K K W, 1
, 1

2 2 1 ¯1

=

…
…

…
…

G

G G O O O
O G G O O

O O O G G
O O O O G

(4)n n

n n n n

n n n n

n n
R R

n n
R R

n n
R R

, 1

, 1
0,0

, 1
0,1

, 1
1,1

, 1
1,2

, 1
1, 1

, 1
1,

, 1
,

where

=

+ +

= =
>

G n N µ I

n N p xE x I I

r R n N

min{ , }

( )(1 )( (1 ) ) ,

0, 1, 1, ,

n n
r r

KW

n N K K W

, 1
,

1 1 ¯

1 1 1 ¯1

=

+ + +

=
>

G n N µ I

n N p xE x I p I I

n N

min{ , }

( )((1 )(( (1 ) ) ) ,

1, .

n n
R R

KW

n N K K K W

, 1
,

1 1 ¯

1 1 1 1 ¯1

= + =

=

+
>G p n N xE x I I r R

n N

( )( (1 ) ) , 0, 1,

1, .
n n
r r

n N K K W, 1
, 1

1 1 1 ¯1

Here,

• I is the identity matrix of an appropriate dimension,
• O is a zero matrix of an appropriate dimension,
• ⊗ indicates the symbol of the Kronecker product of matrices, see [7],
• = +W W¯ 1,
• = 1condition if condition is true, and = 0condition otherwise,
• l is the block-diagonal matrix with the diagonal blocks

= =D k K l, 1, , 1, 2,l
k( )

• E and +E are the square matrices of size K which are used for the
description of the changes of the rating when it decreases and increases,
correspondingly. They are defined as follows:

A.N. Dudin, et al. Operations Research Perspectives 7 (2020) 100139

4



=

…
…
…

…

=

…
…

…
…

+E E

1 0 0 0 0
1 0 0 0 0
0 1 0 0 0

0 0 0 1 0

,

0 1 0 0 0
0 0 1 0 0

0 0 0 0 1
0 0 0 0 1

.

Proof. of Theorem 1 is implemented by means of analysis of possible
transitions of the Markov chain during an interval of the infinitesimal
length.

The generator G has a block-tridiagonal structure (i.e. =G On n,1 2 if
>n n| | 11 2 ) because the probability that more than one customer ar-

rives or leaves System-1 during an infinitesimally small interval is
negligible.

• The matrices =G n N, 0, ,n n, have block-tridiagonal form (2) be-
cause the probability that more than one customer arrives or leaves
System-2 during an infinitesimally small interval is negligible. The
diagonal entries of the matrix = =G r R n N, 0, , 0, ,n n

r r
,
, are negative.

They define, up to the sign, the intensities of leaving the corre-
sponding states of the Markov chain. To compute the values of these
diagonal entries, we have to analyse the existing reasons of leaving a
state of the Markov chain:
1) The underlying processes of the MMAP makes a transition.

Basically, the corresponding intensities are defined by the diag-
onal entries of the matrix IK⊗D0. However, it is necessary to take
into account that not all transitions lead to the departure from
the corresponding state of the Markov chain. We list several cases
when the transition of the underlying processes from some state
to the same state occurs with generation of customers but this
does not imply the exit from the corresponding state of the
Markov chain. If = <r R n N, , an arrival of a type 2 customer
with probability p(1 )2 leads to the loss of this customer what
does not imply the change of the rating of System-1 with prob-
ability y(1 ) if the rating k is more than 1 and with probability
1 if the rating k is equal to 1. In this case, we have to add to the
diagonal entries of the matrix IK⊗D0 the diagonal entries of the
matrix ++p yE y I I(1 ) (( (1 ) ) ).K K W2 2 ¯ By the analogy, in
the case = <n N r R, , we have to add to the diagonal entries of
the matrix IK⊗D0 the diagonal entries of the matrix

+p xE x I I(1 ) (( (1 ) ) ).K K W1 1 ¯ In the case =n N and
=r R, we have to add to the diagonal entries of the

matrix IK⊗D0 the diagonal entries of the
matrix + + +p xE x I I p p(1 ) (( (1 ) ) ) (1 )K K W1 1 ¯ 1 1 2

+ + ++yE y I I p I D(( (1 ) ) )K K W K2 ¯ 2 2 3 which define
the intensities of arrival of an arbitrary type customer without
changing the state of the MMAP underlying process and further
loss of the customer without changing the rating.

