
Eur. Phys. J. C (2022) 82:757
https://doi.org/10.1140/epjc/s10052-022-10707-0

Regular Article - Theoretical Physics

Remarks on sine-Gordon kink–fermion system: localized modes
and scattering

Vakhid A. Gani1,2,a , Anastasia Gorina3,b, Ilya Perapechka4,5,c, Yakov Shnir6,7,d

1 Department of Mathematics, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia
2 Kurchatov Complex for Theoretical and Experimental Physics of National Research Centre “Kurchatov Institute”, Moscow 117218, Russia
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Abstract We study numerically the kink–fermion interac-
tions in a 1 + 1 dimensional toy model, which describes
sine-Gordon kinks coupled to the massless Dirac fermions
with backreaction. We show that the spectrum of fermionic
modes strongly depends on the choice of the coupling, in par-
ticular, there are no localized modes for a minimal Yukawa
coupling. We analyze the scattering of the fermionic packet
by the kink. We demonstrate that the outcome of the collision
dynamically depends on the phase of the incoming fermion
packet, it results in alternating regimes of positive and nega-
tive acceleration of the kink.

1 Introduction

Many non-linear physical systems support particle-like soli-
ton solutions, which represent spatially localized field con-
figurations with various ramifications for non-linear optics,
condensed matter physics, theory of superconductivity, cos-
mology and quantum field theory [1–5].

One of the simplest examples of solitons is given by the
kinks which appear in models in 1 + 1 dimensions with a
potential possessing two or more degenerate minima, see,
e.g., [4–7]. The kinks are topologically stable, they inter-
polate between two different vacua of the model. On the
one hand, kinks are widely used to describe objects such as
domain walls [6] or deformations of planar structures [8,9],
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and, on the other hand, kink solutions arise, for example,
when describing phase transitions in some materials [10].
Depending on the potential of the field-theoretic model, its
kink can have different properties. In particular, the asymp-
totic behavior of the kink solution can be power-law, expo-
nential, or super-exponential, for details see, e.g., [11–16].
Moreover, under certain conditions, compact kinks can exist
[17].

A separate exciting area of research is the study of the
dynamics of kink–antikink and multikink collisions, see, e.g.,
[7,18]. Among field models having kink solutions, the so-
called integrable models stand out separately. An example
of integrable model is the classical sine-Gordon model [19].
In the sine-Gordon theory with infinitely degenerate vacuum
manifold, the complete integrability of the field equations
leads to constraints on the dynamics of the kinks via the infi-
nite number of integrals of motion, see, e.g., [20]. In partic-
ular, the sine-Gordon model possesses an explicit analytical
solution describing fully the dynamics of the kink–antikink
pair, the collision of the solitons cannot excite the radiation
modes, they do not appear in the final asymptotic state.

Models with polynomial potentials, like for example the
simple φ4 model with the potential V (φ) = 1

2 (1−φ2)2 hav-
ing double degenerate vacuum, are not integrable although
have kink solutions. Numerical simulations show that in non-
integrable models, like the φ4 theory, the processes of colli-
sions of a kink and an antikink are chaotic [21–30]. As the
impact velocity remains relatively small, the kink–antikink
pair annihilate via an intermediate oscillating bion state,
however, for some values of the impact velocity the kinks
may bounce back via reversible energy exchange between
the states of perturbative and non-perturbative sectors of
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the model [21–24,29,30]. Similarly, a complicated pattern
of narrow resonance windows arises in the deformed sine-
Gordon models [31–34].

The complete integrability of the sine-Gordon theory also
can be destroyed by the presence of impurities [19,35–37],
modification of the boundary conditions [38], or via coupling
with other fields. In particular, fermions can be coupled to
the sine-Gordon model via the Yukawa interaction term [39].
Remarkably, there are fermion modes trapped by the kink,
for certain values of the parameters of the model there exists a
localized zero-energy mode. Indeed, the underlying Atiyah–
Patodi–Singer index theorem [40,41] requires one normal-
izable fermion zero mode per unit topological charge of the
background soliton in the scalar sector.

