
Journal of Mathematical Sciences, Vol. 265, No. 2, August, 2022

MULTIPLICATION OF DISTRIBUTIONS
AND ALGEBRAS OF MNEMOFUNCTIONS

A. B. Antonevich and T. G. Shagova UDC 517.9

Abstract. In this paper, we discuss methods and approaches for definition of multiplication of dis-
tributions, which is not defined in general in the classical theory. We show that this problem is related
to the fact that the operator of multiplication by a smooth function is nonclosable in the space of
distributions. We give the general method of construction of new objects called new distributions, or
mnemofunctions, that preserve essential properties of usual distributions and produce algebras as well.
We describe various methods of embedding of distribution spaces into algebras of mnemofunctions.
All ideas and considerations are illustrated by the simplest example of the distribution space on a
circle. Some effects arising in study of equations with distributions as coefficients are demonstrated by
example of a linear first-order differential equation.
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1. Introduction

The theory of generalized functions (distributions) provides a possibility to solve various problems
of mathematical physics and of the theory of linear differential equations with smooth coefficients
(see [9, 23, 34, 37]). However, in the framework of this classical theory, one cannot define the product
of arbitrary distributions. This is an obstacle for applications to equations with generalized coefficients
and to nonlinear problems. This motivates the development of various approaches to the multiplication
problem for distributions (see [13–16, 25, 33, 38]). The greatest attention is attracted by [17, 18]. A
modification of their construction is proposed in [21], which contains a detail history of the problem as
well. The general approach is as follows: for a given space of distributions, we introduce new objects
preserving a number of distribution properties and forming algebras, i.e., admitting a well-posed
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multiplication. These objects are called new generalized functions, mnemofunctions, or nonlinear
generalized functions. In [3, 4], a general method of the constructing of such algebras is described. A
lot of works are devoted to the history and further development of the theory of such algebras and
their applications (see, e.g., [10, 24, 29, 31, 32]); it would not be possible to provide a review of such
works.

The goal of the present paper is broader than the discussion of methods related to introducing a
meaningful product of generalized functions from a given space. To be concrete, we illustrate general
considerations on the space of distributions on the circle, which is a quite simple example. The
explained approach is applicable for more complicated spaces of distributions as well.

2. Line Distribution Spaces

First, recall the definition of the space of generalized functions (distributions) on the line. The space
of test functions D(R) consists of functions ϕ infinitely differentiable on R and compactly supported,
i.e., such that ϕ(x) = 0 for |x| > Cϕ. In this space, the convergence is introduced as follows: a sequence
{ϕn} converges to the zero function if

(i) there exists C0 such that ϕn(x) = 0 for all n provided that |x| > C0;

(ii) the sequence {ϕ(j)
n (x)} of the derivatives of order j uniformly converges to zero for each j =

0, 1, . . .

There exists a topology τ on D(R) such that the convergence in it coincides with the introduced
convergence, but the description of this topology is rather cumbersome. Thus, only the notion of
the convergence in the specified space is usually used. Elements of the space D(R) are called test
functions.

A linear functional f is said to be continuous on the space D(R) if f(ϕn) → 0 for each sequence
{ϕn}, converging to zero in D(R). Usually, values of such functionals are denoted as follows: f(ϕn) :=
<f,ϕn>.

The space adjoint to D(R), i.e., the set D′(R) of linear continuous functionals on D(R), is called the
space of distributions (generalized functions) on R. In this space, the weak convergence is introduced:
a sequence {fn} of distributions converges to a distribution f0 if

<fn, ϕ> → <f0, ϕ> for each ϕ ∈ D(R).

In the space D′(R), the differentiation is defined by the relation <f ′, ϕ> := −<f,ϕ′> and the multi-
plication of each f ∈ D′(R) by each function g ∈ C∞(R) is defined as follows: <gf, ϕ> := <f, gϕ>.

If u is a locally integrable function, then the relation

<fu, ϕ> =

∫
u(x)ϕ(x)dx (2.1)

defines a distribution such that fu �= 0 provided that u is different from zero on a set of a positive
measure. This implies that the space L1

loc(R) is embedded into the space of distributions. If a
distribution can be represented by relation (2.1), then it is said to be regular.

A remarkable property of the space of generalized functions is the existence of derivatives of each
order for each distribution (including locally integrable functions); these derivatives are generalized
functions.

An example of a distribution that is not regular (they are called singular ones) is the Dirac delta
function, i.e., the functional <δ0, ϕ> = ϕ(0), which is the derivative (in the sense of generalized
functions) of the discontinuous Heaviside function

Θ(x) =

{
0, x ≤ 0,

1, x > 0.
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The function 1
x is not locally integrable, but a whole family of (singular) distributions can be associated

with it. They are defined as follows. The function g(x) = ln |x| is differentiable for x �= 0 and
g′(x) = 1

x . Since g is locally integrable, a regular distribution fg ∈ D′(R) corresponds to it. By

definition, P
(

1
x

)
= f ′

g, where the differentiation is treated in the sense of distributions.

The function gC(x) = ln |x| + CΘ(x) is differentiable for x �= 0 and its derivative is equal to 1
x for

x �= 0. The derivative of the function gC(x) in the sense of generalized functions is equal to

P
( 1
x

)
+ Cδ0. (2.2)

Thus, family (2.2) of distributions corresponds to the function 1
x .

The introducing of generalized functions as functionals on the space of test functions is not only
a successful mathematical trick; it has a physical interpretation as well. For example, the state of a
physical system is frequently described by means of an integrable function ρ(x) expressing the density
of the distribution of a numerical characteristic of a substance such as the mass, charge, energy,
temperature, etc. There are no physical devices measuring the value ρ(x) at a given point. Real
devices measure only averaged values expressed by relations of the kind∫

ρ(x)ϕ(x)dx

(if the density exists), where the function ϕ characterizes the particular device (the device function).
Thus, values that can be measured (only they have physical interpretations!) are values of the func-
tional corresponding to the function ρ(x). If there is no density of the substance distribution, then such
values are defined for all functions ϕ anyway; they define a functional on the set of device functions.

3. Multiplication Problem for Distributions

The multiplication introduced above is not defined for arbitrary distributions. In particular, this
means that the space D′(R) is not a differential algebra. Recall that a vector space G is called a
differential algebra if

• an associative and commutative multiplication is defined;
• a linear map G � f → f ′ ∈ G called the differentiation is defined;
• these operations satisfy the relation (fg)′ = f ′g + fg′.

Since the space of distributions is an extension of the space of ordinary functions such that the
differentiation operation is defined everywhere in it, Schwartz formulated the following task about the
next generalization step: to extend the space of distributions up to a differential algebra such that the
differentiation and multiplication are defined everywhere in it.

The first version of this Schwartz task was as follows: to construct a differential algebra G and a
linear embedding

R : D′(R) → G

such that the differentiation and multiplication in the space of distributions pass into the corresponding
operations in G, i.e., the following relations are satisfied:

R(f ′) = [R(f)]′ (3.1)

and

R(af) = R(a)R(f) for a ∈ C∞ and f ∈ D′(R). (3.2)

If such an algebra G is constructed, then the product of arbitrary distributions can be defined as an
element of G as follows:

f ⊗ g := R(f)R(g) ∈ G, f, g ∈ D′(R).
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However, it is found in [35] that the introduced multiplication is not associative: for example, the
expression

P
( 1
x

)
× x× δ0

takes different values under different sets of brackets. Namely,[
P
( 1
x

)
× x

]
× δ0 = 1× δ0 = δ0,

but

P
( 1
x

)
× [x× δ0

]
= P

( 1
x

)
× 0 = 0.

This example implies that it is impossible to define an associative and commutative multiplication
operation on the whole space D′(R) and, moreover, this space cannot be embedded into an associative
and commutative algebra so that properties (3.1) and (3.2) are fulfilled.

However, formal expressions containing products of multiplications occur in various applied prob-
lems, which causes the interest of many researchers to the problem to find products of distributions.

For almost all investigations in this direction, the starting point is as follows. A distribution f can
be approximated by a family of smooth functions fε. For distributions on the line, the most frequent
approximation method is as follows. Let ψ ∈ D(R) and

∫
R
ψ(t)dt = 1. Then the family of functions

ψε(t) =
1

ε
ψ
( t
ε

)
(3.3)

converges to δ0 and the supports of the functions ψε shrink to the origin. Let

Txψε(t) = ψε(t− x).

Then
fε(x) = <f, Txψε> (3.4)

is a family of smooth functions converging to f as ε → 0.
Sometimes, instead of families of smooth functions fε(x) depending on the continuously changing

positive small parameter ε, it is more convenient to consider sequences {fn} of such functions. If the
small parameter takes only the values 1

n , then the assertions provided below hold for this case as well.
Let fε(x) be a family of smooth functions converging to a distribution f and gε(x) be a similar

family for a distribution g. It is natural to define the product of distributions as the limit in the space
D′(R) of the corresponding distributions:

f × g := lim
ε→0

fεgε. (3.5)

However, such a product is not well defined due to the following two reasons:

(i) such a limit depends on the choice of the approximating families;
(ii) the existence of the limit is not guaranteed.

All the above is illustrated by the following examples.

Example 3.1. In the space of distributions, we have the limit relations einx → 0 and e−inx → 0.
This vanishing is very fast: the sequence <einx, ϕ> decreases faster than each power of 1/n. However,
einxe−inx = 1 → 1. Then, according to relation (3.5), we obtain that 0× 0 = 1, which has no sense.

Example 3.2. The product δΘ is not defined within the classical theory. Consider such a product
under the approximate approach.

Change the δ-function for its approximation of kind (3.3). Change the Θ-function for the function

Γε(x) = Γ
(
x
ε

)
, where

Γ(x) =

∫ x

−∞
γ(s)ds, γ ∈ D(R),

∫
R

γ(t)dt = 1.
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Then the product ψε(x)Γε(x) converges to Cδ in the space of distributions, where the constant

C =

∫
R

ψ(x)Γ(x)dx

depends on ψ and γ, i.e., on the selected approximations.

Example 3.3. Family (3.3) converges to the δ-function, but the squares

[ψε(t)]
2 =

1

ε2

[
ψ
( t
ε

)]2

of these functions have no limit in D′(R), i.e., this space contains no element to play the role of the
square of the δ-function; from this, one can conclude that such a square must belong to a wider space.

Introducing a product of distributions defined everywhere is prevented by properties (i)-(ii) formu-
lated above.

Property (i) reflects the fact that the multiplication operation (on its domain) is a discontinuous
map in the topology of the space of distributions and, moreover, this map cannot be closed in the said
topology. Property (ii) shows that the space that can contain products of distributions is to be wider
than the original space.

4. Closures of Nonclosable Operators

4.1. Extensions of linear operators. To analyze the above operators, we start from a special case
of the problem: we consider the problem to define products of distributions with a given distribution u.
Then we discuss relations between this problem and the general operator theory.

The multiplication by u is a linear operator U defined on the everywhere dense subspace C∞(R) ⊂
D(R) consisting of smooth functions. The problem to define the product uv for distributions v that
are not smooth functions is a problem to extend this operator, i.e., to define its continuation to a
wider subspace.

The constructing of extensions of linear operators is a classical problem. Its general formulation is
as follows. Let X be a topological vector space, X0 be its vector subspace, and A be a linear operator
acting from X0 a space Y. We have to construct its extension to a wider subspace (or to the whole X).

First, recall known facts about constructing such extensions. As an example, we take operators
in Banach spaces, but the reasoning in the case of locally convex topological vector spaces is totally
similar.

A special case of the considered problem is the continuation problem for a linear bounded functional
f0 : X0 → C, i.e., the case where Y = C. Due to the Hahn–Banach theorem, for each f0 there exists
a linear bounded functional f extending f0 to the whole space X.

If the subspace X0 is not everywhere dense, then, in the general case, the answer is negative even
for linear bounded operators: the existence of a bounded extension to the whole X is not guaranteed.
If X0 is everywhere dense in X, Y is a Banach space, and the operator A is bounded, then the problem
is trivial: there exists a unique extension of the operator to the whole X; it can be defined as follows.

For each x0 ∈ X there exists a sequence of points xn ∈ X0 converging to x0. For each such sequence,
the limit of the sequence of images Axn exists and does not depend on the choice of xn. This allows
one to define the following extension to the whole X:

Ãx0 = lim
n→∞Axn. (4.1)

This is a linear bounded operator from X to Y.
In the case of our concern, the considered linear operator is discontinuous and defined on an every-

where dense subspace X0. Let X1 be the subset of elements x0 ∈ X such that there exists a sequence
{xn} ⊂ X0 such that xn → x0 and lim

n→∞Axn exists. It seems to be natural to use relation (4.1) to

define the value of the sought extension at the point x0, but this extension is ill defined in the general

151



case because the right-hand side might depend on the choice of the sequence. If the limit does not
depend on the choice of the sequence, then the operator is said to be closable. Usually, the closability
property of the operator is treated as the following condition: if xn → 0 and lim

n→∞Axn = y exists,

then y = 0. If this condition is satisfied, then relation (4.1) defines the operator A on X1 well; this
operator is called the closure of the operator A. The so-called graph norm

‖x‖1 = ‖x‖+ ‖Ax‖
is defined on X1. The space X1 is complete with respect to this norm.

Example 4.1. A typical example of such a construction is the definition of the so-called strong
derivative. Let X = Y = L1[0, 1] and A be the differentiation operator defined on C1[0, 1] ⊂ L1[0, 1]:

(Ax)(t) = x′(t).

We say that a function u0 ∈ L1[0, 1] is strongly differentiable if there exists a sequence of un ∈ C1[0, 1]
such that un → u0 in L1[0, 1] and limu′n := y exists in L1[0, 1]. Then the function y is called the strong
derivative of the function u0. The strong derivative is well defined, which follows from the closability of
the differentiation operator with respect to the considered norms. Indeed, let un → 0 and limu′n = y
in L1[0, 1]. From the representation

un(x)− un(0) =

∫ x

0
u′n(s)ds (4.2)

and the convergence of the sequence {u′n} in L1[0, 1], we obtain the uniform convergence of the
sequence {un(x)− un(0)}. Therefore, it converges in L1[0, 1]. Since un → 0 in L1[0, 1], it follows that
the sequence of constant functions un(0) converges in L1[0, 1] as well, which is possible only under the
assumption that this number sequence converges. Hence, the sequence of un uniformly converges as
well and, therefore, converges to zero. We can pass to the limit in (4.2), which implies that∫ x

0
y(s)ds = 0 ∀ x,

which is possible only under the assumption that y(x) = 0 almost everywhere.
Thus, the operator of the strong differentiation is the closure of the operator of the classical differ-

entiation. All the above implies that the domain of this closure consists of functions representable in
the form

u(x) = u(0) +

∫ x

0
y(s)ds, where y ∈ L1[0, 1],

i.e., consists of absolutely continuous functions (according to Sobolev, this space is denoted by
W 1

1 [0, 1]).
The closure of the differentiation operator in the space L2[0, 1] is defined in the same way; the

domain of this closure consists of functions representable in the form

u(x) = u(0) +

∫ x

0
y(s)ds, where y ∈ L2[0, 1].

This subspace is denoted by W 1
2 [0, 1] or H

1[0, 1].

Example 4.2. In L1[0, 1], consider the following equation with an initial condition:

u′(x) = f(x), u(0) = C.

This is a degenerate case of the Cauchy problem. The operator A with the domain C1[0, 1] ⊂ L1[0, 1]
acting to the direct sum Y = L1[0, 1]⊕R according to the relation Au = (u′, u(0)) corresponds to this
problem. From the above reasoning, we obtain that this operator is closable as well, the domain of
the closure is W 1

1 [0, 1], and Au = (u′, u(0)), where u′ is the strong derivative.
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Example 4.3. Let an operator A be defined on C1[0, 1] ⊂ L1[0, 1] and act into the direct sum
Y = L1[0, 1]⊕R

2 according to the relation Au = (u′, u(0), u′(0)). This operator looks like the operator
from Example 4.2, but this case is qualitatively different. Indeed, the sequence of functions

un(x) =

{
x(1− nx)2, 0 ≤ x ≤ 1/n,

0, x > 1/n

is a subset of the domain and converges to zero in L1[0, 1], but the sequence of the images has a
nonzero limit: u′n → 0 in L1[0, 1], but u′n(0) = 1 → 1. This implies that the considered operator is
nonclosable.

4.2. Closures of nonclosable operators. In [2], the following question is considered: what oper-
ator can play the role of the closure of a nonclosable operator? The answer is natural. Actually, it is
already contained in the construction of the closure represented in another form.

The first step of this construction is to construct a set G̃ consisting of sequences {xn} ⊂ X0 such
that {xn} converges in X and the sequence {Axn} converges in Y. Sequences xn and x̃n are said to be
equivalent if xn − x̃n → 0 and A(xn − x̃n) → 0. Let G be the space consisting of classes of equivalent

sequences from G̃. On this space, the operator A : G → Y is defined so that it takes each equivalence
class to the element

G � {xn} → lim
n→∞Axn ∈ Y. (4.3)

The second step of the constructing of the closure is to verify that the map

G � {xn} → lim
n→∞xn ∈ X

establishes a bijection between G and a subspace X1 in X.
The first step of this construction is applicable to each linear operator because it does not use the

closeness.

Definition 4.1. The closure of the operator A with the domain X0 ⊂ X is the operator defined on
the constructed space G and acting according to relation (4.3).