2) A customer leaves the buffer of System-1 due to impatience.
Corresponding intensities are given by the entries of the matrix

> n N I( ) .n N KW1 1 ¯1
3) A customer leaves the buffer of System-2 due to impatience.

Corresponding intensities are given by the entries of the matrix
> r R I( ) .r R KW2 1 ¯1

4) Service of a customer is completed at System-1. Corresponding
intensities are given by the entries of the matrix n N µ Imin{ , } .KW1 1 ¯

5) Service of a customer is completed at System-2. Corresponding
intensities are given by the entries of the matrix r R µ Imin{ , } .KW1 2 ¯

As the results of these considerations, we obtain the values of the
diagonal entries of the matrix G .n n

r r
,
,

Now, let us compute the non-diagonal entries of the matrices
= =G r R n N, 0, , 0, ,n n

r r
,
, that define the intensities of transitions

that do not lead to the change of the number of customers in
System-1 and System-2, but imply the change of the rating of the
system and (or) of the state of the underlying processes of the
MMAP. The events, which cause such transitions, are the

following:
1) A transition of the underlying process of the MMAP without

generation of a customer occurs. The intensities of such transi-
tions are defined by the non-diagonal entries of the matrix IK⊗D0.

2) A transition of the underlying process of the MMAP to another
state with generation of a customer and its further loss or a
transition to the same state with generation of a customer and its
further loss with changing the rating. In the case =r R, n<N,
the intensities of such transitions are given by the non-diagonal
entries of the matrix ++p yE y I I(1 ) (( (1 ) ) ).K K W2 2 ¯ In the
case = <n N r R, , the intensities of such transitions are given by
the non-diagonal entries of the matrix

+p xE x I I(1 ) (( (1 ) ) ).K K W1 1 ¯ In the case =n N and
=r R, the intensities of such transitions are given by the non-

diagonal entries of the matrix
+ +

+ + + ++

p xE x I I p

p yE y I I p I D

(1 ) (( (1 ) ) )

(1 ) (( (1 ) ) ) .
K K W

K K W K

1 1 ¯ 1 1

2 2 ¯ 2 2 3
The entries of the matrices = =+G r R n N, 0, 1, 0, ,n n

r r
,
, 1 define

the intensities of transitions that do not lead to the change of the
number n of customers in System-1 while lead to the increase of
the number r of customers in System 2. The events that cause
such transitions are the following:

1) An arrival of a type-2 customer. The corresponding transition
intensities are defined by the entries of the matrix .2

2) An arrival of a type-3 customer which decides to
join System-2. The corresponding intensities are defined
by the entries of the matrix IK⊗D3 multiplied
by + +< < < =(0.5 0.5r R n N r R n N r R n N r R n N( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1
+ < )r R n N r R n N( ) ( ) ( )1 1 1 1 in the case n<N and by 1 in the case

=n N .
3) An arrival of a type-1 customer when =n N and the transition of

this customer to System-2. The corresponding transition in-
tensities are defined by the entries of the matrix

+p xE x I I(( (1 ) ) ).K K W1 1 ¯

The entries of the matrices = =G r R n N, 1, , 0, ,n n
r r
,
, 1 define the

intensities of transitions that do not lead to the change of the
number n of customers in System-1 but lead to the decrease of the
number r of customers in System-2. The events that cause such
transitions are the following:

1) Service completion at System-2. The corresponding transition
intensities are defined by the entries of the matrix

r R µ Imin{ , } .KW1 2 ¯

2) A customer leaves System-2 due to impatience and
does not join System-1. The corresponding transition intensities
are defined by the entries of the matrix

+>
+r R p yE y I I( )(1 )( (1 ) )r R K K W2 1 2 ¯1 in the case n<N

and by the entries of the matrix
+ +>

+r R p yE y I p I I( )((1 )( (1 ) ) )r R K K K W2 1 2 2 ¯1 in the
case =n N .