Fermions bound by kinks were considered in many papers
[39,42–50]. The typical assumption in most of such consid-
erations is that the the spinor field does not backreact on the
soliton. Moreover, only the fermion zero modes were consid-
ered in most cases. A different approach to the problem was
proposed in our previous works [51–54] where we reconsid-
ered this problem taking into account both the backreaction
of the localized fermions, and the spectral flow of the eigen-
values of the Dirac operator. We observed that the interaction
with fermions induces deformations of the kinks, which may
resemble the excitations of the internal modes of the scalar
configurations [53].

Presence of fermion bound states affects the process of
collision of kinks, there are transitions between localized
fermion modes during the collision [55–57] and radiation of
fermions. This raises an interesting question: what happens
to the kink during collisions with incoming fermions?

It is known that the influence of an incident scalar radiation
on the kink may produce both positive and negative radiation
pressure, depending on the form of the scalar potential of
the model [58,59]. The effect of negative radiation pressure
in the φ4 theory is related with non-linearity of the model,
the excitation of the kink by incoming radiation with some
frequency ω, induces the outgoing wave whose frequency is
twice of ω, this yields a surplus of momentum created behind
the kink [58,59]. On the other hand, the sine-Gordon kink is
transparent to the incoming scalar radiation [59].

A main objective of this Letter is to study the effects of
dynamical interaction between the sine-Gordon kinks and
incoming fermions numerically, taking into account backre-
action of the scalar field. Our computations reveal that defor-
mation effects and excitation of the scalar radiation in the
process of collision, result in a complicated pattern of chaotic
scattering with alternating regimes of positive and negative
acceleration of the kink.

This paper is organized as follows. Section 2 recalls briefly
the model, here we also discuss the choice of the Yukawa cou-
pling. In Sect. 3, we review the types of the fermionic modes
localized on the kink, we also present the results obtained by

solving the coupled system of equations numerically. Then,
in Sect. 4 we investigate the collision dynamics of a massless
fermion and a sine-Gordon kink. We close with our conclu-
sions in Sect. 5.

2 The model

The 1 + 1 dimensional field theory we are interested in is
defined by the following Lagrangian

L = 1

2
∂μφ∂μφ + ψ̄

[
iγ μ∂μ − m − gφ

]
ψ − V (φ), (1)

where V (φ) is a potential of the self-interacting real scalar
field φ, ψ is a two-component Dirac spinor,m is the bare mass
of the fermions and g is the Yukawa coupling constant. The
matrices γμ are γ0 = σ1, γ1 = iσ3 where σi are the Pauli
matrices and ψ̄ = ψ†γ 0. The fermion field is minimally
coupled to the scalar sector via the Yukawa interaction term

Lint = −gφψ̄ψ. (2)

Note that this form of the coupling of the scalar and spinor
fields, for any values of the parameters of the model, is differ-
ent from the case of the supersymmetric sine-Gordon system
[60] with simple prepotential W = −4 cos(φ/2). Hence,
there is no simple relation between bosonic and fermionic
spectra of excitations, they are no longer related to each other.

The Euler–Lagrange equations for the model (1) are

∂μ∂μφ + gψ̄ψ − V ′(φ) = 0,

iγ μ∂μψ − mψ − gφψ = 0.
(3)

The sine-Gordon model corresponds to the periodic potential
V (φ) = 1 − cos φ with infinite number of degenerate vacua
φ0 = 2πn, n is an integer.

In the decoupled limit (g = 0) the static sine-Gordon
kink solution interpolating between the vacua 0 and 2π is
well known,

φK(x) = 4 arctan(ex ) = 2 arcsin(tanh x)+π = 2gd(x)+π,

(4)

where gd(x) = 2 arctan(ex ) − π

2
is the Gudermannian

function [61]. Fermion modes can be localized on the sine-
Gordon kink after appropriate adjustment of the coupling in
the Yukawa interaction term (2), gφK → g(φK − C) [39].
Equivalently, the mass of the fermion field can be shifted as
m → m−gC , in particular, settingC = π restores the reflec-
tion symmetry of the kink solution x → −x, φ → −φ.

123



Eur. Phys. J. C (2022) 82 :757 Page 3 of 11 757

Setting C = π and making use of the usual parametriza-
tion of a two-component spinor

ψ(x, t) = e−iεt
(
u(x)
v(x)

)
, (5)

where u(x) and v(x) are two real functions, we obtain the
following coupled system of static equations:

φxx + 2guv − sin φK = 0,

ux + (m − gπ + gφK)u = εv,

−vx + (m − gπ + gφK)v = εu.