To explain the difference between the case of a closable operator and a nonclosable one, we recall
the geometric interpretation of the described construction.

Let

G(A) = {(x,Ax) : x ∈ D(A)} ⊂ X ⊕ Y

be the graph of the operator. Then G̃ is the set of all Cauchy sequence in the sense of the norm
of X ⊕ Y lying in G(A), and the space G is the completion of the graph G(A). By virtue of the

completeness of X ⊕ Y, it is the closure of G(A). The action of the operator A is the projecting PY to
the second coordinate.

Let X1 be the projection of G(A) to X. The operator is closable if and only if there exists an
operator equal to the closure of the graph. This means that the projecting to the first coordinate is
injective, which allows us to identify each point from G(A) with its first projection. This yields an
operator defined on the subspace X1 in X.

If the operator is nonclosable, then the projecting PX to the first coordinate is not injective and
the nonzero subspace

M = P−1
X (0) = {y ∈ Y : ∃xn ∈ X0 such that xn → 0, Axn → y} ⊂ Y

arises. We call it the nonclosability measure of the operator A.
Then G is represented as the direct sum M ⊕ X1 and the projecting PX defines a structure of a

fiber space over X1 on G. Here, the preimage of a point x ∈ X1 is the set

P−1
X (x) = {(x, ξ) : ξ ∈ M}.
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It is not a vector subspace in G, but it has a natural vector-space structure, i.e., we deal with a vector
bundle. Thus, the constructed operator A is defined on elements of the vector bundle G over X1.

Example 4.4. Consider the closure of the operator from Example 4.3. In this example, the operator
A is defined on C1[0, 1] ⊂ L1[0, 1] and acts into the direct sum Y = L1[0, 1] ⊕ R ⊕ R according to
the relation Au = (u′, u(0), u′(0)). The nonclosability measure of this operator is the one-dimensional

subspace M = {(0, 0, ξ) ∈ L1[0, 1] ⊕ R ⊕ R}. The space G̃ is the set of sequences of un ∈ C1 such
that each one has four limits: the limits un → u0 and u′n → y of the two sequences of functions from
L1[0, 1] and the limits of the two number sequences {un(0)} and {u′n(0)}.

It is shown in Example 4.2 that the first and the second condition imply that the function u0 is
absolutely continuous and un(0) → u0(0). The considered case is specified as follows: the existence of
the derivative u′0(0) of the limit function u0 is not guaranteed and even its existence does not guarantee
the convergence of the sequence {u′n(0)} to u′0(0).

According to the general construction, two sequences from G̃ are said to be equivalent if all the
above limits coincide with each other.

Note that the arising equivalence classes are more narrow than the ones from Example 4.2 and each
equivalence class from Example 4.2 contains many various classes from the considered example.

The obtained equivalence class u consists of sequences of differentiable functions un converging to the
absolutely continuous function u0 in the special sense determined by the absolutely continuous function
u0 and the number ξ = limu′n(0); this number can be interpreted as the value u′(0) of the derivative.
Thus, each equivalence class related to u0 “remembers” the approximation way from un to u0, i.e.,
preserves an additional data about the behavior of the values u′n(0). In this example, the space of
classes of equivalent sequences is isomorphic to the space W 1

1 [0, 1]⊕R. Here, the closure of the operator
acts according to a relation looking like the relation for the original operator Au = (u′, u(0), u′(0)).
However, u′ is the strong derivative here and the value u′(0) is defined as lim u′n(0).

Regarding applications of this space, we note that, in classical function spaces, the solvability of
overdetermined Cauchy problem

u′(x) = f(x), u(0) = C0, u′(0) = C1, (4.4)

for arbitrary functions f ∈ L1[0, 1] fails. In the introduced space G, problem (4.4) has a solution for
each f ∈ L1[0, 1] and this solution is unique.

A similar space can be constructed by means of function families depending on the small parameter ε.
Such families naturally arise in the consideration of so-called singularly perturbed problems. The
simplest example is the Cauchy problem

εu′′(x) + u′(x) = f(x), u(0) = C0, u′(0) = C1 (4.5)

for the equation with a small parameter at the second derivative.
Let uε be solutions of problem (4.5) and vε be solutions of the similar problem

εv′′(x) + v′(x) = f(x), v(0) = C0, v′(0) = C2.

Both these families converge to the same absolutely continuous function u0 satisfying the Cauchy
problem

u′0(x) = f(x), u0(0) = C0, (4.6)

but they are not to be identified with each other because they are approximated to u0 by different
ways and each one contains an additional information about the approximation way: u′ε(0) = C1,
while v′ε(0) = C2. This means that it is natural to treat elements from the constructed extended space
isomorphic to W 1

1 [0, 1] ⊕R as solutions of problem (4.5).

Example 4.5. The classical question about relations between completions of a space with respect to
different norms is another example, analyzing which we face similar effects.
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Suppose that norms ‖x‖1 and ‖x‖2 are defined on the vector space X0. The problem is to describe
relations between the corresponding completions X1 and X2. If the norms are equivalent, i.e., there
exist constants such that ‖x‖1 ≤ C1‖x‖2 and ‖x‖2 ≤ C2‖x‖1, then X1 = X2, i.e., the completions
coincide with each other as vector spaces.

It frequently occurs that only one inequality ‖x‖1 ≤ C‖x‖2 is satisfied. In many examples, the
natural embedding of X2 into X1 takes place. For example, let X0 = C1[0, 1],

‖x‖1 =

∫ 1

0
|x(t)|dt, and ‖x‖2 =

∫ 1

0
|x(t)|dt+

∫ 1

0
|x′(t)|dt.

Then the completion with respect to the first norm is X1 = L1[0, 1], the completion with respect to
the second norm is X2 is the space W 1

1 [0, 1] consisting of absolutely continuous functions (in fact, it
is considered in Example 4.1), and W 1

1 [0, 1] ⊂ L1[0, 1] in the considered case.
However, the embedding of X2 into X1 is not guaranteed in the general case. For example, consider

the norms

‖x‖1 =

∫ 1

0
|x(t)|dt and ‖x‖2 =

∫ 1

0
|x(t)|dt+ |x(0)|

on X0 = C1[0, 1]. Here, we have another relation between spaces: the completion X1 is L1[0, 1] (as
above), while the completion X2 is isomorphic to L1[0, 1] ⊕ C and it is wider than X1 (unlike the
previous example).

This difference is explained as follows. Elements of the completion X2 are equivalence classes of
Cauchy sequences in the sense of the second norm. If {xn} is such a Cauchy sequence from the class
defining an element x ∈ X2, then the given inequality implies that this is a Cauchy sequence with
respect to the first norm as well and it defines an element from the completion X1. Thus, the following
continuous map is defined:

J : X2 � x → lim
n→∞xn ∈ X1.

However, it is not guaranteed that this map is injective, i.e., it is not guaranteed that it is an embedding
of X2 into X1. Its injectivity requires the additional norm coordination condition: if ‖xn‖1 → 0 and
{xn} is a Cauchy sequence in the sense of the second norm, then ‖xn‖2 → 0.

The relation to the problem of closures of operators is as follows. Let us treat the identity map
J0x = x of the space X0 as a map of the normed space (X0, ‖x‖2) ⊂ X2 into the normed space
(X0, ‖x‖1) ⊂ X1. Since J0 is a bounded linear operator, the map J is its closure defined on the
whole X2. However, it might occur that the inverse map J−1

0 acting from (X0, ‖x‖1) to (X0, ‖x‖2) is
a nonclosable operator. The norm coordination condition coincides with the closability condition of
this operator.

In the (general) case where the norm coordination condition is not satisfied, we obtain that the

map J has a nonzero kernel M. Therefore, X2 is not isomorphic to its image X̂2 = J(X2) ⊂ X1, but

is represented by the vector bundle X2 = X̂2 ⊕M.

4.3. Extended closures of linear operators. Get back to the extension problem for the operator
U of the multiplication by a given distribution u. From property (ii) of Sec. 3, we obtain that this
operator is nonclosable and its nonclosability measure is a nonzero subspace Mu ⊂ D′(R). Its closure
U in the sense of Definition 4.1 is an operator defined on a vector bundle Gu = Mu ⊕ X1 over the
subspace X1 ⊂ D′(R).

The problem to extend the operator U to distributions not belonging to X1 is still open. This
problem leads to another generalization of the closure construction.

Constructing the closure of the operator A, we consider the vector space G̃ consisting of sequences
of xn ∈ X0 such that {xn} converges in X and the sequence of the images Axn converges in Y. In this
case, two sequences are treated to be equivalent to each other if xn − x̃n → 0 and A(xn − x̃n) → 0. To
obtain the desired generalization, we omit the requirement of the existence of a limit of the sequence
of the images Axn.
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Consider the vector space Ĝ consisting of all sequences {(xn, Axn)} of points of the graph G(A)

such that {xn} converges in X. Let Ĝ0 be the subspace in Ĝ consisting of sequences such that xn → 0

and Axn → 0. Consider the quotient space Ĝ∗ = Ĝ/Ĝ0. Here, the passage to the quotient space is
equivalent to introducing the same equivalence relation as above: (xn, Axn) ∼ (x̃n, Ax̃n) if xn−x̃n → 0
and A(xn − x̃n) → 0.

Let Ŷ the space of all sequences (yn) in Y. Let

Y ∗ = Ŷ /Ŷ0, where Ŷ0 = {(yn) ∈ Y : yn → 0}.
Note that Y ∗ is an extension of the original space Y because the latter one is embedded into Y ∗ in a
natural way: each point y ∈ Y is mapped to the equivalence class consisting of sequences converging

to y. Once these spaces are introduced, the operator Â acting from Ĝ∗ to Y ∗ is defined as follows:

Â([(xn, Axn)]) = [(Axn)] ∈ Y ∗. (4.7)

As above, Ĝ∗ is isomorphic to X ⊕M here, and this space is treated as a vector bundle over X.

Definition 4.2. The extended closure of the operator A is the operator Â defined on the vector bundle

Ĝ∗ over X and acting into the extended space Y ∗ according to relation (4.7).

By the constructing of G ⊂ Ĝ∗, the operator A maps G into Y ⊂ Y ∗ and its action on G coincides

with the action of Â, i.e., the last operator is an extension of A.
Summarizing the above, we conclude that if a nonclosable operator A acts from X to Y, then the

extended closure acts in new spaces arising as results of constructions of the following two types:

(1) the subdivision of the original space X, which means that each point x ∈ X is decomposed into
a comprehensive family of new elements (fibers over x);

(2) adding new elements to the final space Y.

Note that similar operations are used already at the stage of the passage from ordinary functions to
generalized ones because the subdivision takes place apart from adding new elements: the function 1

x
is mapped not to a distribution, but to family of distributions.

Remark 4.1. From the viewpoint of applications, introducing new spaces for the closing of an opera-
tor is natural, which can be interpreted as follows. Assume that an action on a system is investigated.
In the original model of the phenomenon, it is assumed that the states of the system are described by
elements of the space X, while results of the action are described by elements of the space Y ; namely,
for several “simple” states (from the subspace X0 = D(A)), an operator A describing the result of the
action on the system is given: for each state x, we obtain the output result Ax ∈ Y.

The task is to describe the action result for more complicated states of the system. The case
where the passage to the closure of the graph leads to a multivalued operator corresponds to the case
where the original problem setting does not provide sufficient data to obtain an unambiguous answer
about the reaction of the system in a more complicated state. Constructing the closure in the new
sense proposes: the following solution of this problem: to obtain an unambiguous result, one needs
an additional information of the more complicated state corresponding to the point x0 ∈ X; namely,
the information about the growth of this state from simple states. In other words, for considered
systems, the problem setting needs a refinement: the state is described by specially constructed class
of equivalent sequences of xn ∈ D(A) and is not defined uniquely by the limit point x0 ∈ X.

From this viewpoint, the passage to the extension Ŷ of the space Y is required in the case where
the system is in the state x0 ∈ X and the sequence of Axn does not converge in Y, i.e., the result of
the experiment is not described by an element of the originally selected space Y.

4.4. Nonstandard extensions of the field R. Constructions described above are similar to con-
structions from the nonstandard analysis substantially applied in numerous problems (see [20]). Recall
the description of a nonstandard extension of the field R.
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Let R̂ be the space of all sequences {yn} in R. It is proved that, on the set N, there exists a (finitely
additive) measure μ defined on the algebra of all subsets of N and such that the value of μ(ω) is equal

either to 0 or to 1 for all ω ⊂ N and μ(ω) = 0 for each finite ω. Let R̂0 ⊂ R̂ be the subspace consisting
of sequences a.e. equal to zero with respect to the measure μ. The nonstandard extension of R is the
quotient space

R
∗ = R̂/R̂0.

This construction can be described in other terms as well. The space R̂ has the natural structure of an

algebra and R̂0 is one of its maximal ideals containing all finite sequences. Therefore, R∗ is a quotient
algebra with respect to the maximal ideal.

It turns out that the constructed space R
∗ is a field: if [(yn)] �= 0, then μ({n : yn �= 0}) = 1 and,

therefore, the sequence of

zn =

{
1
yn
, yn �= 0,

0, yn = 0

determines the element inverse to [(yn)].
Further, on the set of equivalence classes, the following order relation is introduced:

[(xn)] ≺ [(yn)], if xn ≤ yn a.e.

This order is linear: if μ({n : xn ≤ yn}) = 1, then [(xn)] ≺ [(yn)]; otherwise, μ({n : xn ≤ yn}) = 0
and, therefore, [(yn)] ≺ [(xn)].

We say that an element γ ∈ R
∗ is infinitely small if −a ≺ γ ≺ a for each positive a ∈ R. To each

number x ∈ R, the so-called monad is associated: this is the set of nonstandard numbers differing
from x by infinitely small values.

We say that an element Γ ∈ R
∗ is infinitely large if a ≺ |Γ| for each a ∈ R.

To each ordinary function f : R → R, its nonstandard extension f∗ : R∗ → R
∗ is associated by the

following relation similar to (4.7):

f∗([(xn)]) = [(f(xn))].

Thus, constructing the nonstandard analysis under the passage from R to R
∗, we use the operations

similar to the ones used above: the subdivision of points from R by means of the introducing of
infinitely small values and the adding of infinitely large values. The passage from a function to its
nonstandard extension corresponds to the passage from an operator to its extended closure.

5. Algebras of Mnemofunctions

The operator of the multiplication by a given distribution acts from the space of distributions into
itself, i.e., in terms of the previous section, we have X = Y . It is naturally to expect the extended
closure of such an operator to act from a new space Z into itself. Then, to construct Z operations
of two kinds are required: the subdivision of elements of the original space and its extension via
adding qualitatively new elements. As we show below, this occurs under the construction of algebras
of mnemofunctions.

According to the Schwartz setting, an extension of E up to a differential algebra, i.e., the construc-
tion of a differential algebra G(E) and an embedding R : E → G(E) can be treated as a solution of
the multiplication problem for elements from the given space E of distributions.

However, the Schwartz example shows that there are no embeddings satisfying conditions (3.1)-
(3.2). That is why algebras and embeddings possessing weaker properties were constructed. In this
direction, the result of [17] is the best known; a differential algebra and embedding are constructed
such that (3.2) is weakened as follows: only smooth functions are embedded together with their
multiplication, i.e.,

R(fg) = R(f)R(g) for f ∈ C∞, g ∈ C∞. (5.1)

One of the most broad and simple algebras of the specified type is constructed in [21].
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This research direction is called the nonlinear theory of generalized functions, the constructed differ-
ential algebras are called algebras of the Colombeau type, and their elements are called new generalized
functions or mnemofunctions.

In [3, 4], methods to construct desired algebras are analyzed and a general scheme to construct
them is proposed. This scheme is described below.

Usually, many different embeddings of R exist and each one provides a possibility to define the
product of arbitrary distributions as mnemofunctions: by definition, it is assigned that

u⊗R v = R(u)R(v) ∈ G(E). (5.2)

Since condition (3.2) cannot be satisfied, i.e., the multiplication defined by (5.2) cannot coincide with
the multiplication of distributions by smooth functions introduced above. Under such an approach,
the multiplication operation is corrected: it is changed to become associative.

The construction of desired differential algebras is based of families of smooth functions depending
on the small parameter ε. Each classical space E of distributions contains a subspace E consisting of
infinitely differentiable functions and this subspace is a differential algebra.

A family of operators Rε : E → E such that the family of smooth functions fε = Rεf converges to
f in E is called an approximation method for R.

If R is fixed, then the set of all families of smooth functions R(E) = {fε = Rεf : f ∈ E} is

not an algebra. Therefore, the first step of the construction is to select a differential algebra G̃(E)
consisting of families of smooth functions fε ∈ E and containing sets R(E) corresponding to “natural”
approximation methods.

The space G̃(E) is very broad. This is why the desired algebra G(E) of mnemofunctions is defined

as the quotient algebra G(E) = G̃(E)/J, where J is an ideal in G̃(E) invariant with respect to the
differentiation.

The main difficulty is to select the ideal J. The approximation method for R defines the map
E � u → [(Rεu)] ∈ G(E). This is an embedding if the relation [(Rεu)] = [(Rεv)] for the equivalence
classes implies the relation u = v. Consider the subspace

N = {(fε) ∈ G̃(E) : fε → 0 in E}.

If J ⊂ N, then Rεu−Rεv ∈ N, whence

u = limRεu = limRεv = v.