• The matrix =+G n N, 0, 1,n n, 1 defines the intensities of the tran-
sitions that lead to the increase of the number of customers in
System-1 and has form (3).
The entries of the matrices = =+G r R n N, 0, , 0, 1,n n

r r
, 1
, define the

intensities of the transitions that lead to the increase of the number
of customers in System-1 without the change of the number of
customers in System-2. The events that cause such transitions are
the following:
1) An arrival of a type-1 customer. The corresponding intensities are

defined by the entries of the matrix .1
2) An arrival of a type-3 customer which decides to

join System-1. The corresponding intensities are defined
by the entries of the matrix IK⊗D3 multiplied
by + +< < < =(0.5 0.5r R n N r R n N r R n N r R n N( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1
+ > )r R n N r R n N( ) ( ) ( )1 1 1 1 if r< R and by 1 otherwise.

3) An arrival of a type-2 customer when =r R and immediate
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transition of this customer to System-2. The corresponding in-
tensities are defined by the entries of the matrix

++p yE y I I(( (1 ) ) ).K K W2 2 ¯

The entries of the matrices = =+G r R n N, 1, , 0, 1,n n
r r
, 1
, 1 define

the intensities of the transitions that lead to the increase in the
number of customers in System-1 and decrease in the number of
customers in System-2. This can happen if a customer leaves
System-2 and joins System-1. The corresponding intensities are
defined by the entries of the matrix

+>
+p r R yE y I I( )( (1 ) ) .r R K K W2 2 1 ¯1

• The matrix =G n N, 1, ,n n, 1 defines the intensities of transitions
that lead to the decrease of the number of customers in System-1
and has form (4).
The entries of the matrices = =G r R n N, 0, , 1, ,n n

r r
, 1
, define the

intensities that lead to the decrease in the number of customers in
System-1 and no change of the number of customers in System-2.
The events that cause such transitions are the following:
1) Service completion at System-1. The corresponding transition

intensities are defined by the entries of the matrix
n N µ Imin{ , } .KW1 1 ¯

2) A customer leaves System-1 due to impatience and
does not join System-2. The corresponding intensities
are defined by the entries of the matrix

+> n N p xE x I I( )(1 )( (1 ) )n N K K W1 1 1 ¯1 in the case r< R
and by the entries of the matrix

+ +> n N p xE x I p I I( )((1 )(( (1 ) ) )n N K K K W1 1 1 1 ¯1 in the
case =r R.
The entries of the matrices = =+G r R n N, 0, 1, 1, ,n n

r r
, 1
, 1 define

the intensities of transitions that lead to the decrease in the
number of customers in System-1 and the increase in the number
of customers in System-2. This can happen if a customer leaves
System-1 and joins System-2. The corresponding intensities are
defined by the entries of the matrix

+> p n N xE x I I( )( (1 ) ) .n N K K W1 1 1 ¯1

This completes the proof. □

Markov chains having the block-tridiagonal structure of the gen-
erator G are called in the literature as Level Dependent Quasi-Birth-and-
Death processes. The number of equations of system (1) may be high.
Therefore, to solve this system, we recommend to use some algorithm
that effectively uses the sparse structure of the generator G. In parti-
cular, we recommend the algorithm from [1]. Note that it is possible to
compute the listed below important performance measures of the
system without preliminary computation of the stationary distribution
of the Markov chain. To this end, a memory-efficient method developed
in [2] can be applied.

4. Performance measures

As soon as the vectors =n N, 0, ,n have been computed, we can
determine various performance measures of the queueing systems
under consideration.

The average number of customers in System-1 is

=
=

N n e.sys
n

N

n
(1)

1

The average number of customers in System-2 is

=
= =

N r n r e( , ) .sys
n

N

r

R
(2)

0 1

The average number of busy servers in System-1 is

=
=

N n N emin{ , } .serv
n

N

n
(1)

1
1

The average number of busy servers in System-2 is

=
= =

N r R n r emin{ , } ( , ) .sys
n

N

r

R
(2)

0 1
1

The average number of customers in the buffer of System-l is

= =N N N l, 1, 2.buffer
l

sys
l

serv
l( ) ( ) ( )

The average rating K̄ of System-1 is

=
= = =

K k n r k e¯ ( , , ) .
n

N

r

R

k

K

0 0 1

The output intensity of successfully serviced customers from
System-l is

= =µ µ N l, 1, 2.out
l

l serv
l( ) ( )