(6)

This system is supplemented with the normalization condi-
tion

∞∫

−∞

(
u2 + v2

)
dx = 1, (7)

thus the configuration as a whole can be characterized by two
quantities, the fermionic density distribution ρf = u2 + v2

and the topological density of the kink ρt = 1

2π

∂φ

∂x
.

3 Localized fermions

Assuming that the scalar field background (4) is fixed and
setting bare mass of the fermion m = 0, we can obtain a
solution for the localized zero mode of the Dirac equation
(up to a normalization factor) [39,62]:

ψ0(x) ∝
(

exp
{−g

[
2x(2 arccot(ex ) + gd(x)) + 4 Ti2(e−x )

]}

0

)
,

(8)

where Ti2(y) is the inverse tangent integral of y. By expand-
ing the functions in powers of x around the center, we can see
that the fermion zero mode (8) can be nicely approximated
by a Gaussian profile, see Fig. 1 below.

Other localized modes can be found in the same way. The
system of two first order differential equations in (6) can be
transformed into two decoupled second order equations for
the components u and v:

−uxx +
((

m − gπ + 4g arctan(ex )
)2 − 2g

cosh x

)
u = ε2u,

−vxx +
(

(m − gπ + 4g arctan(ex ))2 + 2g

cosh x

)
v = ε2v.

(9)

They are Schrödinger-type equations, for the fermions in the
external static background field of the kink (4) with the poten-
tial well

U∓(x) = (m − gπ + 4g arctan(ex ))2 ∓ 2g

cosh x
. (10)

Since U±(x) → (m − gπ)2 at x → −∞, and U±(x) →
(m + gπ)2 at x → +∞, in the massless limit m = 0 the
functions u, v decay as ∼ e−λ|x |, where λ = √

g2π2 − ε2.
Further, setting bare mass of the fermion field to zero reduces
the system (9) to the form

Ĥ1u(x) = ε2u(x), Ĥ2v(x) = ε2v(x) (11)

with the Hamiltonians

Ĥ1 = − d2

dx2 +U−(x), Ĥ2 = − d2

dx2 +U+(x), (12)

where

U∓(x) = 4g2 gd2(x) ∓ 2g
d

dx
gd(x). (13)

The operators (12) can be factorized as

Ĥ1 = â†â, Ĥ2 = â â†, (14)

where the following operators are introduced:

â = d

dx
+ w(x), â† = − d

dx
+ w(x) (15)

with the superpotential

w(x) = 2g gd(x). (16)

It is easy to see that the potentials (13) can be expressed via
the superpotential (16) as

U∓(x) = w2(x) ∓ w′(x). (17)

The algebra of the operators (15) is

[â, â†] = 2 w′(x) = 4g

cosh x
. (18)

The discrete spectrum of each Hamiltonian Ĥ1 and Ĥ2
contains a finite number of levels, depending on the cou-
pling constant g. Action of the operators (15) on the eigen-
functions un(x) and vn(x) of the Hamiltonians Ĥ1 and Ĥ2 is
the following (up to normalization constants):

â un+1 = vn, â†vn = un+1, (19)
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see, e.g., [63]. The ground state u0 is annihilated by the oper-
ator â,

â u0(x) =
(

d

dx
+ 2g gd(x)

)
u0(x) = 0, (20)

the solution of this equation is the fermion zero mode (8).
Note that similar operators can be also defined in the case
m �= 0.

Let us compare Eq. (9) with the corresponding Schrödinger-
type equation on the scalar excitations of the sine-Gordon
kink, φ(x, t) = φK(x) + η(x) eiωt :

−ηxx +
(

1 − 2

cosh2 x

)
η = ω2η (21)

with the Pöschl–Teller-type potential U (x) = 1 − 2

cosh2 x
.