The obtained condition J ⊂ N is a restriction from above meaning that the ideal is not to be too large.
Note that N is not an ideal, which implies that J �= N. This distinction causes the decomposition
of the distribution from the original space into a family of elements of a new type (mnemofunctions)
constructed as the quotient space N/J.

Embeddings with additional properties (their properties are discussed below) are especially inter-
esting. Their validity is reduced to the requirement for the ideal to contain special elements, i.e., it is
sufficiently large. For example, if condition (5.1) is satisfied, then the ideal J contains the differences
Rε(f)Rε(g) − Rε(fg) for all f, g ∈ E . If condition (3.1) is satisfied, then the ideal J contains the
differences Rε(f

′)− [Rε(f)]
′ for all f ∈ E.

Thus, the ideal J is to satisfy two conditions of the opposite kind. Their compatibility is not
guaranteed. For example, if E = D′(R) and E = C∞(R), then there is no ideal containing the
differences Rε(f)Rε(g) −Rε(fg) for all f ∈ E , g ∈ E.

Consider the construction and investigation of mnemofunction algebras G(E) on the example of
the space of periodic distributions (see [7]). This space of generalized functions has a very simple
structure, which makes the obtained results more visible than in the general case.
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6. Space of Periodic Distributions

The circle treated as a manifold can be implemented as the subset S
1 = {z ∈ C : |z| = 1} of the

complex plane and as the quotient space T = R/2πZ. Respectively, the following two implementations
arise for spaces of functions or distributions on the space: they can be treated as 2π-periodic functions
of variable t on the line R and as functions of the complex variable z defined on S

1. Such spaces are
isomorphic and the isomorphism is established by means of the substitution z = eit. Each of these
implementations has its advantage in the following sense: the occurring relations.

The space C∞
2π(R) consists of complex-valued infinitely differentiable functions. The isomorphic

space C∞(S1) consists of functions infinitely differentiable on S
1. Note that the differentiation with

respect to the variable t under the presentation z = eit is meant (instead of the differentiation with
respect to z). If the function of variable z is defined and analytic in a neighborhood of the unit

sphere. then the relation of these derivatives is determined by the relation f ′ = iz df
dz . For example,

(zn)′ = inzn.
The topology on the space C∞(S1) is defined by means of the denumerable system of norms

pm(ϕ) =

m∑
j=0

max
z

|ϕ(j)(z)|, ϕ ∈ C∞(S1). (6.1)

the space of generalized functions (distributions) D′(S1) is defined as the space adjoint to the space
C∞(S1), i.e., consists of continuous linear functionals on C∞(S1). Usually, values of the functional f
at point ϕ are denoted as follows: f(ϕ) ≡ <f,ϕ>.

On the space D′(S1), the convergence corresponding to the ∗-weak topology in the adjoint space:
the sequence of fn converges to f if

<fn, ϕ> → <f,ϕ> for each ϕ ∈ C∞(S1).

A function defined on the circle can be integrated with respect to the complex variable z and with
respect to the real variable t. Since z = eit on the circle, we have dz = ieitdt and dt = 1

izdz = |dz| and
these integrals satisfy the relation∫ 2π

0
u(eit)dt =

∫
S1

u(z)|dz| =
∫
S1

u(z)
dz

iz
.

The space L1(S
1) (and, in particular, the space C(S1)) is embedded into D′(S1) according to the

relation

L1(S
1) � u → <u,ϕ> =

1

2π

∫
S1

u(z)ϕ(z)|dz| = 1

2π

∫ 2π

0
u(eit)ϕ(eit)dt. (6.2)

In the sequel, each integral is computed over the whole circle S
1. The normalizing factor 1

2π is intro-
duced to simplify relations provided below.

Each function ϕ from C∞(S1) is expanded into the Fourier series

ϕ(z) =
∞∑
−∞

ϕkz
k

converging in C∞(S1), where the Fourier coefficients are

ϕk =
1

2π

∫
ϕ(z)z−k|dz| = <ϕ, z−k>

and the sequence of ϕk decays faster than each power of 1
|k| . Therefore, elements from D′(S1) are

uniquely determined by their values on functions zk, k ∈ Z, and are represented by the Fourier series

f =

∞∑
−∞

Ckz
k, (6.3)
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where the Fourier coefficients are Ck = <f, z−k>. For each f , these coefficients increase not faster
than a power of |k|. The distribution f treated as a functional acts as follows:

<f,ϕ> =
∞∑
−∞

Ckϕk.

For example, the delta function δξ concentrated at a point ξ ∈ S
1 is defined by the relation <δξ, ϕ> =

ϕ(ξ) and is expanded into the series

δξ =

∞∑
−∞

ξ−kzk.

Rational functions, e.g., functions of the kind f(z) = 1
(z−ξ)n , are actively used in various areas of the

analysis. For |ξ| = 1, such functions are not integrable on the circle, but a family of distributions

corresponds to each in a natural way. A special interest is attracted by the distribution P
(

1
z−1

)
defined by the expression

<P
( 1

z − 1

)
, ϕ> =

1

2π

∫
S1

ϕ(z)

z − 1
|dz|,

where the integral is treated in the sense of the Cauchy principal value. The Fourier expansion of this
distribution has the form

P
( 1

z − 1

)
=

1

2

[ −1∑
−∞

zk −
+∞∑
0

zk

]
.

In the space D′(S1), the differentiation is defined as follows:

<f ′, ϕ> := −<f,ϕ′>.

In terms of Fourier coefficients, it is defined by the relation

f ′ =
∞∑
−∞

ikCkz
k.

In the space D′(S1), the multiplication of each f ∈ D′(S1) by each function g ∈ C∞(S1) is defined as
well:

<gf, ϕ> = <f, gϕ>, g ∈ C∞(S1), f ∈ D′(S1).
In terms of Fourier coefficients, this product is defined by means of the convolution operation for
sequences: if f has expansion (6.3) and

g =

∞∑
−∞

Akz
k, (6.4)

then

g ∗ f =

∞∑
−∞

Bkz
k, where Bk =

∞∑
j=−∞

CjAk−j.

Let |ξ| = 1. The map α(z) = ξz is the rotation of the circle. By the relation

(Tξϕ)(z) = ϕ(ξz),

it generates the rotation operator acting in C∞(S1) and other spaces of functions on the circle. Re-
spectively, the rotation operator is defined in the space of distributions:

<Tξf, ϕ> = <f, Tξϕ> = <f, T−1
ξ ϕ>.

For ordinary functions on the circle, the convolution operation is defined by the relation

(f ∗ g)(z) = 1

2π

∫
f(ξ)g

(z
ξ

)
|dξ|.
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For a given distribution g, the function

ψ(z) = <g, Tzϕ>

belongs to C∞(S1). This provides a possibility to define the convolution of distributions by the relation

<f ∗ g, ϕ> = <f,<g, Tz(ϕ)
′′>>.

On the circle, the convolution exists for each pair of distributions. If (6.3) and (6.4) are expanded in
Fourier series, then the convolution passes into the term-by-term product of the Fourier coefficients:

f ∗ g =

∞∑
−∞

CkAkz
k.

The singular integral Cauchy operator S on the circle is defined as the convolution with the distribution

2P
(

1
z−1

)
. Under expansion (6.3), this operator acts according to the relation

Sf =

−1∑
−∞

Ckz
k −

+∞∑
0

Ckz
k. (6.5)

It is obvious that S2 = I. Therefore, the operators

P± =
1

2
[I ± S]

are projectors. The space of periodic distributions is described, e.g., in [6, 7, 9, 37].

7. Algebras of Mnemofunctions on Circles and Embeddings of Distributions
in These Algebras

7.1. The construction of an algebra. Let us construct an algebra of mnemofunctions corre-
sponding to the space D′(S1).

Constructing the desired algebra, we use the fact that, under typical approximation methods,
families of functions of the kind uε = Rεu satisfy estimates of the kind

pm(uε) ≤ C

εm+ν
.

The space consisting of families satisfying such estimates is not an algebra. That is why we construct
a broader space.

Consider families {fε} depending on the small parameter ε, consisting of infinitely differentiable
functions fε on S

1, and such that for each {fε} there exist numbers μ and ν such that

pm(fε) ≤ C

εμm+ν
. (7.1)

Hereinafter, C denote different constants because their explicit form is not essential for our investiga-

tion. Denote the set consisting of all such families by G̃(S1).

Lemma 7.1. In the space G̃(S1), the following natural multiplication and addition operations are
defined:

{fε} × {gε} = {fεgε} and {fε}′ = {fε′}.
This space with the introduced operations is a differential algebra.

Proof. For norms (6.1), the following inequality reflecting the continuity of the multiplication in the
space Cm(S1) is satisfied:

pm(fg) ≤ Cpm(f)pm(g).
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Hence, if fε satisfies estimate (7.1) and gε satisfies estimate

pm(gε) ≤ C

εμ1m+ν1
,

then

pm(fεgε) ≤ C

ε(μ+μ1)m+(ν+ν1)
.

The closedness of the space with respect to the differentiation follows from the inequality

pm(f ′
ε) ≤ pm+1(fε).

The space G̃(S1) is quite comprehensive. Therefore, to obtain more visible spaces, one introduces the
equivalence relation and considers the quotient space consisting of equivalence classes. In all vector
spaces, equivalence relations of the following kind are considered: f and g are equivalent if f − g ∈ L,
where L is a given subspace. This provides a possibility to define the operations of the addition
and multiplication by numbers well. However, to be able to define the multiplication operation on a
quotient space of an algebra with respect to the subspace L, one needs L is to be an ideal.

Let N0 be the subspace consisting of families converging to zero in D′(S1):

N0 = {fε : lim
ε→0

<fε, ϕ> = 0 for each ϕ ∈ C∞(S1)}.
We say that families fε and gε are weakly equivalent if fε − gε ∈ N0. Such an equivalence relation

is natural for the distribution theory, but the set N0 is not an ideal in G̃(S1). Hence, under this
equivalence relation, no multiplication operation can be well defined on the quotient space. Moreover,
N0 is not a subalgebra.

The algebra G̃(S1) contains many ideals such that it is possible to define equivalence relations using
them. Equivalent families are to be weakly equivalent. This is satisfied if the desired ideal belongs to
the subspace N0, i.e., it is sufficiently small. On the other hand, the decrease of the ideal leads to the
increase of the quotient algebra. That is why the ideal is desired to be as large as it possible.

From the theoretical viewpoint, the most suitable is a maximal ideal in G̃(S1). Under such a choice
of the ideal, the quotient algebra is an extension of the space of smooth functions in the sense of the
nonstandard analysis. However, maximal ideals are not represented explicitly. Therefore, no particular
computations can be implemented in the corresponding quotient algebra.

It turns out that the subspace

J(S1) = {gε : ∀p and m ∃ C : pm(gε) ≤ Cεp}
is more convenient.

Lemma 7.2. The subspace J(S1) is a differential ideal in the algebra G̃(S1).

Proof. The invariance of the subspace J(S1) with respect to the differentiation is obvious.

If fε ∈ G̃(S1) and gε ∈ J(S1), then the product satisfies the estimate

pm(fεgε) ≤ pm(fε)pm(gε) ≤ C

εμm+ν
× Cεp = Cεp−μm−ν .

Since p is an arbitrary number, it follows that this product belongs to J(S1).

The algebra of mnemofunctions on the circle G(S1) is defined as the quotient algebra

G(S1) = G̃(S1)/J(S1).

The algebra C̃ ⊂ G(S1) of generalized complex numbers is related to the described construction. It is
generated by families of constants fε (they do not depend on z). In particular, this algebra contains
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elements of the kind εk; these values are infinitely small if k > 0 and infinitely large if k < 0. The

algebra G(S1) is a module over the algebra C̃.
To clarify the relation between the constructed algebra and the space of distributions, recall another

construction of the space D′(S1). Consider the subspace D̃′(S1) in G̃(S1) consisting of families fε such
that for each ϕ ∈ C∞(S1) there exists a finite limit lim

ε→0
<fε, ϕ>.

Theorem 7.1. The quotient space D̃′(S1)/N0 is isomorphic to the space D′(S1) of distributions.

This method to introduce distributions (including the proof of Theorem 7.1) is described in [9] in
detail. In this book and other papers of the same authors, sequences of smooth functions are used, i.e.,
this is the case where the small parameter takes only the values ε = 1

n . That is why this construction
of distributions is called the sequential approach.

This construction of the space of distributions allows us to clarify the roots of the ill-posedness of
the multiplication problem for classical generalized functions:

(1) The space D̃′(S1) is not an algebra. Hence, the quotient space contains no elements that can
be treated as the product if the pair of elements is arbitrary.

(2) The subspace N0 is not an ideal in the algebra G̃(S1). Hence, products of representatives from
one equivalence class get into different classes, i.e., the product of classes is not well defined.

(3) Since N0 is not a subalgebra, we obtain assertions of the kind 0 × 0 �= 0: the product of two
elements of the zero equivalence class might be outside this class.

Thus, the construction of the algebra of mnemofunctions can be treated as a modification of the
sequential approach to the construction of the space of distributions: in both cases, the constructed
space consists of equivalence classes of families of smooth functions satisfying estimates of kind (7.1),
while the modification is as follows:

• instead of the space D̃′(S1), the broader space G̃(S1), which is an algebra, is constructed;
• instead of the subspace N0, the ideal J(S1) contained in this subspace is used to define the
equivalence relation.

These distinctions leads to the following: in D′(S1), all families from N0 are identified with zero; in the
algebra of mnemofunctions, they generate infinitely small values. Taking into account such infinitely
small values, we obtain a possibility to define the multiplication operation well.

In [21], another (but contiguous) construction is proposed. For the circle case, a broader algebra

G̃E(S1) consisting of arbitrary families {fε} is considered, but the validity of estimates (7.1) is not
required. In this broader algebra, the set J(S1) is not an ideal. That is why Egorov uses the ideal

J0(S
1) = {fε : ∀p and m ∃ε0 > 0 : fε = 0 for ε < ε0}.

The corresponding quotient algebra GE(S
1) := G̃E(S1)/J0(S

1) is the Egorov algebra of new generalized
functions.

Note that the set J0(S
1) is an ideal in the algebra G̃(S1). Using it, one can construct another

mnemofunction algebra G̃(S1)/J0(S
1). In fact, the difference between this algebra and the original

algebra G̃(S1) is negligible.

7.2. The associativity relation and asymptotical expansions of mnemofunctions. The
main concern is the relations between the constructed mnemofunction algebra and the space of distri-
butions. First, the associativity relation is established. Since J(S1) ⊂ N0, it follows that if a family
fε converges to f in D′(S1), then each equivalent family converges to f as well.

We say that an equivalence class [fε] containing fε is associated with a distribution f if the family of
fε converges to f in D′(S1). Let Gas(S

1) denote the subspace in G(S1) consisting of families associated
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with distributions. By construction, Gas is a quotient space: Gas(S
1) = D̃′(S1)/J(S1). On Gas(S

1),
the associativity relation generates the map

Lim : Gas(S
1) � [fε] → Lim([fε]) := lim

ε→0
fε ∈ D′(S1)

of the limit passage.
The map Lim is surjective, but is not injective: each distribution u is related to a broad set Gas(u)

consisting of mnemofunctions associated with u; this set is an affine subspace in Gas(S
1). If f0 is an

arbitrary element of Gas(u), then the map

Gas(u) � f → f − f0 ∈ Gas(0)

determines an isomorphism between Gas(u) and the vector space Gas(0), which is isomorphic to the
quotient space N0/J(S

1) by construction. Note that such an isomorphism is not canonical because,
in the general case, there are no reasons to select an element of the affine subspace Gas(u) to assign it
to be the zero element. Thus, the more the subspace N0 exceeds J(S1), the greater is the ambiguity
of the correspondence between Gas(S

1) and D′(S1). As we note above, elements of the quotient space
N0/J(S

1) are infinitely small, i.e., the difference between two elements of Gas(u) is equal to an infinitely
small mnemofunction.

To obtain more data about mnemofunction properties, one can analyze the asymptotic behavior of
values <fε, ϕ>. In fact, the expression <F,ϕ> := <fε, ϕ> defines a generalized linear functional F

on C∞(S1), i.e., a functional with values in the algebra C̃ of generalized numbers. In particular, if
fε ∈ N0, then <fε, ϕ> → 0, i.e., values of the corresponding functional are infinitely small.

In the computations in the algebra of mnemofunctions, it frequently occurs that such a family of
functionals admits an asymptotic expansion in the space D′(S1) with respect to powers of ε:

<fε, ϕ> =
∞∑

k=k0

<uk, ϕ>εk, where uk ∈ D′(S1). (7.2)

We emphasize that asymptotic expansions are meant here, i.e., relation (7.2) means that the sequence
of finite sums

<FN , ϕ> =

N∑
k=k0

<uk, ϕ>εk

converges to <fε, ϕ> asymptotically, i.e., their difference decays faster than εN .
It is possible that the asymptotic expansion starts from a negative power of ε, i.e., the principal

term of the expansion is a distribution with an infinitely large coefficient.
Thus, visible data about the behavior of a mnemofunction are contained in its asymptotic expansion

in the space D′(S1), the asymptotic expansion of each infinitely small mnemofunction starts from a
positive power of ε, and the asymptotic expansion of the family fε associated with u has the form

<fε, ϕ> = <u,ϕ> +<u1, ϕ>ε+<u2, ϕ>ε2 + . . . (7.3)

Notionally, the relation between D′(S1) and Gas is an analog of the relation between the manifold M
and its tangent bundle TM.