The average intensity of type-l customers is

= =
= = =

n r k D le( , , ) , 1, 2.l
n

N

r

R

k

K

l
k

0 0 1

( )

The probability that a type-3 customer will be lost upon arrival is

=P N R I D e( , )( ) .arr loss
K3 3

1
3

The probability that an arriving type-3 customer decides to join
System-1 is

= + +
= =

< < <P ( (0.5best
n

N

r

R

r R n N r R n N1
0

1

0

1

( ) ( ) ( ) ( )1 1 1 1

+ +

+
= > n r

n R

e

e

0.5 ) ( , )

( , ) ).
r R n N r R n N r R n N r R n N( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1

The probability that an arriving type-3 customer decides to join
System-2 is

= + +
= =

< < <P ( (0.5best
r

R

n

N

r R n N r R n N2
0

1

0

1

( ) ( ) ( ) ( )1 1 1 1

+ +

+
= < n r

N r

e

e

0.5 ) ( , )

( , ) ).
r R n N r R n N r R n N r R n N( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1

The probability that System-1 is full

=P e.busy N
(1)

The probability that System-2 is full

=
=

P n R e( , ) .busy
n

N
(2)

0

The average intensity of customer arrivals to System-1 is

= + +

+ + +

= =

= =
< < <

p N p n R k D e( , , )

( ( (0.5

arrival buffer
n

N

k

K
k

n

N

r

R

r R n N r R n N

(1)
1 2 2

(2)
2

0 1
2
( )

0

1

0

1

( ) ( ) ( ) ( )1 1 1 1

+ +

+ +
= > n r

n R N R I D e

0.5 ) ( , )

( , )) ( , ))( ) .
r R n N r R n N r R n N r R n N

K

( ) ( ) ( ) ( ) ( ) ( )

3

1 1 1 1 1 1 1 1

The average intensity of customer arrivals to System-2 is

= + +

+ + +

= =

= =
< < <

p N p N r k D e( , , )

( ( (0.5

arrival buffer
r

R

k

K
k

r

R

n

N

r R n N r R n N

(2)
2 1 1

(1)
1

0 1
1
( )

0

1

0

1

( ) ( ) ( ) ( )1 1 1 1
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+ +

+ +
= < n r

N r N R I D e

0.5 ) ( , )

( , )) ( , ))( ) .
r R n N r R n N r R n N r R n N

K

( ) ( ) ( ) ( ) ( ) ( )

3

1 1 1 1 1 1 1 1

Note, that we assume that the indifferent customer who arrives when
both systems are busy is rejected in each system.

The loss probability of an arbitrary customer in System-l is

= =P
µ

l1 , 1, 2.loss
l out

l

arrival
l

( )
( )

( )

The loss probability of an arbitrary customer in System-l due to
impatience is

= =P
N

l, 1, 2.imp loss
l l buffer

l

arrival
l

( )
( )

( )

The loss probability of an arbitrary customer upon arrival to System-
l is

= =P P P l, 1, 2.ent loss
l

loss
l

imp loss
l( ) ( ) ( )

5. Numerical examples

The goals the numerical experiment are to demonstrate the feasi-
bility of the presented algorithms for computation of performance
measures of the system and illustrate dependencies of some measures
on the number of servers in the competing systems. In this numerical
experiment, we consider the question whether or not it is reasonable to
open a small business (store, cafeteria, hairdressing salon, etc) given
that we know that a similar business (the potential competitor) is al-
ready working in the same region. First of all, we should formulate an
economic criterion of our future operation. Then, we have to choose the
parameters defining the operation of our business (system) that provide
the best value of the cost criterion under the known fixed values of the
parameters of the competitor’s system. However, to make a correct
decision, we must take in mind that the competitor can react on the
start of operation of our system by changing some parameters of his/her
system and our initial choice of the parameters of our system may be-
come non-optimal and our profit will become less than its expected
value. Therefore, in order to make a decision about the reasonability of
opening our business, it is necessary to evaluate our guaranteed po-
tential profit as the maximum of the value of the cost criterion under all
possible choices of the parameters defining operation of the system
owned by our competitor.

