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We study the energy-momentum tensor of the spherically symmetric Uð1Þ gauged Q-ball configurations
in the two-component Fridberg-Lee-Sirlin-Maxwell model, and in the one-component scalar model with a
sextic potential. We evaluate the distributions of the corresponding shear forces and pressure and study the
stability criteria for these solutions. We present the results of numerical simulations in both models,
explicitly demonstrating that the electrostatic repulsion may destabilize theUð1Þ gauged Q-balls. However,
in the limiting case of the Fridberg-Lee-Sirlin-Maxwell model with a long ranged real scalar component,
the gauged Q-balls always remain stable.
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I. INTRODUCTION

Q-balls are nontopological solitons, spacially localized
field configurations with finite energy in the flat 3þ 1
dimensional Minkovski spacetime. They represent time-
dependent lumps of a complex scalar field with a stationary
oscillating phase [1–3]. Such solutions may exist in models
possessing an unbroken continuous global symmetry, typical
examples are themodelwith a single complex scalar field and
a suitable nonrenormalizable self-interaction potential [3],
and so-called Friedberg-Lee-Sirlin two-component model
with a symmetry breaking potential [2]. The Q-balls carry a
Noether chargeQ associated with theUð1Þ symmetry (for a
review, see, e.g., [4–6]), they can be considered as con-
densates of a large number of the field quanta which
correspond to an extremum of the energy effective energy
functional for a fixed value of the charge Q. The charge Q
also can be interpreted as the particle number. Certainly, there
is a similarity between the Q-balls and their nonrelativistic
analogs, nontopological lumps in the Bose-Einstein con-
densate [7].
Q-balls have received a lot of attention during the last

decades, it was suggested that such configuration may be
formed in a primordial phase transition contributing to
various scenario of the evolution of the early Universe
[8,9], in particular, acting as a possible catalyst for

baryogenesis [10,11]. The Q-balls also are considered as
candidates for dark matter [12], they may occur in the
minimal supersymmetric generalization of the Standard
Model with the global charge Q being identified with
baryon or lepton number [13–15].
The local Uð1Þ symmetry of a model supporting Q-balls

can be promoted to be a local gauge symmetry, it corresponds
to the gauged Q-balls [16–21]. Notably, Q-ball configura-
tions in theUð1Þ-gauged model of complex scalar field with
minimal electromagnetic couplingwas considered already in
the second of the pioneering papers by Rosen [1].
There are some important differences between the

gauged and ungauged Q-ball solutions. Spherically sym-
metric Q-balls with global Uð1Þ symmetry exist only in a
certain angular frequency range, ω ∈ ½ωmin;ωmax�, deter-
mined by the properties of the potential. Both mass and
charge of the ungauged Q-balls diverge at both limiting
values of the frequency, there are two branches of solutions,
bifurcating at the minimal charge and mass. On the other
hand, both the energy and the charge of Q-balls with local
Uð1Þ symmetry remain finite for all allowed values of the
angular frequency [18–20]. The Uð1Þ gauged Q-balls form
two branches of solutions, they merge at some minimal
value of the angular frequency [16].
It was pointed out that the presence of the Abelian gauge

field may affect the properties of the soliton, as the gauge
coupling increases, the electromagnetic repulsion between
the scalar particles destabilizes the configuration. The
problem of stability of the Q-balls has been analyzed in a
number of works, see, e.g., [4,22–24]. It was shown that for
some range of values of the parameters of the model there
are stable, metastable and unstable solutions. In particular,
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Q-balls may be unstable with respect to linear perturbations
of the fields, or because of nonlinear effects. Q-balls with
global Uð1Þ symmetry are stable along the lower branch, as
the mass of the configuration remains smaller than the mass
of free scalar particles with charge Q.
Another interesting approach was proposed in [25,26], it

was suggested to study the matrix elements of energy-
momentum tensor and related spatial distributions of the
forces acting in the interior of the configuration. This
approach is inspired by the study of the form factors of the
energy-momentum tensor of hadrons [27–29] and evalu-
ation of the corresponding D-term, the quantity which is
related to the spacial deformations of the system [28,29]. It
was shown that all finite energy Q-ball solutions with local
Uð1Þ symmetry satisfy certain criteria for the distribution of
the shear force and the pressure [25].
A main objective of this paper is to study the energy-