Indeed, consider the set of smooth curves f(ε) passing through a given point a of the manifoldM, i.e.,
such that f(0) = a. On this set, introduce the equivalence relation f(ε) ∼ g(ε) for f(ε)− g(ε) = o(ε).
Then the set of equivalence classes is the tangent space TMa at the point a ∈ M, while the union of
all tangent spaces is the tangent bundle TM.

By definition, the tangent vector is the class of equivalent curves approaching the point along the
same direction, i.e., such a class preserves the data (“remembers”) only about this direction.

In the same way, the family fε admitting expansion (7.3) can be treated as a “curve” in the
distribution space D′(S1) passing through the point u. Then the distribution u1 from the asymptotic
expansion (7.3) describes the direction of the approaching of u by the “curve.” Other terms of the
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expansion describe (more exactly) way of the approaching of f by the “curve.” By definition, two
families of smooth functions get into the same equivalence class if they behave “very similarly” as
ε → 0, i.e., the equivalence classes remembers the approaching way of elements of these families to
their limits; this is the reason to call them “mnemofunctions” (because the Greek word “mnemo”
means the memory).

The asymptotic expansion contains only a partial data about the mnemofunction behavior. In the
general case, even the complete asymptotic expansion (i.e., the expansion with respect to all powers
of ε) does not define fε uniquely. In particular, the asymptotic expansions for fε and gε do not define
their product uniquely. As a corollary, solving particular problems, one has to use the algebra of
mnemofunctions for immediate computing and to construct the asymptotic relation only for the final
result (to provide its visibility).

7.3. Embeddings of distributions into the algebra of mnemofunctions. To establish more
detail relations with distributions, one has to construct right inverse maps for the map Lim. They are
linear maps R : D′(S1) → Gas ⊂ G(S1) such that LimR(u) = u. By definition, the image R(u) of a
distribution u is a family of smooth functions converging to u, i.e., such a map R determines a way
to approximate distributions by smooth functions and is an embedding (an injective map) of D′(S1)
into the algebra of mnemofunctions.

Note that the map Lim has more than one right inverse map: if R is a right inverse map, then
R1 : D′(S1) → Gas ⊂ G(S1) is a right inverse operator if and only if the operator R−R1 maps D′(S1)
into N0.

The product of the maps RLim : Gas → Gas taken in the inverse order is a projector in Gas.
Therefore, the relation f = RLimf +(f −RLimf) determines an expansion of the space Gas into the
direct sum

Gas = Im(R)⊕Gas(0).

Since the image Im(R) is isomorphic to D′(S1), we obtain the expansion

Gas = D′(S1)⊕Gas(0).

Under this expansion, the projection to the first coordinate is the associativity map Lim.
Note that the obtained expansion is defined by the embedding R: in the affine subspace Gas(u),

the zero element is assigned to be R(u).
As we note above, if R is given, then the product of arbitrary distributions is defined as the

mnemofunction

u⊗ v := R(u)R(v) ∈ G(S1).

Usually, to describe properties of such a product, one has to establish its relations with the distribu-
tions. If the product R(u)R(v) is associated with the distribution h, then it is natural to assign this
h to be the product uv generated by the given way to approximate R.

As we note above, more data about the mnemofunction R(u)R(v) is provided by its asymptotic
expansion in the space of distributions. This space might exist even if the product R(u)R(v) is
associated with no distributions. Thus, a substantial part of the problem to describe products of
distributions is reduced to the constructing of the asymptotic expansion for R(u)R(v). In this problem,
asymptotic expansions with infinitely large and infinitely small coefficients might arise; the latter ones
are substantial as well.

7.4. Properties of embeddings. Since there are many ways to embed distributions into the alge-
braR : D′(S1) → G(S1) of mnemofunctions, we investigate additional properties of various embeddings
(see [6]).
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7.4.1. Invariance with respect to rotations. In the circle case, a natural requirement for the embedding
is its invariance with respect to rotations. In the case of distributions on the line, the invariance with
respect to translations is considered.

Let |ξ| = 1. As we note above, the rotation of the circle given by the relation α(z) = ξz generates
the rotation operator acting in C∞(S1) according to the relation (Tξϕ)(z) = ϕ(ξz). Respectively, in
the space of distributions, the rotation operator acts in the algebra of mnemofunctions as well.

The invariance property of the embedding R is the commutativity with the rotation: if R(f) = fε,
then

R(Tξf) = Tξfε.

This yields the special form of such an operator. The images of the functions zk under the action of
R are expanded as follows:

R(zk) =
∑
j

Ajkz
j .

The image of zk under the rotation of the circle is Tξz
k = ξkzk. If R is an arbitrary operator com-

mutative with rotations, then the relation R(ξkzk) = ξkRzk is satisfied. Under the expansion in the
Fourier series, we obtain that ∑

j

Ajkξ
kzj =

∑
j

Ajkξ
jzj ,

whence Ajk[ξ
j − ξk] = 0 and, therefore, Ajk = 0 if k �= j. Introducing the notation Akk = Ak, we

obtain that the operator acts according to the relation

Rf =
∑
j

AkCkz
k,

i.e., the operator R is the convolution with the distribution such that Ak are its Fourier coefficients.
In particular, the relation R(zk) = Ak(ε)z

k, i.e., the commutativity with rotations, means that the
functions zk are eigenfunctions of the operator R.

Applying the above, for each fixed ε, we obtain that each approximation way invariant with respect
to rotations has the form

R(f) = fε = f ∗ ψε, (7.4)

where ∗ is the convolution operation in the space D′(S1), while ψε is a family of distributions.
The convolution operation uses the group structure of the circle. The point 1 is selected because it

is the neutral element of the group and the convolution with δ1 is the identity operator. Therefore, δ1∗
ψε = ψε, which implies that ψε is a family of smooth functions converging to δ1. Thus, if the invariance
condition is satisfied, then the approximation method is uniquely defined by the approximations of δ1.

If the Fourier expansions

ψε(z) =
∑

Ak(ε)z
k

are used, then

R(f) = fε(z) =
∑
k

Ak(ε)Ckz
k, (7.5)

where the coefficients Ak(ε) decay faster than each power of 1
k provided that ε is fixed, while, if k is

fixed, then the convergence of ψε to δ1 implies that Ak(ε) → 1 as ε → 0.
For applications, property (3.1) is essential. This is the commutativity of the embedding and

differentiation:

R(f ′) = R(f)′. (7.6)

Lemma 7.3. The embedding R is commutative with the differentiation if and only if it is invariant
with respect to rotations.
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Proof. The convolution operation is commutative with the differentiation. Therefore, Eq. (7.4) implies
Eq. (7.6).

Assume that (7.6) is satisfied. Consider the image expansion R(zk) =
∑
j
Bj(ε)z

j . From (7.6), we

obtain that ik
∑
j
Bj(ε)z

j =
∑
j
Bj(ε)ij zj , which implies that Bj(ε) = 0 for j �= k, i.e., R(zk) =

Bk(ε)z
k, which completes the proof.

The most simple and natural approximation method is determined by means of partial sums of the
Fourier series. Since each distribution f is expanded in series (6.3), it follows that the relation

RF (f) = fn =

n∑
−n

Ckz
k (7.7)

determines an embedding of D′(S1) into G̃(S1). In this example, G̃(S1) denotes the mnemofunction
algebra generated by sequences of smooth functions.

From the Fourier series viewpoint, relations of kind (7.5) determine summing methods for such
series. In particular, the problem to sum series is hard because if f is a continuous function, then the
uniform convergence of the sequence of partial sums (7.7) is not guaranteed. However, there are many
summing methods of kind (7.5) improving the convergence; under these methods, fε(z) uniformly
converge to f. In the same, approximation methods defined by relations of kind (7.5) might possess
properties that are not possessed by embedding (7.7) generated by partial sums of the Fourier series.

Below, embeddings invariant with respect to rotations are considered.

7.4.2. Multiplication localness. The value at a given point is not defined for distributions, but one
can say about its values on open sets. We say that distributions f and g are equal to each other on an
open subset U if <f,ϕ> = <g,ϕ> for each ϕ such that its support belongs to U. This corresponds to
the following definition of the value of f on the open subset U : this is the restriction of the functional
f to the subspace consisting of such test functions ϕ.

The support of a distribution f is the least closed set supp f such that f = 0 on its complement.
The localness property of the multiplication of a distribution f by a smooth function g is as follows:

on each open set U , the product gf depends only on values of g and f on it. In particular, if g = 0
on U or f = 0 on U, then the product gf is equal to zero on U.

We say that the multiplication localness property is satisfied for an embedding R if the condition
supp f ∩ supp g = ∅ implies that R(f)R(g) = 0.

At the first sight, this property seems to be always satisfied. This is “confirmed” by the following
reasoning. If supp f ∩ supp g = ∅, then there exists a smooth function γ such that γ(z) = 1 on supp f
and γ(z) = 0 on supp g. Then f = γf and g = (1−γ)f, whence R(f)R(g) = R[γ(1−γ)]R(f)R(g) = 0.

However, these computations assume that

R(γf) = R(γ)R(f) for all γ ∈ C∞(S1), f ∈ D′(S1), (7.8)

while, according to the known Schwartz example, the space of distributions cannot be embedded
into an associative commutative algebra such that products of smooth functions and distributions are
preserved. Hence, for each embedding R of the space D′(S1) into an (arbitrary) algebra, relation (7.8)
cannot be satisfied for all γ ∈ C∞(S1) and all f ∈ D′(S1). Thus, the above reasoning is incorrect and,
in the general case, if supp f ∩ supp g = ∅, then the product R(g)R(f) might be different from zero
in G(S1).

7.4.3. Coordination of embedding with multiplication in C∞(S1). In [17, 18], the problem to con-
struct an embedding satisfying the condition to be coordinated with the multiplication in C∞(S1) is
considered. This condition is weaker than condition (7.8), which cannot be satisfied. In the considered
case, the Colombeau problem is formulated as follows.
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There exists a natural embedding R0 of the algebra C∞(S1) into G(S1) taking each function f ∈
C∞(S1) to a stationary family fε = f, i.e., a family independent of ε.

Colombeau problem. Construct a differential algebra G and an embedding R of the space of
distributions into G such that it coincides with the natural embedding of R0 into G for infinitely
differentiable functions.

In the case of the considered space of distributions on the circle, the Colombeau problem is the
problem to construct an embedding such that

R(f) = R0(f) for f ∈ C∞(S1). (7.9)

This condition means that, for smooth functions f , the considered approximations are to converge
to f fast.

If (7.9) is satisfied, then C∞(S1) is an algebra as well (not only is a subspace), i.e.,

R(fg) = R(f)R(g) for all f, g ∈ C∞(S1). (7.10)

The main Colombeau result is the construction of the desired algebra for spaces of distributions on R
m.

The algebra constructed by Colombeau is much more complicated than the one described above.
The case of distributions on the circle described in the present paper possesses the following specific

property: embeddings satisfying (7.9) and (7.10) exist for the simpler algebra G(S1) of mnemofunc-
tions.

8. Embeddings of D′(S1) into G(S1)

From the viewpoint of above properties, consider particular classes of embeddings of kind (7.4).

8.1. Embeddings satisfying the multiplication localness condition. In the general case, the

product R(δξ)×R(δ1) = ψε

(
z
ξ

)
×ψε(z) of two δ-functions concentrated at different points is different

from zero. However, if the supports of functions ψε(z) shrink to the point 1 as ε → 0, then the
latter product is equal to zero provided ε is sufficiently small; therefore, the localness property for the
multiplication is satisfied. Also, it is satisfied if the values of ψε(z) rapidly tend to zero if z �= 1; then

the product ψε(z)× ψε

(
z
ξ

)
belongs to the ideal J(S1).

Lemma 8.1. If the supports of functions ψε(z) defining the embedding by means of relation (7.4)
shrink to the point 1, then the multiplication localness property is satisfied for arbitrary distributions.

Proof. Let supp f ∩supp g = ∅. The condition that the supports of functions ψε(z) shrink to the point
1 means that ψε(z) = 0 for |z − 1| > γ(ε), where γ(ε) → 0 as ε → 0. Since fε = f ∗ ψε, it follows
that fε(z) = 0 outside the γ(ε)-neighborhood of the closed set supp f. In the same way, we show
that gε(z) = 0 outside the γ(ε)-neighborhood of the closed set supp g. If ε is sufficiently small, then
such neighborhood do not intersect each other, i.e., the union of their complements is equal to S

1.
Therefore, for each sufficiently small ε, we have the relation fε(z) × gε(z) ≡ 0, which completes the
proof.

Approximation methods usually considered in distribution spaces on the line are given by relations
of kind (3.4) as follows. We select a function ψ ∈ D(R) such that

∫
R
ψ(t)dt = 1. Then the family

ψε(t) =
1

ε
ψ
( t
ε

)
(8.1)

converges to δ0 and their supports shrink to the point 0. The corresponding approximation method
is given by expression (7.4), where ∗ is the convolution operation in the space D′(R). Under such
approximation method, the validity of the multiplication localness property is obvious.

Here, family (8.1) is generated by one fixed function ψ called the profile. Such approximations are
convenient for investigations because properties of the approximating family fε are described via ψ;
in particular, momenta of this function are used.
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In the case of periodic distributions (distributions on the circle), there are no complete analogs of
this construction: e.g., if ψ(t) is a periodic function, then no family of kind (8.1) converges to the
δ-function. To define the above approximation by means of the convolution on the circle, one has to
modify the construction.

Let ψ ∈ D(R),
∫
R
ψ(t)dt = 1, and let the support be located inside the interval (−π, π). For each ε,

define the function 1
εψ
(

t
ε

)
for −π ≤ t ≤ π and extend it to R with period 2π, i.e., consider the

function

ψε(t) =
∑
j

1

ε
ψ
(t+ 2jπ

ε

)
. (8.2)

Then the function

R(f) = fε = f ∗ ψε, (8.3)

where ∗ is the convolution operation in the space D′(S1), determines the same approximation method
possessing the multiplication localness property.

However, the detailed analysis of this approximation method on the circle is harder that the line
case: there are no immediate relations between Fourier coefficients of functions ψε for different values
of ε because

ψε(t) =

∞∑
−∞

ψ̂(2πkε)eikt,

where ψ̂ is the Fourier transform of the function ψ on R.
Thus, the multiplication localness property complicates the embedding construction. Also, note

that the requirement for the multiplication to be local is not always a reasonable form the viewpoint
of physics. For example, the δ-function models the case where the substance is distributed so that
the main part of the mass is concentrated in a small neighborhood of the given point. If we multiply
two densities corresponding to such δ-functions concentrated at different points, then the product of
a large and small density arise. Such a product might yield a finite impact, i.e., a nonzero density.
Therefore, it is not reasonable to treat the product of two δ-functions concentrated at different points
as zero in each case.

8.2. Coordination with multiplication of smooth functions. The following fact is an obstacle
for constructing an embedding coordinated with the multiplication of smooth functions.

Theorem 8.1. If an embedding of periodic distributions is constructed by means of the convolution
with functions of kind (8.1), where ψ is a compactly supported function, then the multiplication local-
ness condition is satisfied, but conditions (7.9) and (7.10) (of the coordination with the multiplication
of smooth functions) are not satisfied.

This assertion follows from the two lemmas below.

Lemma 8.2. Let ψ ∈ D(R) be a smooth rapidly decreasing function on R, e.g., a compactly supported
function. Let M0(ψ) =

∫
ψ(t)dt = 1. Let f be an infinitely differentiable periodic function. Then the

family of smooth functions fε = f ∗ ψε, where ψε(t) =
1
εψ
(

t
ε

)
, is asymptotically expanded as follows:

fε(t) ∼ f(t) +

∞∑
j=1

(−1)j

j!
f(t)(j)Mj(ψ)ε

j , (8.4)

where

Mj(ψ) =

∫ +∞

−∞
tjψ(t)dt, j ∈ N

are the momenta of the function ψ.
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Proof. The Taylor expansion yields

f(s) =
n∑

j=0

1

j!
f(t)(j)(s − t)j + rn(s − t),

where the remainder is estimated via the derivative f(t)(n+1). Since this derivative is bounded, we
have the estimate |rn(s− t)| ≤ C|s− t|n+1. Therefore,

fε(t) =

∫ +∞

−∞
f(s)

1

ε
ψ
( t− s

ε

)
ds =

n∑
j=0

1

j!
f(t)(j)

∫ +∞

−∞
(s−t)j

1

ε
ψ
( t− s

ε

)
ds+

∫ +∞

−∞
rn(s−t)

1

ε
ψ
( t− s

ε

)
ds

=
n∑

j=0

1

j!
f(t)(j)

∫ +∞

−∞
(−ετ)jψ(τ)dτ +

∫ +∞

−∞
rn(−ετ)ψ(τ)dτ (8.5)

= f(t) +

n∑
j=1

(−1)j

j!
f(t)(j)Mj(ψ)ε

j + o(εn),

which completes the proof.

Lemma 8.3. If ψ ∈ D(R) and ψ �= 0, then an infinite set of momenta Mj(ψ) are different from zero.

Proof. Assume that Mj(ψ) = 0 for all j apart from a finite amount of them. By virtue of the

compactness of the support of ψ, the Fourier transform ψ̂ is an analytic function; this function tends
to zero at infinity by virtue of the smoothness of ψ. Under the Fourier transformation, momenta pass

(up to a factor) into values of the corresponding derivatives. Therefore, ψ̂(j)(0) = 0 for all j ∈ N

apart from a finite amount of them. Then the analyticity of ψ̂ implies that this function is a nonzero
polynomial. Therefore, it does not tend to zero at infinity, which leads to a contradiction.