By analogy with (11) and (14), this equation also can be
expressed in terms of the operators b̂ and b̂† as

b̂†b̂ η(x) = ω2η(x), (22)

where

b̂ = d

dx
+ tanh x, b̂† = − d

dx
+ tanh x, (23)

and

[b̂, b̂†] = 2

cosh2 x
. (24)

The zero mode of the sine-Gordon kink is defined as a state,
which is annihilated by the action of the operator b̂:

b̂ η0(x) =
(

d

dx
+ tanh x

)
η0(x) = 0. (25)

Up to a normalization factor, it looks like

η0(x) = 1

cosh x
. (26)

The sine-Gordon continuum scalar modes are

ηk(x) = eikx
ik − tanh x√

1 + k2
, k2 = ω2 − 1. (27)

It is noteworthy that the partner Hamiltonian b̂ b̂† has the
constant potential U (x) ≡ 1, which leads to the absence
of discrete levels. At the same time, the discrete spectrum
of Eq. (21) contains the only zero mode ω0 = 0 with the
corresponding eigenfunction (26).

Clearly, the fermionic and bosonic operators (15), (23) are
not directly related, and the effective potential (10) or (13) is

different from the reflectionless Pöschl–Teller-type potential
in Eq. (21).

Unfortunately, Eq. (9) do not support solutions of the form
of a hypergeometric-type function, moreover, even in the
limit of zero bare massm = 0, the action of the operators (15)
does not provide closed form solutions of Eqs. (11). Hence,
in our analysis we have to implement numerical methods.

Numerical results

Since an analytical solution of the full system of integral-
differential equations (6), (7) cannot be attained, we solved
this problem numerically implementing the method of lines.
The spatial derivatives are discretized on an equidistant grid
using fourth-order finite difference method and the resulting
system of ordinary differential equations is integrated using
eighth order Dormand–Prince method.

First, we consider fermionic modes, localized on the
fixed background of the sine-Gordon kink, so we adjust the
Yukawa coupling as above, gφK → g(φK −π). Then, in the
limit of zero bare mass of the fermions, m = 0, the effec-
tive potential (13) becomes symmetric (the Gudermannian
function gd(x) is parity-odd). Hence, by analogy with the
fermions localized on the φ4 kink [42–44,53], there are two
types of localized modes with opposite parity with the fol-
lowing boundary conditions at the center:

Type A : ux

∣∣∣∣
x=0

= 0, v

∣∣∣∣
x=0

= 0;

Type B : u

∣∣∣∣
x=0

= 0, vx

∣∣∣∣
x=0

= 0. (28)

In other words, the modes An of the type A possess symmetric
u-component and antisymmetric v-component, the modes
Bn of the type B possess antisymmetric u-component and
symmetric v-component. Spinor components of each mode
possess at least n nodes, the zero mode is labeled as A0.

Another similarity with the fermionic modes localized on
the φ4 kink is that for all spinor states, the number of nodes of
the component u is one node more than the number of nodes
of the component v. In Fig. 1, we display the components
of a few modes of both types, localized on the sine-Gordon
kink at g = 1. Here we fix the mass parameter m = 0 as
above.

The number of the localized massless fermionic states and
their energies depend on the strength of the Yukawa coupling.
In Fig. 2, we plot spectral flow of the first five localized modes
of both types.

Evidently, variation of the Yukawa coupling parameter C
affects the fermionic modes localized on the kink. Figure 3
displays the profiles of the corresponding components for
some set of values of C . Since the effective potential in the
equation for the fermions in the external static background
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Fig. 1 Components of the localized fermionic modes of the types An (upper row) and Bn (bottom row) are plotted as functions of the coordinate
x for m = 0 and g = 1
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Fig. 2 Normalized energy of the localized fermionic states as a func-
tion of the Yukawa coupling g for first nine modes at m = 0 with
backreaction

field of the kink is no longer symmetric with respect to spatial
reflections, the symmetry of the fermionic modes is violated.

Our numerical results indicate that the localized asymmetric
modes with non-zero eigenvalues may exist for some range
of values of C . As C deviates from the “symmetric point”
C = π , these modes rapidly move towards the continuum,
however asymmetric fermionic zero mode A0 exist for all
non-zero values of this parameter, see Fig. 4. Indeed, such
a mode arise in 1 + 1 dimensional system according to the
index theorem. It disappears at C = 0.

4 Kink–fermions collision dynamics

Let us now study collision dynamics of a massless fermion
state and a sine-Gordon kink in the model (1). Hereafter, we
consider a parametrization of the two-component Dirac field
which generalizes the ansatz (5) above, which we used for
the localized states,

ψ(x, t) =
(
u(x, t) + i p(x, t)
v(x, t) + iq(x, t)

)
, (29)
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where u, v, p, q are four real functions constrained by the

normalization condition

∞∫

−∞

(
u2 + p2 + v2 + q2

)
dx = 1.