momentum tensor of the gauged spherically symmetric
Q-balls in the one-component gauged scalar model with a
sextic potential and in the two-component Friedberg-Lee-
Sirlin-Maxwell model. In what follows, we begin by
summarizing the properties of the gauged Q-balls in flat
space leading to a discussion of the stress tensor and the
problem of the distribution of the shear forces and pressure
acting on the Uð1Þ gauged configuration. Numerical results
are presented in Sec. II, where we discuss the stability
condition of the gauged Q-balls which follow from the
conservation of the energymomentum tensor of the systems.
Conclusions and remarks are formulated in Sec. III.

II. Uð1Þ GAUGED Q-BALLS

A. Uð1Þ gauged Q-balls in the model with sextic
potential

First, we consider Uð1Þ gauged (3þ 1)-dimensional
self-interacting complex scalar field ϕ, minimally interact-
ing with the Abelian gauge field Aμ [16]. The model is
described by the Lagrangian

LðIÞ ¼ −
1

4
FμνFμν þDμϕDμϕ� −UðjϕjÞ; ð1Þ

where Dμ ¼ ∂μ þ igAμ denotes the covariant derivative, Aμ

is a four-potential, g is the gauge coupling constant, the
electromagnetic field strength tensor is Fμν ¼ ∂μAν − ∂νAμ

and the Uð1Þ invariant self-interacting potential of the
complex scalar field is [16,30,31]

UðjϕjÞ ¼ ajϕj2 − bjϕj4 þ jϕj6; ð2Þ

with the usual choice of the positive parameters a ¼ 1.1 and
b ¼ 2. In such a case non-topological soliton solutions of this
model exist only in a certain frequency range ωmin ≤ ω ≤

ωmax [30,31], where the upper limit ωmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
U00ð0Þ

q
¼ a

corresponds to the mass of scalar excitation. In the

nongauged case, g ¼ 0, the lower bound is given by the
condition

ω2
min ¼

Uðϕ0Þ
ϕ2
0

¼ a −
b2

4

where ϕ0 is a minimum of the potential (2). In the gauged
theory (1) the minimal allowed value of the angular fre-
quency is increasing as the gauge coupling grows, at some
critical value of the coupling the electrostatic repulsion
becomes too strong for Q-ball to exists [16–20,22].
The model (1) is invariant with respect to the local Uð1Þ

gauge transformations

ϕ → ϕ̃ ¼ eiαðxÞϕ; Aμ → Ãμ ¼ Aμ − ∂μαðxÞ; ð3Þ

the associated Noether current is

jμ ¼ iðϕ�Dμϕ − ϕDμϕ
�Þ; ð4Þ

and the conserved charge is

Q ¼ i
Z

d3xj0: ð5Þ

The Euler-Lagrange equation of the model (1) for the
scalar field is

DμDμϕ ¼ −aϕþ 2bjϕj2ϕ − 3jϕj4ϕ ¼ 0; ð6Þ

it is supplemented by the Maxwell equation

∂μFμν ¼ gjν ð7Þ

with the current jν (4) as a source.
Further, the symmetrized energy momentum tensor of

the model (1) reads

Tμν ¼ −ημν
�
DρϕDρϕ� þ 1

4
FρσFρσ þUðjϕjÞ

�

þ ðDμϕDνϕ
� þDμϕ

�DνϕÞ þ ηρσFμρFνσ ð8Þ

where ημν ¼ diagð−1; 1; 1; 1Þ is the usual Minkowski flat
metric.
To study the stress stability criterion of the gauged Q-ball

we restrict attention to solutions of the model (1) with
spherical symmetry. The standard ansatz for the fields is

ϕðr⃗; tÞ¼XðrÞeiωt; A0ðr⃗; tÞ¼AðrÞ; Akðr⃗; tÞ¼ 0 ð9Þ

where XðrÞ and AðrÞ are real functions. Substituting it into
the field equations (6), (7), we arrive at
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X00 þ 2X0

r
þ ðωþ gAÞ2X − aX þ 2bX3 − 3X5 ¼ 0;