Proof of Theorem 8.1. Let Mp(ψ) be the nonzero momentum with the least index. Then, due to (8.5),
the difference f(t) − fε(t) behaves as εp and, therefore, does not belong to the ideal J(S1), i.e.,
relation (7.9) is not satisfied.

In the same way, by virtue of (8.5), we have the following relation for two functions:

fε(t)× gε(t)− (fg)ε(t) =
(−1)pεp

p!

[
f(t)g(t)(p) + f(t)(p)g(t)− (f(t)g(t))(p)

]
Mp(ψ) + o(εp).

Here, for p > 1, the expression in the square brackets is different from zero, which implies that the
considered difference does not belong to the ideal J(S1). For p = 1, we obtain that f(t)−fε(t) behaves
as εp2 , where Mp2(ψ) is the second nonzero momentum.

Thus, if approximation methods generated by compactly supported functions are used, then, to satisfy
condition (7.9), one has to construct more complicated algebras than G(S1). For the first time, such
algebras are constructed by Colombeau. Let us describe a modification of his construction, leading to
an algebra simpler than the Colombeau algebra.

Consider families {fq,ε} of infinitely differential functions depending on two parameters ε and q ∈ N.

Let G̃C(S1) be the set of all these families such that for each one there exist μ and ν such that the
following estimate takes place:

pm(fq,ε) ≤ C

εμm+ν
. (8.6)

As above, one can show that this set is a differential algebra.
Let

JC(S
1) = {gq,ε : ∃ μ1 and ν1 such that pm(gq,ε) ≤ Cεq−μ1m−ν1 }.

Lemma 8.4. The set JC(S
1) is a differential ideal in the algebra G̃C(S1).
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Proof. Let fq,ε ∈ G̃C(S1) and gq,ε ∈ JC(S
1). Then

pm(fq,ε × gq,ε) ≤ C1

εμm+ν
C2ε

q−μ1m−ν1 = Cεq−(μ+μ1)m−(ν+ν1),

i.e., this product belongs to JC(S
1).

By virtue of Lemma 8.4, the quotient space

GC(S
1) = G̃C(S1)/JC(S

1)

is a differential algebra. We call it the modified Colombeau algebra.
To construct an embedding into this algebra, select a sequence of compactly supported functions ψq

such that their supports are located in a neighborhood of the point 0 and Mj(ψq) = 0 for 1 ≤ j < q.

Theorem 8.2. The map RC : f → fq,ε = f ∗ ψq,ε determines the embedding of D′(S1) into GC(S
1)

satisfying condition (7.9) (of the coordination with the multiplication of smooth functions) and the
multiplication localness property.

Proof. By virtue of the conditions imposed on ψq, we obtain that

pm(f ∗ ψq,ε) ≤ C

εm+ν
.

If f ∈ C∞(S1), then, according to (8.5), the difference f(t)− fq,ε(t) decreases as ε
q. Since the convo-

lution is commutative with the differentiation, it follows that the difference of the derivatives of these
functions behaves in the same way. This implies that

pm(f − f ∗ ψq,ε) ≤ Cεq−m

and the difference f − fq,ε belongs to the ideal JC(S
1).

As we note above, condition (7.9) means that approximations of each smooth function rapidly converge
to it. This is fulfilled for embedding (7.7) constructed by means of the sequence of partial sums of the
Fourier series. This map RF is invariant with respect to rotations and is represented as a convolution:

fn = f ∗ ψn, where ψn(z) =

n∑
−n

zk =

{
zn+1−z−n

z−1 , z �= 1,

2n + 1, z = 1.

Theorem 8.3. The map RF is an embedding of D′(S1) into the mnemofunction algebra such that
the coordination condition with the multiplication, i.e., relations (7.9) and (7.10), is satisfied, but the
multiplication localness property is not.

Proof. The belonging of fn to G̃(S1) follows from the power estimate of the coefficients Ck. Really,
the Fourier coefficients of the distribution f satisfy the estimate |Ck| ≤ C(1 + |k|)p. Therefore,

pm(fn) ≤
∑
|k|≤n

C(1 + |k|)p+m ≤ C(2n+ 1)(1 + n)p+m ∼ np+m+1.

The validity of (7.9) follows from the known fact that the Fourier series of each function f ∈ C∞(S1)
rapidly converges, i.e., f − fn ∈ J(S1).

Under this method, fn(z)gn(z) �= (fg)n for smooth functions, while relation (7.10) is satisfied only
in the quotient algebra, i.e., fn(z)gn(z)− (fg)n ∈ J(S1).

The approximating sequence of

ψn(ξz) =

n∑
−n

ξ−kzk =
ξ2n+1 − z2n+1

(ξz)n(ξ − z)
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corresponds to the distribution δξ. Therefore, the sequence of

ψn(ξz)ψn(z) =
ξ2n+1 − z2n+1

(ξz)n(ξ − z)
× zn+1 − z−n

z − 1

corresponds to the product δξ δ1. This sequence does not tend to zero and, therefore, does not belong
to the ideal J(S1).

8.3. Joint localness and coordination with multiplication of smooth functions. According
to the results of the previous section, the multiplication localness property is satisfied provided that
embeddings generated by compactly supported functions are considered, but an algebra more compli-
cated than G(S1) is required for the existence of an embedding such that the coordination with the
multiplication takes place, i.e., condition (7.9) is satisfied, as well. On the other hand, the embedding
generated by partial sums of the Fourier series is coordinated with the multiplication, but it does not
possess the localness property. Let us show that there exist embeddings into G(S1) possessing both
specified properties simultaneously. One succeeds to construct such embeddings if the compactness
requirement for the support of the function ψ is taken off.

Consider the Schwartz space S(R), i.e., the set of infinitely differentiable functions decaying at
infinity faster than each power of 1

t . For functions from this space, the situation is different from the
one described in Lemma 8.2.

Lemma 8.5. There exist functions ψ in the space S(S1) such that

M0(ψ) = 1 and Mj(ψ) = 0 for j ∈ N.

Proof. The Fourier transformation bijectively maps the space S(S1) into itself. In this space, there
exist functions such that ϕ(ξ) = 1 on a neighborhood (−γ, γ) of the origin. Then the function ψ,
which is the inverse Fourier transform of the function ϕ, possesses the properties from the claim of
the lemma. Indeed, as we note above, the Fourier transformation maps momenta of the function ψ
into derivatives of the function ϕ at the origin, which are equal to zero.

Below, for simplicity, we assume that γ = 1. Note that, unlike functions from D(S1), the Fourier
transform of a function from S(S1) is not guaranteed to be analytic though it is infinitely differentiable.
In particular, this is valid for the function ϕ selected above.

Select a function ψ with properties described in Lemma 8.5, construct the function family

ψε(z) =
∑
j

1

ε
ψ
( t+ 2jπ

ε

)
, (8.7)

and determine the approximation method by relation (7.4), where the convolution is treated in the
space D′(S1). In terms of the Fourier coefficients, this map acts as follows:

Rψ : f =
∑
k

Ckz
k → fε =

∑
k

ϕ(2πkε)Ckz
k, (8.8)

where ϕ is the Fourier transform of the function ψ.

Theorem 8.4. Under the specified choice of the function ψ0, embedding (8.8) satisfies condition (7.9)
and the multiplication localness property.

Proof. In the considered case, according to Lemma 8.2, the asymptotic expansion is as follows: fε ∼ f.
This means that the difference f − fε decreases faster than each power of ε. Since this holds for all
derivatives of the function, we obtain that f − fε belongs to the ideal.

To verify the multiplication localness, consider properties of the function ψε from (8.7) on the period
[−π, π]. Consider a neighborhood (−γ, γ) of the origin. Since each p satisfies the inequality

|ψ(t)| ≤ C

(1 + |t|)p ,
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we have the following estimate for each series term from (8.7):∣∣∣1
ε
ψ
(t+ 2jπ

ε

)∣∣∣ ≤ 1

ε

C(
1 + |t+2jπ|

ε

)p ≤ C

|t+ 2jπ|p ε
p−1.

Therefore, ∑
j �=0

1

ε
ψ
( t+ 2jπ

ε

)
≤ C

∑
j �=0

1

|t+ 2jπ|p ε
p−1 = C1ε

p−1.

For j = 0, we obtain the following estimate for the corresponding term:

1

ε

∣∣∣ψ
( t
ε

)∣∣∣ ≤
{

C2
ε , |t| ≤ γ,
C
γ ε

p−1, |t| ≥ γ.

Thus, outside each neighborhood of the origin, the functions ψε decrease faster than each power of ε.
Therefore, for each t0 �= 0, the product ψε(t) × ψε(t − t0) decreases faster than each power of ε and,
therefore, belongs to the ideal.

9. Analytic Representation of Distributions and Multiplication Generated by It

Another approximation method frequently used in analysis is based on a well-known analytic rep-
resentation of distributions (see [12]). Under such approximations, more visible results are obtained
in the problem of the multiplication of distributions. In the circle case, the analytic representation
is determined as follows. Expand an arbitrary distribution f into the Fourier series and consider the
operators

(P+f)(z) := f+(z) =

∞∑
0

Ckz
k (9.1)

and

(P−f)(z) := f−(z) =
−1∑
−∞

Ckz
k. (9.2)

From the estimate of coefficients Ck, it follows that for each f ∈ D′(S1), series (9.1) converges in the
disk {|z| < 1}, its sum f+(z) is an analytic function, series (9.2) converges for |z| > 1, and its sum
f−(z) is a function analytic for |z| > 1 and tending to zero at infinity.

Thus, the embedding f → (P+f, P−f) = (f+, f−) of the space of distributions into the space A(S1)
of piecewise analytic functions, i.e., of pairs (f+, f−), where the function f+(z) is analytic for |z| < 1
and the function f−(z) is analytic for |z| > 1, is defined. In this case, the analytic functions f±(z)
are not arbitrary: the coefficients of their power expansions do not increase faster than a fixed power
of k.

The function pair (f+, f−) is called the analytic representation of the distribution f because f is
expressed via these functions as follows:

<f,ϕ> = lim
ε→0

1

2π

∫
S1

[
f+((1− ε)z) + f−

( z

1− ε

)]
ϕ(z)|dz|. (9.3)

If the analytic representation is equal to (f+, 0), then the distribution f is said to be positive. If the
analytic representation is equal to (0, f−), then the distribution f is said to be negative.

Not every pair (f+, f−), where f+(z) is an analytic function for |z| < 1 and f−(z) is an analytic
function for |z| > 1, determines an analytic representation of the distribution on the circle. Let us show
that functions f±(z) determining such a representation can be characterized in terms of the growth
rate as |z| → 1; namely, they are power-growth functions, i.e., functions admitting the estimate

|f(z)| ≤ M

(1− |z|)m . (9.4)
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The considered question is a special case of the general problem about relations between the behavior
of an analytic function and the behavior of the corresponding coefficients of the corresponding power
series. The most known result in this direction is about the relation between the order and type of
entire functions and the behavior of the coefficients of its expansion (see [28]). For analytic functions
in the disk, a similar result is obtained in [8]. For power-growth functions analytic in the disk, the
description of the behavior of the coefficients is considered to be known, but it is not included into
the standard source about analytic functions. For completeness, the corresponding assertion with the
proof is provided below.

Theorem 9.1. Let f(z) =
∞∑
0
akz

k and this series converge for |z| < 1. Then the sequence of coeffi-

cients admits a power estimate if and only if the function f does not increase faster than a power as
|z| → 1.

Proof. Let estimate (9.4) be satisfied. Then, according to the Cauchy inequality,

|Ck| ≤ M

(1− |z|)m|z|k .

In particular, assigning z = 1− 1
k , we obtain that

|Ck| ≤ Mkm

(1− 1
k )

k
≤ 4Mkm.

To obtain the inverse assertion, use the following result from [22]: the sum of the series
∞∑
1

kαzk, α > 0,

is an analytic function for |z| = 1 and z �= 1 and it asymptotically behaves as

Γ (α+ 1)

(1− |z|)α+1

in a neighborhood of the point z = 1.
Therefore, if the estimate |Ck| ≤ Mkm, k > 0, holds, then

|f(z)| ≤ |a0|+
∞∑
1

Mkm|z|k ≤ M0 +
M̃

(1− |z|)m+1
,

i.e., the function does not increase faster than a power.

The analytic representation generates a natural approximation of the distribution f : relation (9.3)
means that the family

Ra(f) = fε(z) = f+((1− ε)z) + f−
( z

1− ε

)
(9.5)

of smooth functions converges to f.

Theorem 9.2. The relation Ra(f) = fε(z), where the functions fε(z) are defined by (9.5), determines
an invariant embedding of the space D′(S1) into the algebra of mnemofunctions. Condition (7.10) is
satisfied for pairs f = (f+, 0), g = (g+, 0) of positive distributions, where the functions f+ and g+ are
continuous in the closed disk, and for pairs f = (0, f−), g = (0, g−) of negative distributions, where
f− and g− are continuous for |z| ≥ 1.

Proof. From Theorem 9.1, it follows that the family of smooth functions fε(z) has a power growth
and, therefore, determines a mnemofunction.

For the functions zk, k ≥ 0, relation (7.10) is verified immediately. Really, let f(z) = zk, g(z) = zm,
and f(z)g(z) = zk+m. Then Ra(f) = (1− ε)kzk, Ra(g) = (1− ε)mzm, and Ra(fg) = (1− ε)k+mzk+m.
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Then the validity of the relation Ra(fg) = Ra(f)Ra(g) is obvious. This implies that the desired relation
is satisfied for all polynomials, whence, passing to the limit, we obtain the claimed property for all
functions f+ and g+ continuous in the closed disk. For function pairs representable as f = (0, f−),
g = (0, g−), the proof is similar.

For the delta function, the considered approximating family has the following form:

Ra(δ1) = ψε(z) =
1

1− (1− ε)z
+

1− ε

z − (1− ε)
. (9.6)

Therefore, the considered approximation method is given by the convolution Ra(f) = f ∗ ψε.
Note that relation (7.9) is not satisfied under the considered approximation method. Indeed, the

function f(z) = z corresponds to the mnemonic function fε(z) = (1 − ε)z, while f(z) − fε(z) = εz,
whence it follows that this difference does not belong to the ideal — it tends to zero as ε, and the
elements of the ideal tend to zero faster than any power of ε.

From the proof of the theorem, we see that, in the considered case, relation (7.10) is satisfied not
only on the quotient algebra, but at the level of representatives from equivalence classes as well, i.e.,
if f+ and g+ are continuous, then

(f+ ∗ ψε)× (g+ ∗ ψε) = (f+g+) ∗ ψε.

The question whether other functions γ ∈ C∞(S1) exist such that

(f+ ∗ γ)× (g+ ∗ γ) = (f+g+) ∗ γ (9.7)

arises.
The next theorem states that the above case is almost unique.

Theorem 9.3. If the function γ(z) is such that relation (9.7) is satisfied for all smooth functions
f = (f+, 0), then there exist ε and ξ, |ξ| = 1, such that

γ(z) =
1

1− (1− ε)ξz
+ g(z),

where g = (0, g−).

Proof. Let γ(z) =
∑

Akz
k. Note that if f satisfies the assumption of the theorem, that its convolution

with γ(z) does not depend on coefficients of the expansion of γ(z) with negative numbers. Therefore,
the function

g−(z) =
−1∑
−∞

Akz
k

can be selected arbitrarily. Then zk ∗ γ(z) = Akz
k, zm ∗ γ(z) = Amzm, and zk+m ∗ γ(z) = Ak+mzk+m.

From (9.7), it follows that the coefficients of the expansion satisfy the relation Ak+m = AkAm. For
k = 0, we obtain that A0 = 1. Let A1 = rξ, where |ξ| = 1. Then Ak = rkξk and r < 1 provided that
the series converges. Thus, introducing the notation 1− r = ε, we obtain the claimed representation
of γ(z).

Under the analytic representation, the space of distributions is identified with the set of pairs (f+, f−)
of analytic functions described above. For each ε, the product fε(z)gε(z) of mnemofunctions has an
analytic representation(h+ε (z), h

−
ε (z)) as well; here, the functions h±ε (z) analytically depend on z.

Consider this product in detail. Since the embedding is fixed, we denote the product of the dis-
tributions f and g by f × g or fg. Then the result of the multiplication (f+, f−) × (g+, g−) of the
distributions can be represented as follows:

Ra(f)Ra(g) =
[
f+((1− ε)z) + f−

( z

1− ε

)][
g+((1− ε)z) + g−

( z

1− ε

)]
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= f+((1− ε)z)g+((1 − ε)z) + f−
( z

1− ε

)
g+((1− ε)z) (9.8)

+f+((1− ε)z)g−
( z

1− ε

)
+ f−

( z

1− ε

)
g−
( z

1− ε

)
,

where

f+((1 − ε)z)g+((1− ε)z) = Ra(f
+g+, 0)

and

f−
( z

1− ε

)
g−
( z

1− ε

)
= Ra(0, f

−g−),

i.e., the sum of the first term and fourth term is the analytic representation of the distribution defined
by the pair (f+g+, f−g−). If ε is fixed, then the sum

γε(z) := f−
( z

1− ε

)
g+((1 − ε)z) + f+((1− ε)z)g−

( z

1− ε

)
(9.9)

of the remaining two terms is a function analytic in the ring

Kε =
{
z : 1− ε < |z| < 1

1− ε

}
.