Let a competitor has the premises where there is an opportunity to
accommodate R R, [1, ,10],1 1 servers and there are =R R 121
places for waiting the service. Let we have an opportunity to accom-
modate N N, [1, , 15],1 1 servers and there are =N N 101 places for
waiting. In this example, we assume that we and our competitor can
control only the number of servers.

We assume that an economic criterion of quality of the parameters
choice for our system, that defines our expected profit during a unit of
time, is as follows:

=J N R a µ b N c N N( , ) ( )out1 1 1 1
(1)

1 1 1 1

where a1 is the profit obtained from service of one customer, b1 is the
charge paid for using one server per unit of time, and c1 is the charge
paid for one place in the buffer per unit of time.

The criterion of operation of the competitor is similar:

=J N R a µ b R c R R( , ) ( )out2 1 1 2
(2)

2 1 2 1

where the meaning of the costs a2, b2, c2 is the same as the meaning of
the costs a1, b1, c1 defined above.

Note that both J1(N1, R1) and J2(N1, R1) depend on N1 and R1 be-
cause the output intensities µout

l( ) of successfully serviced customers from
System- =l l, 1, 2, depend on N1 and R1.

Our purpose is to find the value N*1 such that either <J N R( *, ) 02 1 1
for any R1 (this means that the profit of the competitor at the unit of
time is negative and his/her business may be ruined due to the start of
our business) or which provides maximum to the value J N Rmin ( , ).

R
1 1 1

1
The value J N Rmaxmin ( , )

N R
1 1 1

1 1
defines our optimal guaranteed profit (ir-

respectively on the activity of the competitor). It is natural that the
minimum of this value is taken only among the values of R1 such that
J2(N1, R1)> 0, i.e., such a value of R1 under the fixed value of N1
provides the positive profit to our competitor. Otherwise, he/she does
not able to use such a number R1 of servers.

We did not apply the results to a real system and choose the para-
meters of the systems based on common sense reasonings. Let us as-
sume that the parameters of the systems are defined as follows. The
MMAP arrival flow of customers is defined by the matrices

= =

=

D D

D

5.40656 0
0 0.17552 , 4.02796 0.02696

0.07332 0.05832 ,

1.34264 0.009
0.02444 0.02444 .

0

3

This arrival flow has the coefficient of correlation of successive inter-
arrival times =c 0.2,cor and the coefficient of variation of inter-arrival
times =c 12.var The total customers’ arrival rate is = 4, the average
rate of indifferent customers having no preferences is = 1,3 and the
average rate of arrival of non-indifferent customers is = 3.non indif

We assume that the comparative rating of our system can change
over the interval K[1, , ] where =K 20. Let the probabilities qk define
the dependence =D q Dk

k1
( ) of the matrices D k

1
( ) that contain the in-

tensities of the transitions of the underlying process νt, which are ac-
companied by a customers arrival to our system, when the rating of the
system is equal to k. We assume that these probabilities are given by

= + =q k k0.3 ( 1), 1, 20.k
0.4
19 This implies that when our system has

the lowest rating equal to 1, only 30 % of non-indifferent customers
prefer to go to our system, while 70 % of non-indifferent customers
prefer to go to our competitor’s system. When our system has the
highest rating equal to 20, then 70 % of non-indifferent customers
prefer to go to our system.

The other systems’ parameters are fixed as follows. The intensities of
customers abandonment from the queues in System-1 and System-2 are
defined by = 0.061 and = 0.07.2 The service rates are given by

=µ 0.51 and =µ 0.55,2 correspondingly. The probabilities that a cus-
tomer arrives to the system when it is full and tries to enter the alter-
native system are given by =p 0.651 and =p 0.7,2 respectively. The
probabilities x and y are chosen as = =x y0.01, 0.01. This means that
the loss of 100 customers in each system implies the decrease or in-
crease (by one) of the comparative rating of our system.

Below we present the results of computation of some performance
measures of the systems and the values of cost criteria for ourselves and
our competitor for all 150 pairs (N1, R1) where =R 1, 101 and

=N 1, 15.1 The total time required to compute the stationary distribu-
tion of the states and the main performance measures for all pairs (N1,
R1) of the considered model on PC with an Intel Core i7-8700 CPU and
16 GB RAM is about 22 minutes.