A00 þ 2A0

r
− 2gðωþ gAÞX2 ¼ 0; ð10Þ

where the prime denotes differentiation with respect to
radial coordinate.
Note that properties of a Q-ball are qualitatively similar

to those of a droplet of a liquid [25]. Indeed, the energy
density of the gauged Q-ball is given by

ε¼T00¼
1

2
ðA0Þ2þðX0Þ2þðωþgAÞ2X2þaX2−bX4þX6

ð11Þ

It was pointed out [25,29] that the stress tensor Tij can be
decomposed as

Tij ¼
�
r̂ir̂j −

1

3
δij

�
sðrÞ þ δijpðrÞ; ð12Þ

where its trace is associated with the radial distribution of
the pressure pðrÞ inside the Q-ball and it traceless part
yields the pressure anisotropy (shear forces) sðrÞ:

pðrÞ¼ ðωþgAÞ2X2−
1

3
ðX0Þ2þ1

6
ðA0Þ2−aX2þbX4−X6;

sðrÞ¼ 2ðX0Þ2− ðA0Þ2 ð13Þ

Since the stress tensor (12) is conserved, there is a differ-
ential relation between the functions pðrÞ and sðrÞ [25,32]

dðrÞ ¼ 2

r
sðrÞ þ 2

3
s0ðrÞ þ p0ðrÞ ¼ 0 ð14Þ

Indeed, substituting the definitions (13) into this equation,
we obtain

dðrÞ¼A0
�
−A00−

2A0

r
þ2gðωþgAÞX2

�

þ2X0
�
X00 þ2X0

r
þðωþgAÞ2X−aXþ2bX3−3X5

�

¼ 0; ð15Þ

due to the field equations (10). Another restriction is the
von Laue condition [33,35], related with the internal forces
balance inside a Q-ball

Z
∞

0

dr r2pðrÞ ¼ 0: ð16Þ

As a consequence, the pressure function pðrÞ must possess
at least one zero. This is a necessary (though not sufficient)
condition for stability of the configuration, it can be

reformulated as a virial relation for the gauged Q-ball.
The condition (16) is satisfied for all solutions that
will be discussed below, it secures the stability against
collapse [33,35].
In order to prove the von Laue condition (16), we can

integrate it by parts imposing the finite upper integration
limit R [25]:

Z
R

0

dr r2pðrÞ ¼
�
r3

3
pðrÞ

�
R

0

−
Z

R

0

dr
r3

3
p0ðrÞ ð17Þ

Further, since p0 ¼ − 2
3
s0ðrÞ − 2

r sðrÞ, using the definition of
the shear force (13), we obtain

p0ðrÞ¼−
4

3r3
½r3ðX0Þ2�0 þ 2

3r3
½r3ðA0Þ2�0 ¼−

2

3r3
½r3ðsðrÞÞ2�0

ð18Þ
and, similar to the case of ungauged Q-balls [25]

Z
R

0

dr r2pðrÞ ¼
�
r3

3

�
pðrÞ þ 2

3
sðrÞ

��
R

0

: ð19Þ

The asymptotic behavior of the solutions of the system (10)
secures the vanishing of this integral in the limit R → ∞.
The expression in brackets in (19) corresponds to

the distribution of the normal component of the net force
acting on an infinitesimal area element dAr̂i at a distance r,
is [27,28]

FiðrÞ ¼ dATijr̂j ¼
�
pðrÞ þ 2

3
sðrÞ

�
dAr̂i:

The corresponding stronger local stability criterion is that
the normal force must be directed outward, i.e.,1

CðrÞ ¼ 2

3
sðrÞ þ pðrÞ > 0 ð20Þ

We will see that this condition is not always satisfied for
the Uð1Þ gauged Q-balls.