Its analytic representation is determined by means of the operators P±. Thus, in the space A(S1) of
piecewise analytic functions, i.e., of pairs (f+, f−) determining analytic representations, the multipli-
cation acts according to the following rule.

Theorem 9.4. In the space of piecewise analytic functions, i.e., of pairs (f+, f−) determining analytic
representations, the result of the multiplication (f+, f−)× (g+, g−) can be represented in the form

Ra(f)Ra(g) = h+ε (z) + h−ε (z), (9.10)

where

h+ε (z) = Ra(f
+g+, 0) + P+(γε(z)) (9.11)

and

h−ε (z) = Ra(0, f
−g−) + P−(γε(z)). (9.12)

Corollary 9.1. If f = (f+, 0) and g = (g+, 0), then (f+, 0)× (g+, 0) = (f+g+, 0).

Corollary 9.2. If f = (0, f−) and g = (0, g−), then (0, f−)× (0, g−) = (0, f−g−).

10. Circle Algebra of Rational Mnemofunctions

A distribution f ∈ D′(S1) is said to be rational if the functions f± of its analytic representation
are rational. Each pair of rational functions f± such that f+ is analytic for |z| < 1 and f− is analytic
for |z| > 1 defines the analytic representation of a distribution. Therefore, the subspace D′

R(S
1) of

D′(S1) consisting of rational distributions is isomorphic to the space of pairs (f+, f−) of such rational
functions.

There are two reasons to concentrate attention on such distributions. First, many distributions
used in applications are rational and, therefore, the task to define products of such distributions well
is important for applications. In particular, the analytic representation of δξ is

δξ =
(
− ξ

z − ξ
,

ξ

z − ξ

)
(10.1)

and the analytic representation of P
(

1
z−ξ

)
is

P
( 1

z − ξ

)
=

1

2

( 1

z − ξ
,

1

z − ξ

)
, (10.2)

i.e., both these distributions are rational.
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The second reason is as follows: for such distributions, the multiplication rule is given explicitly
(this is shown below), which provides more concrete results than the results in the general case.

The rational distribution with the analytic representation
(

1
(z−ξ)n , 0

)
, |ξ| ≥ 1, is denoted by 1

(z−ξ)n+ .

The rational distribution with the analytic representation
(
0, 1

(z−η)m

)
, |η| ≤ 1, is denoted by 1

(z−η)m− .

For polynomials p(z), we consider the embedding into the algebra by means of the analytic represen-
tation (p(z), 0). Then the corresponding mnemofunction is pε(z) = p((1− ε)z).

According to Corollary 9.1, the product (f+, 0) × (g+, 0) is defined for all functions f+ and g+ if
they are analytic in the region {|z| < 1}. In this case, the following relation holds:

(f+, 0)× (g+, 0) = (f+g+, 0). (10.3)

In particular, the following relation holds:

(z, 0) ×
( 1

z − ξ
, 0
)
=
( z

z − ξ
, 0
)
.

Note that
z

z − ξ
= 1 +

ξ

z − ξ
,

i.e., the multiplication by z is reduced to the multiplication by a constant and adding of 1. Using this
relation, we obtain that

(z2, 0)×
( 1

z − ξ
, 0
)
= (z, 0) ×

(
1 +

ξ

z − ξ
, 0
)
=
(
z + ξ

(
1 +

ξ

z − ξ

)
, 0
)
=
(
z + ξ +

ξ2

z − ξ
, 0
)
.

Similarly, it follows from Corollary 9.2 that

(0, f−)× (0, g−) = (0, f−g−) (10.4)

provided that the functions f− and g− are analytic in the region {|z| > 1}.
Therefore, to set the multiplication rule for rational distributions, it suffices to find the product of

elements of the kind (f+, 0) × (0, g−).
First, consider the products of the distributions 1

(z−ξ)+
and 1

(z−η)− . Recall that these distributions

are expanded into the Fourier series as follows:

1

(z − ξ)+
= −

+∞∑
0

ξ−k−1zk and
1

(z − η)−
=

−1∑
−∞

η−k−1zk. (10.5)

The next lemma describes the product of such distributions.

Lemma 10.1. If |ξ| ≤ 1 and |η| ≥ 1, then

( 1

z − ξ
, 0
)
×
(
0,

1

z − η

)
=
(C1(r; ξ; η)

z − ξ
,
C2(r; ξ; η)

z − η

)
, (10.6)

where C1(r; ξ; η) =
r2

ξ−ηr2
and C2(r; ξ; η) =

1
ηr2−ξ

.

Proof. The mnemofunction corresponding to the distribution 1
(z−ξ)+ has the form

Ra

( 1

(z − ξ)+

)
=

1

rz − ξ
,

where r = 1− ε. For 1
(z−η)− , the mnemofunction, i.e., the approximating family, is as follows:

Ra

( 1

(z − η)−
)
=

1
z
r − η

.
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Their product is the following family of smooth functions on the circle:

Ra

( 1

(z − ξ)+

)
Ra

( 1

(z − η)−
)
=

1

rz − ξ

1
z
r − η

. (10.7)

According to the multiplication rule in the space of piecewise analytic functions (see Theorem 9.4),
for each ε, the analytic representation is to be constructed for function (10.7), i.e., the operators P±
are to be applied. The main simplification for the considered functions is as follows: applying these
operators is equivalent to the decomposition of the product of particular rational functions into a sum
of partial fractions, which is done by means of simple computations. The result is as follows:

1

rz − ξ

1
z
r − η

= C1(r; ξ; η)
1

rz − ξ
+ C2(r; ξ; η)

1
z
r − η

, (10.8)

where

C1(r; ξ; η) =
r2

ξ − ηr2
, C2(r; ξ; η) =

1

ηr2 − ξ
,

and these coefficients satisfy the relation C1(r; ξ; η) = −r2C2(r; ξ; η). The right-hand side of (10.8) is
an approximating family for (10.6).

Since the product of the distributions z+ and 1
(z−η)− in the sense of mnemofunctions is not coordinated

with the classical multiplication of a smooth function and a distribution, the former is considered
separately below.

Lemma 10.2. If |η| ≤ 1, then

(z, 0) ×
(
0,

1

z − η

)
=
(
r2,

ηr2

z − η

)
(10.9)

and

(zn, 0) ×
(
0,

1

z − η

)
=
( n−1∑

k=0

zkr2(n−k)ηn−k−1,
ηnr2n

z − η

)
. (10.10)

Proof. Consider the product of the approximating families:

Ra(z
+)Ra

( 1

(z − η)−
)
= rz

1
z
r − η

= r2 +
ηr2

z
r − η

(the last expression is obtained by means of applying the operators P±).
Computing the product (zn, 0)×

(
0, 1

z−η

)
, we obtain other expressions. For the distribution (zn, 0),

the approximating family is {rnzn}. Therefore, the multiplication of approximations yields the family
of smooth functions

rnzn × 1
z
r − η

such that their analytic representation contains both positive and negative components. Here, the
desired result can be obtained by means of the procedure of the division with a remainder for poly-
nomials:

rn × zn

z
r − η

= pn−1(rz) +M
1

z
rη − 1

,

where M = ηnr2n and pn−1(z) is a polynomial of degree n − 1 of the variable z with coefficients
depending on r and η. These coefficients can be found by means of the immediate division or by means
of the method of undetermined coefficients, but the simplest way to obtain the desired expression is
to use the Fourier expansion. If

1

(z − η)−
=

−1∑
−∞

η−k−1zk,
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then

rnzn × 1
z
r − η

=
n−1∑
k=0

(rz)kr2(n−k)ηn−1−k + r2nηn
1

z
rη − 1

.

The last expression is an approximating family for the distribution with the analytic representa-
tion (10.10).

The next theorem completely describes the algebra generated by rational mnemofunctions.

Theorem 10.1. The vector space R(S1) consisting of elements of the kind

m∑
k=0

A+
k (ε)(1 − ε)kzk +

n+∑
k=1

p+k∑
j=1

B+
kj(ε)

((1− ε)z − ξk)j
+

n−∑
k=1

p−k∑
k=1

B−
kj(ε)

( z
1−ε − ηk)j

, (10.11)

where |ξk| ≥ 1, |ηk| ≤ 1, A+
k (ε), B+

kj(ε), and B−
kj(ε) ∈ C

∗, is the least algebra containing all

mnemofunctions Ra(f), f ∈ D′
R(S

1), and all generalized numbers. In this algebra, elements of the
kind 1

(z−ξ)+
, 1

(z−η)− , and z+ are generators, while the multiplication law is uniquely defined by rela-

tions (10.3), (10.4), (10.6), and (10.9).

Proof. Only the first-degree polynomial is irreducible over the field of complex numbers. Hence, each
rational function can be represented as a linear combination of partial fractions: if

Q(z) =

n∏
i=1

(z − zi)
pi ,

then
P (z)

Q(z)
=

m∑
0

Akz
k +

n∑
i=1

pi∑
j=1

Bij

(z − zi)j
, Ak, Bij ∈ C, zi ∈ C.

In the analytic representation of the rational distribution f = (f+, f−), the function f+ is analytic
for |z| < 1. Hence, if it is rational, then it is expanded into partial fractions as follows:

f+(z) =

m∑
0

A+
k z

k +

n+∑
k=1

p+k∑
j=1

B+
kj

(z − ξk)j
, where |ξk| ≥ 1. (10.12)

The rational function f− is analytic for |z| > 1 and tends to zero at infinity. Therefore, its expansion
into partial fractions is as follows:

f−(z) =
n−∑
k=1

p−k∑
j=1

B−
kj

(z − ηk)j
, where |ηk| ≤ 1. (10.13)

Thus, the multiplication of approximations generated by analytic representations of rational distribu-
tions is reduced to the computing of products (in the above sense) of summands in relations (10.12)-
(10.13), i.e., partial fractions and zk.

As we note above, for positive distributions, we have the relation

(f+, 0)× (g+, 0) = (f+g+, 0).

Respectively,

(0, f−)× (0, g−) = (0, f−g−).
Therefore, the problem is reduced to the computing of products of a positive and a negative element.
In the considered case of rational distributions, these are products of the kind (f+, 0)× (0, g−), where
f+ is a partial fraction or the function zk, while g− is a partial fraction.
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For the case where f+ = 1
z−ξ and g− = 1

z−η , this product is described in Lemma 10.1 and is

found according to relation (10.6). Products of partial fractions of other powers, i.e., products with
f+ = 1

(z−ξ)n and g− = 1
(z−η)m , are computed via products of first degrees by means of recurrent

relations, i.e., relation (10.6) is used. For example, for n = 1 and m = 2, we have the relation

1

(z − ξ)+
1

(z − η)2−
=
[ 1

(z − ξ)+
1

(z − η)−
] 1

(z − η)−
=
(c1(ε; ξ; η)

z − ξ
,
c2(ε; ξ; η)

z − η

)
×
(
0,

1

z − η

)

=
(c21(ε; ξ; η)

z − ξ
,
c1(ε; ξ; η)c2(ε; ξ; η)

z − η
+

c2(ε; ξ; η)

(z − η)2

)
. (10.14)

For n = 2 and m = 1, we have the relation

1

(z − ξ)2+
1

(z − η)−
=
(c1(ε; ξ; η)

z − ξ
,
c2(ε; ξ; η)

z − η

)
×
( 1

z − ξ
, 0
)

=

(
c1(ε; ξ; η)

(z − ξ)2
+

c1(ε; ξ; η)c2(ε; ξ; η)

z − ξ
,
c22(ε; ξ; η)

z − η

)
.

Hence, relation (10.6) sets the multiplication rule for the distributions 1
(z−ξ)n+ and 1

(z−η)m− .

The rule of the multiplication of z+ by 1
(z−η)− is described in Lemma 10.2; it is found via rela-

tion (10.9), where (and in the sequel) r = 1 − ε. As we show above, (10.9) implies the relation for
the multiplication by powers of z+, relation (10.10), and the relations for the multiplication of z by
powers of 1

(z−η)− , e.g.,

z+ × 1

(z − η)2−
=
[
z+

1

(z − η)−
] 1

(z − η)−
=
(
r2,

ηr2

z − η

)
×
(
0,

1

z − η

)
=
(
0,

ηr2

(z − η)2
+

r2

z − η

)
.

Products of other powers are defined in the same way.
Thus, the product of elements of kind (10.11) is computed on the base of relations (10.6) and (10.9)

and is an element of R(S1). Since elements of kind (10.11) belong to each algebra containing all
mnemofunctions Ra(f), f ∈ D′

R(S
1) and generalized numbers, it follows that R(S1) is the least such

subalgebra.

As we note, describing the general approach, a visible description of a product is given by its asymptotic
relation. First, we investigate the behavior of products of the kind 1

(z−ξ)+ × 1
(z−η)− found above.

Statement 10.1. If ξ �= η, then the following product asymptotic expansion takes place:

1

(z − ξ)+
× 1

(z − η)−
= u0 + εu1 + . . . ,

where the distribution u0 has the analytic representation

u0 =
( 1

ξ − η

1

z − ξ
,

1

η − ξ

1

z − η

)
,

while the distribution u1 has the analytic representation

u1 =
(
− 2ξ

(ξ − η)2
1

z − ξ
,

2η

(ξ − η)2
1

z − η

)
.

Proof. If ξ �= η, then there exist finite limits of the coefficients C1(r; ξ; η) and C2(r; ξ; η) as r → 1, i.e.,
their expansions start from (finite) numbers:

C1(r; ξ; η) =
r2

ξ − ηr2
=

1

ξ − η
− 2ξ

(ξ − η)2
ε+ . . .

and

C2(r; ξ; η) =
1

ηr2 − ξ
=

1

η − ξ
+

2η

(ξ − η)2
ε+ . . .
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Therefore, under the assumption that ξ �= η, each mnemofunction of kind (10.7) is associated with
the distribution u0 such that its analytic representation is

u0 =
( 1

ξ − η

1

z − ξ
,

1

η − ξ

1

z − η

)
,

while the second term of the expansion has the form εRa(u1) in the mnemofunction space, where u1
has the analytic representation

u1 =
(
− 2ξ

(ξ − η)2
1

z − ξ
,

2η

(ξ − η)2
1

z − η

)
.

In this case, we note that if |ξ| > 1, then f(z) = 1
z−ξ is a smooth function on the circle and the first

term of the expansion of u0 is the product of the distribution g = 1
(z−η)− by this smooth function

in the sense of the multiplication in the space of distributions. This, in this case, the difference
Ra(fg) − Ra(f)Ra(g) is different from zero, but is infinitely small. This confirms again that, under
the considered embedding, there is no coordination with the multiplication in the space of distributions
(condition (7.8) is not satisfied), but the specified difference is associated with zero, i.e., under the
passage to the algebra of mnemofunctions, the multiplication is corrected by means of adding infinitely
small values.

If |ξ| > 1 and |η| < 1, then both functions f and g are smooth on the circle, but, under the
considered embedding, condition (7.10), i.e., the Colombeau condition of the coordination with the
multiplication of smooth functions, is not fulfilled either.

Consider the case where ξ �= η, but |ξ| = 1 and |η| = 1. Then both distributions f and g have
singularities on the circle, their product in the sense of distributions is not defined, but their product
in the sense of mnemofunctions is associated with the distribution u0. This confirms the conventional
opinion that if the sets of singular points of two distributions do not intersect each other, then their
product can be defined in a sufficiently natural way. However, even if two distributions have common
singularities, there are cases (e.g., if these distributions are positive) where the product still can be
defined.

The case where ξ = η, which is possible only if |ξ| = 1 and |η| = 1, is qualitatively different: both
factors have singularities at the same point.

Statement 10.2. The product 1
(z−ξ)+ × 1

(z−ξ)− has the asymptotic expansion

1

(z − ξ)+
× 1

(z − ξ)−
= − 1

2ξε
δξ − 3

4ξ

1

(z − ξ)+
− 1

4ξ

1

(z − ξ)−
+ o(1),

the principal term of which is the δ-function with an infinitely large coefficient.

Proof. In the considered case, the coefficients C1(r) and C2(r) are infinitely large as r → 1 and they
are asymptotically expanded as follows:

c1(ε; ξ) =
(1− ε)2

ξ(1− (1− ε)2)
=

1

2ξε
− 3

4ξ
+

1

8ξ
ε+

3

16ξ
ε2 + . . . ,

c2(ε; ξ) =
1

ξ((1− ε)2 − 1)
= − 1

2ξε
− 1

4ξ
− 1

8ξ
ε− 1

16ξ
ε2 + . . . (10.15)

This yields the following asymptotic expansion for the product:

1

(z − ξ)+
1

(z − ξ)−
= c1(ε; ξ)

1

(z − ξ)+
+ c2(ε; ξ)

1

(z − ξ)−

=
1

2ξε

[ 1

(z − ξ)+
− 1

(z − ξ)−
]
− 3

4ξ

1

(z − ξ)+
− 1

4ξ

1

(z − ξ)−
+ o(1) (10.16)
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= − 1

2ξε
δξ − 3

4ξ

1

(z − ξ)+
− 1

4ξ

1

(z − ξ)−
+ o(1).