Further, in our numerical analysis of the collisions we use
a minimal “non-symmetrized” Yukawa coupling (2) setting
both the bare fermion mass m = 0 and the coupling param-
eter C = 0. This excludes existence of the localized fermion
modes, in particular, the zero mode.

Then, the full system of dynamical equations of the model
(1) becomes

φxx + 2g(uv + pq) − sin φ = 0,

−ux − gφu = qt ,

vx − gφv = pt ,

px + gφp = vt ,

−ux + gφq = ut .

(30)

We numerically solve this system of mixed order nonlinear
integral-differential equations using the following set of the
boundary conditions:

u = v = p = q = 0, x → ±∞,

φ = 0, x → −∞,

φ = 2π, x → +∞.

(31)

The initial data used in our simulations represent a normal-
izable fermionic state of the Gaussian form [64]:

ψ(x, 0) = 1
√

2
√

π
exp

(

− (x − x0)
2

2
+ ik(x − x0)

) (
1
i

)
,

(32)

where k is the wave number and x0 is the initial position of
the wave train.
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Fig. 5 Post-collision velocity of the kink as a function of the Yukawa
coupling constant g and wave number k. The initial separation is x0 =
−45

Since we set m = C = 0, Lint → 0 as x → −∞,
the Gaussian wave packet (32) is initially massless and the
frequencyω = |k|. It is coming from the left, i.e. it propagates
in positive x direction from x = −∞ at the unit speed. As it
approaches the kink located at x = 0, a small dynamical mass
of the fermions is generated via the Yukawa coupling with
the scalar sector. However, the fermions cannot be localized
on the kink.

Note that the presence of the Yukawa interaction term
linearly coupled to the scalar sector, mimics the deformations
of the scalar potential which induces a force acting on the
kink [65], however this effect is almost negligible. On the
other hand, in such a case the field of the sine-Gordon kink
generates a potential barrier for the propagating fermions, the
probability of transition of the fermions through the barrier
is strongly suppressed. Moreover, the mass of the coupled
fermions is different in asymptotic states, the modes in the
vacuum φ0 = 2π at x → +∞ have mass 2gπ .

In our calculations, we typically set the initial separa-
tion between the sine-Gordon kink, which initially at rest
at the center of collision x = 0, and the incoming train, to
x0 ∼ 40 − 60 units of length. Interestingly, for relatively
small values of the wave number k, and g ≤ 1 the dispersion
of the normalized propagating relativistic wave train (32)
is minimal [64], the Gaussian packet preserves its form up
to collision with the kink for a wide range of values of the
parameters of the model.

Figure 5 displays our results for collisions of the Gaussian
train (32) with the sine-Gordon kink for some range of values
of the parameters g and k. Initial separation between the kink
and incoming train is fixed as x0 = −45. The figure shows
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the post-collision velocity of the kink measured 100 units of
time after the impact.

First, we found that, for sufficiently small values of the
coupling constant g, the collision dynamics of the system is
almost elastic, the fermion train collides with the kink and
bounces back providing small transfer of energy to the kink
translational mode, as expected. Surprisingly, we observe
that the kink is pushed forward by the incident train only
if the phase of the fermion packet at the moment of collision
is negative, as seen in Fig. 6. In the opposite case, the kink
starts to move towards the incoming fermion train, resem-
bling the effect of negative radiation pressure in the scalar
sector of the φ4 theory [58,59]. Numerical evaluation shows
that, as the coupling constant g remains relatively small, the
reflected train almost preserves its Gaussian form with mini-
mal dispersion of the outgoing packet, see Fig. 6, upper row.

The change of the sign of the force, acting on the kink, is
related with excitation in the collision of the scalar continuum
modes from both sides of the kink. However, if the phase
of the fermion train at the impact is positive, a momentum
surplus is created behind the kink due to suppression of the
scalar radiation outcoming from the left side of the kink in
the vacuum sector φ0 = 0, and resonance excitation of the
continuum modes of the sector φ0 = 2π from the right.
The situation is opposite, as the phase of the fermion train
colliding with the kink is negative.1

As g increases beyond 1, the collision dynamics becomes
more complicated because of the increasing role of the scalar
radiation. First, the amount of energy transferred to the con-
tinuum modes in the collision process becomes larger. For
some values of the wave number k and the coupling g, the
kink remains at the center of collision, with scalar radiation
outgoing in both directions, see Fig. 6, bottom left plot. More-
over, an oscillon can be ejected from the center of collision,
see Fig. 6, bottom right plot. This chaotic structure can be
seen on the upper half of Fig. 5. This pattern is similar to the
behavior of the colliding kinks in the deformed sine-Gordon
model [32].