1. Numerical results

To find numerical solutions of the coupled partial
differential equations (10), we implement the fourth-order
finite-difference method. The system of equations is dis-
cretized on an equidistant grid in radial coordinate r. We
map the infinite interval of the variable r onto the compact
radial coordinate x ¼ r=r0

1þr=r0
∈ ½0∶1�. Here r0 is a real

scaling constant, which typically is taken as r0 ¼ 2 − 15.
We impose the following set of the boundary conditions:

1It was conjectured that this condition can be reformulated as a
restriction imposed on the longitudinal component of the speed of
sound vl [27,34], its square remains positive as the CðrÞ > 0.
However, the validity of this approximation merits further study.
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∂rXð0Þ ¼ 0; ∂rAð0Þ ¼ 0; ð21Þ

and

Xð∞Þ ¼ 0; Að∞Þ ¼ 0: ð22Þ

As usual, they follow from conditions of regularity of the
fields at the origin, from the definition of the vacuum at
spatial infinity and our choice of the gauge.
There are some important differences between the

gauged and ungauged Q-balls [16–21]. Both the energy
and the charge of the global (g ¼ 0) Q-balls diverge
as the angular frequency approaches the critical values
fωmin;ωmaxg. On the contrary, the gauged Q-balls possess
finite energy and charge for all ranges of values of the
angular frequency. The gauged Q-balls form a first (lower
in energy) branch of solutions which extends backward as
ω decreases below the maximal value, see Fig. 1, upper left
plot. Along this branch the electrostatic energy of the
configuration remains much smaller than the total energy
of the Q-ball, the solutions are not very different from the
global Q-balls. The size of the soliton increases as the
angular frequency decreases, similar effect is observed as
the gauge coupling grows, see Fig. 3, upper left plot.

Note that on the first branch the shear force function sðrÞ
possess a maximum associated with the node of the
pressure pðrÞ, as displayed in Fig. 3. The pressure
distribution is positive in the core of the Q-ball and negative
in the outer region. The corresponding functionCðrÞ (20) is
positive, on the lower (scalar) branch the gauged Q-balls
are stable with respect to internal deformations.
The second branch of gauged Q-balls is formed at the

minimal critical value ωmin, this branch extends forward as
ω increases again toward the upper critical value ωmax. The
energy of the electrostatic repulsion begin dominating over
the scalar interaction, when the bifurcation with the second
higher energy branch is approached. Along the upper
branch the characteristic size of the gauged Q-balls con-
tinues to increase, the strong electrostatic repulsive force
inflates the configuration. The lower critical value ωmin is
increasing as the gauge coupling g becomes larger.
Note that the classical ungauged Q-ball is classically

stable if [36]

ω

Q
dQ
dω

< 0: ð23Þ

This is the so-called Vakhitov-Kolokolov criteria of sta-
bility [37]. It was argued that this criteria cannot be applied
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FIG. 1. Uð1Þ gauged Q-balls in the model (1): The total energy of the solutions (upper left plot), the values of the function Cð0Þ (upper
right plot), the gauge potential A0ð0Þ (bottom left plot), and the scalar profile function Xð0Þ (bottom right plot) at r ¼ 0 are displayed as
functions of the angular frequency ω for some set of values of the gauge coupling g.
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to gauged Q-balls [36]. As we see from the upper left plot in
the Fig. 1, the Vakhitov-Kolokolov inequality (23) does not
hold for the gauged Q-balls on the upper branch. Further,
the criteria (20) is violated for such solutions. Indeed, in
Fig. 4 we displayed the profile function of the scalar field
XðrÞ, distributions of the pressure pðrÞ, and the shear
forces sðrÞ (13) and the criteria function CðrÞ (20) for the
gauged Q-balls on the second electrostatic branch. Further,
to investigate the pattern of evolution of the gauged Q-balls,
in Fig. 2 we presented the distributions of the total energy
density εðrÞ (11) and the functions pðrÞ, sðrÞ and CðrÞ of
the particular solutions, labeled as I; II, and III on
the Fig. 1.
Comparing these solutions and the corresponding plots

shown in Figs. 3 and 4, we can clearly see that the stability
criteria (20) is violated on the second branch. Further, the
corresponding pressure function pðrÞ possess more than
one node while the shear force sðrÞ becomes negative both
inside of the core of the configuration and on the spacial
asymptotic. In other words, electrostatic repulsion tears the
gauged Q-ball apart.
Note that the electrostatic energy depends both on

the angular frequency ω and on the value of the gauge

coupling g. For a fixed value of g its contribution to the total
energy increases as ω decreases, while for a fixed value of
ω it increases as g becomes larger. Consequently, as the
coupling g remains relatively small, g≲ gcr ≈ 0.07, at some
critical values of the angular frequency the function CðrÞ
may become negative everywhere in space, see Fig. 4,
bottom right plot. Indeed, our numerical scheme fails to
find a second branch solution as the gauge coupling
decreases below a critical value gcr.