11. Products Associated with Distributions

In the general case, the product of distributions f and g generated by a given embedding is a
mnemofunction. A special case is formed by distribution pairs f and g such that their product is
associated with a distribution u because, in such a case, one can assume that f × g = u, i.e., the
product of distributions is a distribution as well. In the general case, there are no reasons to expect
to obtain an explicit description of such pairs of distributions. For pairs of rational distributions, all
cases where their product is associated with a distribution can be described.

As we note above, the product of rational distributions is a linear combination of products of
elementary rational mnemofunctions of the kinds 1

(z−ξ)n+ ,
1

(z−η)n− , and zn+. According to assertions

obtained above, each product 1
(z−ξ)n+ × 1

(z−η)n− is represented by a linear combination of elementary

rational mnemofunctions with coefficients depending on ε. If the corresponding expression for the
product includes terms of the kind 1

(z−ξ)n+ × 1
(z−ξ)m− , then terms with infinitely large coefficients, not

associated with distributions, arise. However, the final representation of the product might include
several such terms with different coefficients. This the existence condition for a distribution associated
with the corresponding product is as follows: the sum of the coefficients at each product of the specified
kind has a finite limit.

In the following case, this condition is satisfied for arbitrary mnemofunctions. If

f = f+ + f−, g = t(f+ − f−), where t ∈ C, (11.1)

then f × g = t(f+)2 − t(f−)2 and this product is a distribution such that its analytic representation
is (t(f+)2,−t(f−)2).

In the general case, relation (11.1) connecting distributions is a sufficient (but not necessary) con-
dition for the product to be associated with a distribution. First, we consider an example of rational
distributions with a singularity at only one point such that condition (11.1) is necessary for them as
well.

Theorem 11.1. Let f = (f+, f−) and g = (g+, g−), where

f± =
A±

1

(z − 1)±
+

A±
2

(z − 1)2±
�= 0 and g± =

B±
1

(z − 1)±
+

B±
2

(z − 1)2±
.

The product of the distributions f and g is associated with a distribution u0 if and only if there exists t
such that the coefficients satisfy the relations

B+
1 = tA+

1 , B+
2 = tA+

2 , B−
1 = −tA−

1 , and B−
2 = −tA−

2 . (11.2)

If these conditions are satisfied, then the distribution u0 has an analytic representation

u0 = (f+g+, f−g−).

Proof. We have the relation

f × g = (f+ + f−)× (g+ + g−) = f+g+ + f−g− + f+g− + g+f−.

The sum f+g+ + f−g− is associated with the distribution u0 such that its analytic representation is
equal to u0 = (f+g+, f−g−) and infinitely large terms arise only in the sum of the last two terms of
the kind

f+g− + g+f− =
A+

2 B
−
2 +A−

2 B
+
2

(z − 1)2+(z − 1)2−

+
A+

2 B
−
1 +A−

1 B
+
2

(z − 1)2+(z − 1)−
+

A+
1 B

−
2 +A−

2 B
+
1

(z − 1)+(z − 1)2−
+

A+
1 B

−
1 +A−

1 B
+
1

(z − 1)+(z − 1)−
.
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The obtained expression is equal to zero if the numerator of each fraction is equal to zero:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A+
2 B

−
2 +A−

2 B
+
2 = 0,

A+
2 B

−
1 +A−

1 B
+
2 = 0,

A+
1 B

−
2 +A−

2 B
+
1 = 0,

A+
1 B

−
1 +A−

1 B
+
1 = 0.

(11.3)

To investigate system (11.3), consider the polynomials

f+(x) = A+
1 x+A+

2 x
2; f−(y) = A−

1 y +A−
2 y

2; g+(x) = B+
1 x+B+

2 x
2; and g−(y) = B−

1 y +B−
2 y

2.

Then system (11.3) is equivalent to the condition that

f+(x)g−(y) + g+(x)f−(y) = 0,

whence, separating variables, we obtain the following proportionality conditions for the polynomials:

g+(x)

f+(x)
= − g−(y)

f−(y)
= t = const.

Let us show that if relations (11.3) are not satisfied, then the expansion of f+g− + g+f− contains
terms with infinitely large coefficients and, therefore, is associated with no distribution. Indeed, due
to the multiplication rule, we have the relation

f+g− + g+f− = (A+
2 B

−
2 +A−

2 B
+
2 )

(
c21(ε)

(z − 1)2+
+

2c21(ε)c2(ε)

(z − 1)+
+

2c1(ε)c
2
2(ε)

(z − 1)−
+

c22(ε)

(z − 1)2−

)

+
[
c2(ε)(A

+
2 B

−
1 +A−

1 B
+
2 ) + c1(ε)(A

+
1 B

−
2 +A−

2 B
+
1 )
]( c1(ε)

(z − 1)+
+

c2(ε)

(z − 1)−

)

+(A+
1 B

−
1 +A−

1 B
+
1 )

(
c1(ε)

(z − 1)+
+

c2(ε)

(z − 1)−

)
+(A+

2 B
−
1 +A−

1 B
+
2 )

c1(ε)

(z − 1)2+
+(A+

1 B
−
2 +A−

2 B
+
1 )

c2(ε)

(z − 1)2−
,

where the terms
2c1(ε)c

2
2(ε)

(z − 1)−
and

2c21(ε)c2(ε)

(z − 1)+

are linearly independent and, since the coefficients c1(ε) and c2(ε) behave as 1
ε , only these terms have

the greatest growth rate; it is equal to 1
ε3
. Therefore, for the existence of an associated distribution,

the vanishing of the coefficient at these terms is necessary:

A+
2 B

−
2 +A−

2 B
+
2 = 0.

In the same way, the terms

(A+
2 B

−
1 +A−

1 B
+
2 )

c1(ε)

(z − 1)2+
+ (A+

1 B
−
2 +A−

2 B
+
1 )

c2(ε)

(z − 1)2−

increase as 1
ε , are linearly independent between each other, and are linearly independent with other

terms. Hence, the necessary condition is as follows:

A+
2 B

−
1 +A−

1 B
+
2 = 0 and A+

1 B
−
2 +A−

2 B
+
1 = 0.

Once these conditions are satisfied, only the expression

c1(ε)

(z − 1)+
+

c2(ε)

(z − 1)−

remains. It increases as 1
ε . Therefore, for the existence of a distribution associated with the product,

the coefficient at this expression is to vanish as well:

A+
1 B

−
1 +A−

1 B
+
1 = 0.
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Thus, condition (11.2) is satisfied if and only if the considered product is associated with the distri-
bution u0.

In the same way, we obtain necessary and sufficient conditions of the existence of an associated
distribution for the product of an arbitrary pair of rational distributions.

Let {z1, z2, . . . , zm} be a set of complex numbers such that |zk| = 1. As we show above, the exis-
tence problem for an associated distribution for a product is reduced to the investigation of rational
distributions f and g with analytic representations of the kind

f =
( m∑
k=1

f+
k (z),

m∑
k=1

f−
k (z)

)
, (11.4)

where

f+
k (z) =

p∑
j=1

A+
kj

(z − zk)j
and f−

k (z) =

p∑
j=1

A−
ij

(z − zk)j
,

and

g =
( m∑
k=1

g+k (z),

m∑
k=1

g−k (z)
)
, (11.5)

where

g+k (z) =

p∑
j=1

B+
kj

(z − zk)j
and g−k (z) =

p∑
j=1

B−
ij

(z − zk)j
.

Theorem 11.2. The product fg of the rational mnemofunctions expressed by (11.4) and (11.5) is
associated with a distribution if and only if for each k, 1 ≤ k ≤ m, the exists a number tk such that

B+
kj = tkA

+
kj and B−

kj = −tkA
−
kj.

In [9], only three examples of finite products, i.e., cases where the result of the multiplication of
distributions is a distributions, are provided. On the circle, analogs of these examples are the products(

δ1 + 2iP
( 1

z − 1

))(
δ1 − 2iP

( 1

z − 1

))
, δ1P

( 1

z − 1

)
, and

(
δ1 ± 2P

( 1

z − 1

))2
.

All these products satisfy the condition obtained in the theorem. Many other examples can be pro-
vided.

To complete this section, consider the Schwartz example on the circle and find the sense of the

product of the distributions P
(

1
z−1

)
, z − 1, and δ1, contained in this example. Under the multi-

plication in the space of distribution, the value of such a product depends on the arrangement of the
brackets: {

P
( 1

z − 1

)
× (z − 1)

}
× δ1 = 1× δ1 = δ1,

but

P
( 1

z − 1

)
× {(z − 1)× δ1} = P

( 1

z − 1

)
× 0 = 0.

If the order of the factors is changed, then the obtained expression is not defined:{
P
( 1

z − 1

)
× δ1

}
× (z − 1).

By virtue of relations (10.1)-(10.2), we obtain that

Ra

(
P(

1

z − 1
)
)
Ra((z − 1))Ra(δ1)

=
1

2

( 1
z
r − 1

− 1

rz − 1

)
− ε
( 1

z
r − 1

+
1

2

1

(zr − 1)2

)
+

ε2

2

( 1
z
r − 1

+
1

(zr − 1)2

)
,
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which implies that the asymptotic expansion of this product is as follows:

1

2
δ1 − ε

1

(z − 1)−
− ε

2

1

(z − 1)2−
+ o(ε).

Thus, the product from the Schwartz example is associated with 1
2δ1.

12. On Equations with Generalized Coefficients

12.1. Approximation approach. Primarily, the embedding of the whole space of distributions
into the algebra of mnemofunctions is interesting from the theoretical viewpoint: it resolves the
Schwartz problem. In particular problems including products of distributions, other questions related
to the mnemofunction theory arise as well. The theory of nonlinear equations and differential equations
with generalized coefficients are among such problems.

From the viewpoint of applications, the main difficulty of the specified problems is the incorrectness
of the problem set originally: the mathematical model of the investigated process is too rough, which
causes the fact that no notion of a solution is defined for the corresponding equation. The general
approach is based on refining the problem setting by means of adding infinitely small values that are
not taken into account in the original setting. Such a refining is including additional data extracted
from the application domain (usually, this data is not contained in the originally formulated problem).

For example, in the theory of nonlinear equations, discontinuous solutions of the shock-wave type are
interesting (see [19, 33]). The corresponding equations contain nonlinear terms, e.g., of the kind u′xu,
while no such product is defined for a discontinuous function u. Thus, no notion for a discontinuous
solution is defined.

The problem setting is refined by means of adding terms containing a small parameter ε to the
nonlinear equation. The solution of such a perturbed equation is a family of smooth functions uε, i.e.,
a mnemofunction. The solution of the original equation is the limit of solutions uε as ε → 0, i.e., the
distribution u associated with this mnemofunction.

Thus, in these problems, the method of the approximation of the desired solution (the family of uε)
appears from the refined equation and is determined by the physical interpretation of the problem.
Usually, in classical hydrodynamical examples, the original equation corresponds to the case of the
ideal liquid, while the additional term reflects the effect of the small viscosity (i.e., the viscosity of
order ε); that is why such an approach is called the vanishing viscosity method.

The general scheme of the approximation approach for the investigation of linear differential equa-
tions with generalized coefficients refines the problem setting as well. Its content is as follows. Let L
be a linear differential expression with generalized coefficients. This expression is formal because it
contains terms that are not defined. We have to construct an operator (in a suitable function space)
corresponding to the considered operator L, which is equivalent to the introducing a notion of a solu-
tion for the equation Lu = f. Usually, the original expression immediately determines an operator A0

defined only on a rather narrow subspace, while our task is to construct its extension A. Properties of
the corresponding operators A for various types of differential expressions with generalized coefficients
are investigated in many papers. Here, we discuss only the construction of such extensions.

The approximation approach to the investigation of the considered equations consists of the change
of coefficients that are generalized functions for mnemofunctions associated with them. Here, the
choice of the corresponding mnemofunctions is adding the data refining the problem setting. We
obtain a family {Lε} of (well-defined) differential operators with smooth coefficients in a suitable
space. Since more than one mnemofunction is associated to each distribution, it follows that many
various families of operators Lε are associated with the original expression. In many cases, solutions uε
of the corresponding equations Lεuε = f converge to a function (distribution) u. Then u is reasonably
treated as a solution of the original equation corresponding to the selected method of the approximation
of coefficients.
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From a more general viewpoint, it is more convenient to investigate the family of operators Lε−λI
with the spectral parameter. Then the solutions of the corresponding equations are

uε = (Lε − λI)−1f

and the problem is reduced to the proof of the strong convergence of the resolvents (Lε−λI)−1. In this
case, there exists an operator A such that the limit of the resolvents is its resolvent; this operator A is
called a limit of the family {Lε} in the sense of the resolvent convergence. Considering operators with
the spectral parameter, one can obtain more general results because if we fix a particular value λ0,
then this might be a spectral value for A; in this case, no limit of the function family {(Lε−λ0I)

−1f}
exists.

The advantage of such an approach is as follows: usually, the family of Lε does not converge in the
space of operators and the operator A cannot be defined as the limit of {Lε} under other convergence
types.

In this case, the main technical difficulty is the investigation of the behavior of the family {uε} of
solutions of the associated equation in the space of mnemofunctions and the finding of the limit, i.e.,
the operator A. Here, the following primary questions arise:

(1) What formal differential expressions L with generalized coefficients and what approximations
of these coefficients are such that there exists a limit of the family {Lε} in the sense of the
resolvent convergence?

(2) What operators might be limits of approximating families under various approximation methods
and what are the cases where the limit does not depend on the selected approximation method
for the coefficients?

12.2. First-order differential equations. To clarify the arising problems and possible answers,
consider the simplest case, which is the first-order linear differential equation

u′ − au = f (12.1)

with a generalized coefficient a. This prototype example is convenient to demonstrate arising impacts
and differences from the classical theory of differential equations such that the results can be formulated
explicitly. For equations of higher orders and partial differential equations, similar impacts take place,
but much more fine computations are required to obtain the corresponding assertions.

Recall that the solution of the homogeneous Eq. (12.1) with an integrable coefficient a is given by
the relation

V (x) = exp
[ ∫ x

−1
a(s)ds

]
, (12.2)

while the solution of the Cauchy problem for the homogeneous equation with the condition u(−1) = M
is given by the relation

u(x) = MV (x) + V (x)

∫ x

−1

1

V (t)
f(t)dt. (12.3)

Note that V is found within two steps: finding the primitive g(x) of a and computing the exponent
exp g(x). Additionally, relation (12.3) includes multiplication and integration. Therefore, if a and f
are generalized functions, then, to obtain a similar relation, one has to define these operations well.
For the generalized function a, a primitive (i.e., a distribution such that g′ = a) exists. Therefore,
to provide a sense to relation (12.2), i.e., to introduce the notion of a solution for the homogeneous
equation with a generalized coefficient, one has to define the exponent of the distribution g.

According to the general approach, instead of the distribution a and f , consider their approximations
by smooth functions aε and fε. We obtain the following equation with a small parameter (an equation
in the space of mnemofunctions):

u′ε − aεuε = fε. (12.4)
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For it, the solution of the Cauchy problem is

uε(x) = M exp
[ ∫ x

−1
aε(s)ds

]
+ exp

[ ∫ x

−1
a(s)ds

] ∫ x

−1
exp
[
−
∫ t

−1
aε(s)ds

]
fε(t)dt. (12.5)

If this family of smooth functions uε converges (in the space of distributions or in a given function
space), then its limit u is called the solution of the original equation generated by the selected approxi-
mation method. The following examples demonstrate that there are many qualitatively different cases
of the behavior of family (12.5) of solutions.

Example 12.1. Consider the equation

Lu ≡ u′ − bδu = f, b = const,

in the space L2([−1, 1]). The task is to define a solution of this equation containing a formal expression
with a generalized coefficient.

Since δ = 0 outside each neighborhood of the origin, it follows that if a solution of the homogeneous
equation is defined reasonably, then it is to be of the form

u(x) =

{
C, x < 0,

C1, x > 0,
(12.6)

or, which is equivalent,
u(x) = C + (C1 − C)Θ(x).

Substituting this function into the equation, we obtain the product δΘ. It is not defined and C1 cannot
be found from the equation. This confirms that no notion of the solution of this equation is defined
in the framework of the classical theory.

Change the δ-function for its approximation of the kind ϕε(x) =
1
εϕ
(
x
ε

)
. Taking into account that

the supports of the functions ϕε(x) are contained in the segment [−1, 1] for small values of ε, introduce
the notation

Φ(x) =

∫ x

−1
ϕ(t)dt.

Then the equation with ϕε(x) is satisfied by

Vε(x) = C exp
[
bΦ
(x
ε

)]
.

From this expression, we see that Vε(x) converge to the function

V (x) = C
[
1 + (eb − 1)Θ(x)

]
. (12.7)

Thus, the homogeneous equation is satisfied by the piecewise constant function (12.7) satisfying the
following condition for the jump at the origin (this condition depends on the coefficient b):

u(+0) = ebu(−0).

Note that primitives of δ are ordinary functions of the kind g(x) = Θ(x) + C̃ and, substituting them
into (12.2), i.e., computing the exponent formally, we obtain the same solutions.

Remark 12.1. Substituting (12.7) into the equation, we obtain the relation

C(eb − 1)δ = bC[δ + (eb − 1)δΘ(x)].

From this relation, we find the product

δΘ =
eb − 1− b

b(eb − 1)
δ.

Note that the value obtained for δΘ does not depend on the coefficient b of the equation. The reason
is that the above computations use the approximation for Θ(x) determined by the considered equation
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and the approximation of δ; this leads to the dependence of the result on b. This reasoning confirms
that the product δΘ cannot be defined uniquely.