The production of oscillon is a non-perturbative process
with a large energy transfer, i.e., this oscillon carries away a
lot of energy and momentum. As a result of the recoil, the
kink starts to move quickly. But nevertheless, the kink is still
repelled from the fermion packet, fermions cannot form a
bound state with the kink. Interestingly, the fermionic packet
cannot pass through the kink. This is due to the fact that it
is massless to the left of the kink, and it is massive to the
right. It is also interesting that the fermionic packet is almost

1 It was noted that similar effect can be observed in the collision of
the incoming Gaussian-like scalar wave trains and the global vortex
(W. Zakrzewski, unpublished note and T. Romanczukiewicz, private
communication.)

not subject to dispersion. After the collision, there is a small
frequency spread, but the fermionic field components do not
separate much, they move almost at the same velocity.

Finally, note that further increase of the Yukawa coupling
may produce a massive spinor modes propagating on the right
side of the excited kink after the impact. This is an effect of the
third order, it is related with excitation of the internal mode of
the kink and subsequent excitation of the fermionic modes
of the continuum. However, the corresponding amplitude,
which can be evaluated from the overlap integral between
these states, is exponentially suppressed.

It should also be noted that the problem of scattering of
Dirac fermions on the kink was considered in a recent paper
[66] in a different setup. A modified form of the non-minimal
spin–isospin coupling between the kink and the spinor field
used in [66] reduces the problem to the modified problem
of scattering of the fermions on the soliton of the non-linear
O(3) sigma model. As a results, the field equation for the
fermions interacting with the kink can be transformed to
a hypergeometric-type equation. The study of the resulting
system in paper [66] is simplified further by assumption of
smallness of the coupling constant.

5 Conclusion

In this paper we have studied the fermions interacting with
sine-Gordon kink. We discussed the fermion modes, local-
ized on the kink and investigated the effects of backreaction
of the fermions on the scalar field.

Our numerical simulations of the collisions between the
incoming fermionic train and the sine-Gordon kink revealed
a rich diversity of chaotic behaviours mostly related with
excitation of the scalar radiation in the process of collision.
We have shown that, depending on the phase of the incom-
ing train, the kink can be pulled towards the incident fermion
packet, or it can be pushed in the direction of the incoming
momentum. This phenomenon resembles the effect of neg-
ative radiation pressure in scalar φ4 model. However, in the
case of the fermions interacting with the sine-Gordon kink,
the outcome of the collision depends on the wave number of
the train. A better understanding of this feature will require
a perturbative evaluation of the force acting on the kink after
the impact, and subsequent excitation of the continuum scalar
modes. However, as things stand, this is a numerical obser-
vation.

Increase of the Yukawa coupling strength leads to more
complicated pattern of collision dynamics, in particular, we
observe production of oscillons and increasing role of the
scalar radiation on both sides of the kink. However, massless
fermions are always reflected from the kink, it generates a
very high potential barrier which forbids the passage.
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Fig. 6 Collisions between the
Gaussian fermionic train (32)
and the sine-Gordon kink. The
plots represent the profiles of the
fermion probability density ψ̄ψ

and the field of the kink φ
2π

as
functions of the time t for g = 1
(upper row) and g = 3 (bottom
row) for the cases of negative
(left column) and positive (right
column) phases of the train at
the moment of collision

We expect that similar effects will be observed in other
systems, like φ4 and φ6 models coupled to fermions, but we
leave the corresponding investigation for future work.

Note added

While our paper was posted on the arXiv, the relevant paper
[67] appeared, where the authors consider the kink–antikink
collisions in supersymmetric φ4 theory with fermion back-
reaction. This system possesses much larger symmetry that
our model, it allows the authors of [67] to evaluate the
fermionic field contribution to the net force, acting on the
kink. Interestingly, this force can be both attractive or repul-
sive.
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