Figs. 2 and 3 define the dependencies of the output intensities µout
(1)

and µout
(2) of successfully serviced customers from our system (System-1)

and System-2 on the values of R1 and N1.
These figures confirm the intuitively obvious facts that the output

intensity from each system increases when the number of servers at this
system increases. This increase is more essential when the competing
system has less servers and, as a consequence, the smaller rating and,
due to this, smaller customers arrival rate.

Figs. 4 and 5 illustrate the dependencies of the probability Ploss
(1) of

loss of an arbitrary customer in System-1 and the probability Ploss
(2) of loss

of an arbitrary customer in System-2 on the values of R1 and N1.
Figs. 4 and 5 show that the loss probability in each system is pretty
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high when the number of servers in this system is small. Then this
probability quickly decreases to a very small value with grows of the
number of servers. The loss probability in each system also significantly
depends on the number of servers in the competing system and de-
creases when this number grows.

Figs. 6 and 7 define the dependencies of the average rating K̄ and
the probability P best1 that an arriving indifferent (type-3) customer
prefers to join System-1 on the values of R1 and N1.

The average rating K̄ of System-1 is about the maximum (about 20)
when the number of servers at this system is large, and when the
number of servers at System-2 is small. This rating is about the
minimum (about 1) when the number of servers in our system is small
while the number of servers in System-2 is large. More or less the same
behavior as the average rating exhibits the probability P .best1 However,
the shape of the surfaces is a bit different. The curves given by the cuts
of these surfaces, which are made parallel to axis N1, have different
intervals where they are convex or concave.

It is worth to note that essentially the qualitative behavior of per-
formance measures given on Figs. 2-7 is more or less intuitively clear.
The importance of the analysis presented in this paper stems from the
fact that our results allow to characterise the behavior of these mea-
sures quantitatively.

Now let us consider the formulated above optimization problem. Let
the cost coefficients in the economic criteria for System-1 and System-2
be fixed as = = = = = =a b c a b c5, 0.85, 0.08, 4.2, 0.9, 0.08.1 1 1 2 2 2

Figs. 8 and 9 show the dependence of the economic criterion J1(N1,
R1) of System-1 and the economic criterion J2(N1, R1) of System-2 on
the values of R1 and N1.

It can be verified that there is no N* such as <J N R( *, ) 02 1 1 for any
R1 and the optimal guaranteed profit of System-1, i.e. J N Rmaxmin ( , )

N R
1 1 1

1 1
is achieved when =N 101 and =R 61 and is equal to =J* 3.06565.

Fig. 3. Dependence of the output intensity µout
(2) of successfully serviced custo-

mers from System-2 on the values of R1 and N1

Fig. 4. Dependence of the probability Ploss
(1) of loss of an arbitrary customer in

System 1 on the values of R1 and N1

Fig. 5. Dependence of the probability Ploss
(2) of loss of an arbitrary customer in

System 2 on the values of R1 and N1

Fig. 2. Dependence of the output intensity µout
(1) of successfully serviced customers

from System-1 on the values of R1 and N1

Fig. 6. Dependence of the average rating K̄ on the values of R1 and N1

Fig. 7. Dependence of the probability P best1 that an arriving type-3 customer
prefers to join System-1 on the values of R1 and N1
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Taking into account this value of the optimal guaranteed profit of
our system per unit of time, the planned period of time of our system
operation and the initial investments required to start our business we
can make a decision whether or not this business is reasonable.

6. Conclusion

We analysed a queueing model consisting of two multi-server
queues with finite buffers and having a common arrival process. These
queues compete with each other. Some part of arriving customers
makes a choice of the queue, in which they will try to get service, al-
most independently of the quality of operation of the queues. Another
part makes a choice depending on the relative rating of System-1. The
rating varies depending on the share of lost (due to the buffer overfull
or due to impatience) customers at each queue. The stationary dis-
tribution of the states of both queues is computed. This allowed to
address the problem of the optimal choice of the number of servers of
System-1 under any possible choice of the number of servers of the
competitive System-2. Results are illustrated by a numerical example.

The results can be extended to the case of more than two compe-
titive queues and the systems with retrials of customers by following
Dudin and Dudina [6] and Yang et al. [15].
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