If f is a function from L2[−1, 1], then solutions of the approximating equation

u′ − b
1

ε
ϕ
(x
ε

)
= f

satisfying the condition u(−1) = C are as follows:

uε(x) = C exp
[
bΦ
(x
ε

)]
+ exp

[
bΦ
(x
ε

)] ∫ x

−1
exp
[
− bΦ

( t
ε

)]
f(t)dt.

Here, the limit passage as ε → 0 is possible as well. This yields

uε(x) → u(x) =

{
C +

∫ x
−1 f(t)dt, x < 0,

Ceb +
∫ x
−1 f(t)dt, x > 0.

Introducing the notation

u0(x) = C +

∫ x

−1
f(t)dt, x ∈ [−1, 1],

one can represent the obtained solution as follows:

u(x) = u0(x) + u0(−1)(eb − 1)Θ(x).

Let us find the operator that is associated with the formal expression Lu = u′ − bδu as a result of the
performed computations.

The differentiation operator is defined on the subspaceH1[−1, 1] ⊂ L2[−1, 1] consisting of absolutely
continuous functions such that their derivatives belong to L2[−1, 1]. For such a function, we have
δu = u(0)δ and this product belongs to L2[−1, 1] only if u(0) = 0. Thus, the formal expression defines
the operator A0 in L2[−1, 1] defined only on the subspace D(A0) = {u ∈ H1[−1, 1] : u(0) = 0} and
acting as the differentiation. Therefore, each operator such that it is reasonable to associate it with
the formal expression has to be an extension of A0.

The expression for the solution obtained above means that, in the specified case, we associate the
operator Ab defined on a subspace D(Ab) ⊂ H1[−1, 0] ⊕H1[0, 1] of the kind

D(A) =
{
u(x) = u0(x) + u0(−1)(eb − 1)Θ(x) : u0 ∈ H1[−1, 1]

}
and acting according to the relation Abu(x) = u′0(x) with the formal expression Lu = u′ − bδu.

Note that the operator Ab from this example does not depend on the selected approximation method
for the δ-function. Also, note that the constructed operator is not the closure of A0.

Construct the operator in a broader space and find the changes caused by this extension. Namely,
take the space

F [−1, 1] = {f +Mδ; f ∈ L2[−1, 1], M ∈ C}
containing the delta function. Let ψε(x) =

1
εψ
(
x
ε

)
be the approximation of δ from the right-hand side

of the equation generated by a function ψ ∈ D(R). Then the solution of the approximating equation

u′ − bϕεu = f +Mψε

satisfying the condition u(−1) = C is

uε(x) = C exp
[
bΦ
(x
ε

)]
+ exp

[
bΦ
(s
ε

)] ∫ x

−1
exp
[
− bΦ

( t
ε

)]
f(t)dt

+M exp
[
bΦ
(x
ε

)] ∫ x

−1
exp
[
− bΦ

(s
ε

)]1
ε
ψ
(s
ε

)
ds.
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In the integral from the last term, change the variable as follows: t = s
ε . Then it is equal to

hε(x) = M exp
[
bΦ
(x
ε

)] ∫ x
ε

− 1
ε

exp[−bΦ(t)]ψ(t)dt.

In this expression, it is possible to pass to the limit:

hε(x) → h(x) =

{
0, x < 0,

MebΓ, x > 0,

where

Γ =

∫ +∞

−∞
exp[−bΦ(t)]ψ(t)dt.

Thus, solutions uε converge to the function

u(x) =

{
C +

∫ x
−1 f(t)dt, x < 0,

Ceb +MebΓ +
∫ x
−1 f(t)dt, x > 0.

From the operator viewpoint, the operator A in the space F [−1, 1] is associated with the formal
expression such that

D(A) = H1[−1, 0]⊕H1[0, 1].

Each function u of this domain is represented as follows:

u = u0 + λΘ = u0 + u0(−1)(eb − 1)Θ + μΘ, where μ = λ− u0(−1)(eb − 1), u0 ∈ H1[−1, 1].

This operator acts as follows:

Au = u′0 +
μ

ebΓ
δ.

First, we note the following qualitative difference: the result contains the number Γ depending on the
approximation method for the coefficient and right-hand side. Thus, for the definition of the notion
of solutions of the equation in the space L2, the usage of mnemofunctions plays a technical role, but,
once we pass to a broader space including distributions, the solution itself depends on approximation
methods.

Example 12.2. Consider the equation

u′ − bδ′u = 0, b = const,

where the coefficient is the derivative of the δ-function, and follows the casing differences.
Since the primitive for δ′ is the distribution δ, it follows that, due to relation (12.2), the formal

solution satisfying the condition u(−1) = C is given by an expression of the kind Cebδ, which is not
defined. Therefore, this might mean obstacles for constructing a solution (in any sense).

Changing δ′ for its approximation δ′ε(x) = 1
ε2
ϕ′
(
x
ε

)
, we obtain solutions of the approximating

homogeneous equation

Vε(x) = C exp
[
b
1

ε
ϕ
(x
ε

)]
.

Outside any neighborhood of the origin, this family of functions uniformly converges to the constant C.
However, the family {Vε(x)} might exponentially increase in a neighborhood of the origin; in this case,
it does not converge to the constant C in the space of distributions.

Here, we restrict ourselves by the following conclusion: equations with coefficients of greater orders
of singularity are more complicated and, therefore, other approaches are required to investigate them.
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Example 12.3. Classical solutions of the differential equation

u′ +
1

x
u = 0 (12.8)

are functions of the kind

u(x) =

{
C
x , x < 0,
C1
x , x > 0.

(12.9)

Note that the solution of the Cauchy problem with the condition u(−1) = −C for this equation is
u(x) = C

x for x < 0. This solution tends to infinity as x → −0. No methods of the classical theory of
differential equations provide a possibility to extend this solution to the positive semiaxis in a natural
way.

Let us consider possibilities to define a solution of Eq. (12.8) from the viewpoint of the mnemofunc-
tion theory.

First, recall that a family of distributions of the kind a = P
(
1
x

)
+ Mδ corresponds to the func-

tion 1
x . Therefore, a family of equations with generalized coefficients is related to Eq. (12.8). The first

refinement of the problem setting is as follows: we have to select one of these distributions a and to
consider the corresponding formal equation.

For the considered distribution a, the primitive is the locally integrable function

g(x) = ln |x|+MΘ(x),

i.e., this distribution has the first order of singularity. Then the function

u(x) = −C exp[−g(x) + g(−1)] =

{
C 1

x , x < 0,

−Ce−M 1
x , x > 0

is a formal solution of Eq. (12.8) in the space of distributions. This is a function of kind (12.9) such
that C1 = −Ce−M for it. Note that the most natural solution (namely, the solution with C1 = C) is

obtained in the following two cases: a = P
(
1
x

)
± iπδ.

Is it possible to treat the constructed function u as a solution in the sense of the distribution theory
or mnemofunctions theory? First, we note that, similarly to the case of the function 1

x , a family of
distributions corresponds to this function a. Therefore, to obtain a correct answer, one has to find
which distribution U from this family corresponds to the constructed solution u and whether it is
possible to say that the relation

U ′ + aU = 0 (12.10)

is fulfilled (and in what sense it is fulfilled). In particular, since U ′ is a distribution, it follows that the
relation can be fulfilled only in special cases where a, U is a pair of singular distributions such that
the product is a distribution as well.

The exact sense to the above is provided by means of the following general approach: the generalized
coefficient a is to be changed for its approximation by smooth functions aε, the corresponding equation

u′ε(x) + aε(x)uε(x) = 0 (12.11)

is to be considered, and the family of its solutions

uε(x) = −C exp
[ ∫ x

−1
aε(s)ds

]

is to be investigated.
If uε → U, then the equation implies that aεuε → −U ′, i.e., the product of the given approximations

for a and U is associated with the distribution.

190



The simplest way to investigate the convergence is to consider only approximations generated by
analytic representations of distributions on the line. For the considered a, such approximations have
the form

aε(x) = λ
1

x+ iε
+ (1− λ)

1

x− iε
.

On the line, the following analog of Theorem 11.1 is valid: the product aU is associated with a
distribution if and only if

Uε(x) = −C
[
λ

1

x+ iε
− (1− λ)

1

x− iε

]
;

in this case, the following relation holds:

aε(x)uε(x) = −C
[
λ2 1

(x+ iε)2
− (1− λ)2

1

(x− iε)2

]
.

Since

U ′
ε(x) = −C[−λ

1

(x+ iε)2
+ (1− λ)

1

(x− iε)2
]

in this case, it follows that the relation U ′+aU = 0 is satisfied only under the assumption that λ = λ2.

For λ = 1, we obtain that aε(x) =
1

x+iε , and this is the approximation of the distribution P
(
1
x

)
− iπδ;

if λ = 0, then aε(x) =
1

x−iε → P
(
1
x

)
+ iπδ.

Thus, in the space of rational distributions, solutions of Eq. (12.10) with the considered distribu-

tions a exist only for the two distributions a = P
(

1
x

)
± iπδ; then U = Ca.

Example 12.4. Equations such that their coefficients undergo high frequency oscillations are covered
by this research area as well. Ideas of the averaging theory for equations with high frequency terms are
close to ideas of the mnemofunction theory. Usually, in the theory of equations with high frequency
terms, differential equations with small parameters are considered, while the main results state that
the corresponding solutions uε converge to a solution of the so-called averaged differential equation.
In simple cases, the averaged equation is constructed via the original one by means of the direct
averaging (see, e.g., [30], where the variable coefficients are changed for their mean values). Cases
where the procedure to obtain the averaged equation is more complicated (see, e.g., [27, 36, 39], where
the coefficients are changed for constants different from their mean values) are more interesting.

Consider the simplest equation from this class. Let a be a smooth periodic function with period τ.

Then the mnemofunction aε(x) = a
(
x
ε

)
oscillating with a high frequency converges in the sense of

distributions to the constant

A =
1

τ

∫ τ

0
a(s)ds,

which is the mean value of the function a. Therefore, the equation

u′ε(x)− a
(x
ε

)
uε(x) = f(x) (12.12)

can be treated as one of equations in the mnemofunction space associated with the averaged equation

u′(x)−Au(x) = f(x)

with the constant coefficient A.
Impacts arising in this case are demonstrated on the example of the Cauchy problem for the homo-

geneous equation with the condition u(0) = 1.
Introducing the notation

Fε(x) =

∫ x

0
a
(s
ε

)
ds,

we obtain that
Vε(x) = expFε(x).
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Thus, the problem is to describe the asymptotic behavior of this family of functions. The introduced

function has the form Fε(x) = Ax+ εω
(
x
ε

)
, where ω(x) is a periodic function such that its period is

equal to τ and its mean is equal to zero. For example, if aε(x) = 1+cos
(
x
ε

)
, then Fε(x) = x+ε sin

(
x
ε

)
.

Therefore, the solution can be represented in the form

uε(x) = exp[Ax] exp
[
εω
(x
ε

)]
= exp[Ax]

[
1 + εω

(x
ε

)
+

1

2

[
εω
(x
ε

)]2
+ . . .

]
,

which yields the simplest case of assertions from the averaging theory for differential equations
(see [30]): solutions uε(x) converge to the function expAx, which is the solution of the Cauchy
problem for the averaged equation, uniformly on each finite segment.

The behavior of solutions is changed if the amplitude of high frequency oscillations increases as
ε → 0. For example, let

aε(x) = A+
1

εd
a0

(x
ε

)
,

where a0 is a periodic function such that its mean value is equal to zero. Then

Fε(x) = Ax+
1

εd−1
ω
(x
ε

)
,

where ω(x) is a periodic function such that its period is equal to τ and its mean value is equal to zero.
In this case, solutions uε(x) converge to expAx for d < 1 (as above), but the factor 1

εd−1 increases and
limit exists if d > 1. Hence, the most interesting case is the case where d = 1. Then

uε(x) = expAx expω
(x
ε

)
.

This case has the following specific property: the family of periodic functions expω
(
x
ε

)
converges to

the mean value of the function expω(x) in the sense of distributions and this mean value exceeds 1.
For example, if a(x) = 1

ε cos x, then

uε(x) = exp
[
sin
(x
ε

)]

and the mean value is equal to

Ã =
1

2π

∫ π

−π
exp[sin(x)]dx =

1

2π

∞∑
k=0

1

(2k)!

∫ π

−π
[sin(x)]2kdx =

∞∑
k=0

1

(2k)!

(2k − 1)!!

(2k)!!
= 1 +

1

4
+

1

64
+ . . .

Thus, the following qualitatively new impact is observed in this example: the solution of the Cauchy
problem for the averaged equation is u(x) ≡ 1, while solutions uε converge (in the space of distribu-

tions) to a constant Ã > 1.
Another example is the Cauchy problem with the condition u(0) = 0 for the equation

u′ε(x)− aε(x)uε(x) = 1,

where aε(x) = 1 + 1
ε cos

(
x
ε

)
. Here, the solution of the Cauchy problem for the equation

u′(x)− u(x) = 1,

where the coefficient is changed for its mean value, is equal to u(x) = ex− 1. In this case, we have the
relation

uε(x) = exp
[
x+ sin

(x
ε

)] ∫ x

0
exp
[
− x− sin

( t
ε

)]
dt.

One can show that this family converges to Ã2(ex − 1) in the space of distributions. Since Ã > 1, it
follows that the constructed solution increases faster than the solution of the Cauchy problem for the
formally averaged equation.
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12.3. Point-interaction Schrödinger operators. Expressions of the kind −Δ+
∑
y∈Y

ayδy, where

Δ is the Laplacian in R
d, Y is a discrete (finite or denumerable) subset of Rd, and δy is the Dirac

function concentrated at the point y, play a special role among differential expressions with gener-
alized coefficients. Such equations heuristically describe quantum mechanical systems generated by
point source located at the points y, where the coefficients ay are the so-called coupling constants
characterizing the intensity of the corresponding sources. The historical review and a comprehensive
bibliography can be found in [1].

We provide just several considerations clarifying the relation of the considered area to the theory of
mnemofunctions. The first mathematically rigorous paper devoted to the construction of a self-adjoint
operator in L2(R

3) via the formal expression −Δ+ ayδy is [11].

Let Ny ⊂ L2(R
d) be the subspace consisting of smooth functions vanishing in a neighborhood of the

point y. On Ny, each operator that can correspond to the formal expression −Δ+ ayδy is to coincide
with −Δ. Therefore, it is to be a self-adjoint extension of the operator −Δy defined is the restriction
of −Δ to Ny. For d = 1, the operator −Δy has a four-parameter family of self-adjoint extensions,
for d = 2 and d = 3, the family of self-adjoint extensions is one-parametric, and only one self-adjoint
extension exists provided that d ≥ 4; this extension is the operator −Δ.

To construct the self-adjoint operator corresponding to a formal expression following the general
approach, one has to change the coefficient δy by an approximating family of smooth functions and,
for the obtained family of well-defined operators Lε, to find the limit in the sense of the resolvent
convergence.

It turns out that if d = 3, then a limit (in the sense of the resolvent convergence) different from
−Δ exists only under the assumptions that the coefficients are infinitely small and have the form
ay = a1ε+ a2ε

2, where a1 belongs to a discrete set depending on the method selected to approximate
the delta function. A a result, the obtained limit operator is not determined via the formal expression:
it depends on the method to approximate the delta function.

In the considered expression, the δ-function determines the multiplication operator acting on smooth
functions as follows: δyu = u(y)δy. This is a first-rank operator and it is not defined in L2(R

d).

However, there are many methods to approximate it by families of finite-rank operators ion L2(R
d),

which yields a family of well-defined operators; its limit in the sense of the resolvent convergence is
to be found. Here, the resolvents of approximating operators are found explicitly, which simplifies the
computing of the limit of resolvents. Such an approach is explained, e.g., in [5].

For d = 1, the operator corresponding to the formal expression can be found from heuristic consid-
erations. Usually, for the equation

u′′ + aδu = f,

continuous solutions are such that the first derivative might have a jump u′(+0)−u′(−0) at the origin.
The differentiation in the space of distributions yields the relation

u′′ + aδu = u′′(x) + [u′(+0)− u′(−0)]δ + aδu(0),

where u′′(x) is the classical derivative computed for x �= 0. If the obtained solution belongs to the
space L2(R), then terms containing δ eliminate each other, which yields the conjugation condition
u′(+0) − u′(−0) + au(0) = 0. The same result can be obtained by means of the analysis of the
resolvents of the approximating operators.

If an operator corresponding to the more complicated expression −u′′ +
∑
y∈Y

ayδyu is constructed,

then functions from the domain are to satisfy the conjugation conditions

u′(y + 0)− u′(y − 0) + ayu(y) = 0 for each y ∈ Y

as well. In [26], the corresponding operators are investigated in detail; in particular, it is proved that
the self-adjointness of the operator given by the conjugation conditions is not guaranteed.
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13. Conclusions

The multiplication problem for generalized functions is considered. A general approach to its resolv-
ing is described. Various methods to embed distributions spaces into the algebra of mnemofunctions
are analyzed. The method using the analytical representation of distributions is the most natural
(from several viewpoints). Under such an embedding, the multiplication rule for rational distributions
is given explicitly and it is possible to describe all cases where the product is a distribution.

There are relations between the multiplication problem for distributions with extensions of linear
operators, nonstandard analysis, quantum mechanics, theory of equations with generalized coefficients,
and theory of equations with small parameters.
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