B. Uð1Þ gauged Q-balls in the two-component
Friedberg-Lee-Sirlin-Maxwell model

Another example of amodel, which supportsUð1Þ gauged
Q-balls, is given by the two-component Friedberg-Lee-
Sirlin-Maxwell model [22]. It describes a coupled system
of a real self-interacting scalar field ψ with a symmetry
breaking potential and a complex scalar field ϕ, coupled to
the electromagnetic gauge potential Aμ:

LðIIÞ ¼ −
1

4
FμνFμν þ ð∂μψÞ2 þDμϕDμϕ�

−m2ψ2jϕj2 − UðψÞ; ð24Þ
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FIG. 2. Solutions of the model (1), labeled as points I; II, and III on the Fig. 1: The distributions of the energy density εðrÞ (upper left
plot), the function CðrÞ (upper right plot), the pressure function pðrÞ (bottom left plot), and the shear force function sðrÞ
(bottom right plot).
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where m is the coupling constant. The symmetry breaking
potential of the real scalar field is

UðψÞ ¼ μ2ð1 − ψ2Þ2; ð25Þ

thus, in the vacuum ψ → 1 and the complex field ϕ becomes
massive due to the coupling with the real component. The
parameters μ and m correspond to the mass of the real and
complex components, respectively. Note that, for any finite
values of the mass parameter m, the complex field becomes
massless when the real component is zero. Further, the gauge
fieldAμ acquires amass due to the couplingwith the complex
scalar field, it is long-ranged as jϕj ¼ 0. Notably, in the limit
of vanishing mass parameter μ → 0 but fixed vacuum
expectation value of the real scalar component, the field ψ
becomes massless and thus long-ranged. However, the
complex componentϕ still acquiresmass in this limit [38,39].
The system of field equations of the model (24) includes

two coupled scalar fields equations

∂
μ
∂μψ ¼ ψðm2jϕj2 þ 2μ2ð1 − ψ2ÞÞ;

DμDμϕ ¼ m2ψ2ϕ ð26Þ

and the Maxwell equation (7). The corresponding energy-
momentum tensor reads

Tμν ¼ −ημν
�
DρϕDρϕ� þ ð∂ρψÞ2 þ

1

4
FρσFρσ þUðjψ jÞ

�

þ ðDμϕDνϕ
� þDμϕ

�DνϕÞ þ ∂μψ∂νψ þ ηρσFμρFνσ

ð27Þ

We consider the usual spherically symmetric paramet-
rization of the fields

ϕðr⃗; tÞ ¼ XðrÞeiωt; ψðr⃗; tÞ ¼ YðrÞ; ð28Þ

and A0ðr⃗; tÞ ¼ AðrÞ, Akðr⃗; tÞ ¼ 0, where XðrÞ, YðrÞ and
AðrÞ are real functions of radial variable and ω is the
frequency of stationary rotation. By making use of this
ansatz the system of field equations (26), (7) can be solved
numerically. The boundary conditions (21), (22) are
extended by the following conditions on the scalar function
YðrÞ: ∂rYð0Þ ¼ 0, Yð∞Þ ¼ 1.
The total energy density of the system is [cf., (11)]

ϵ ¼ ðX0Þ2 þ ðY 0Þ2 þ ðωþ gAÞ2X2 þ μ2ð1 − Y2Þ2

þm2X2Y2 þ 1

2
ðA0Þ2: ð29Þ
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FIG. 3. Uð1Þ gauged Q-balls in the model (1) on the lower (scalar) branch: The profile function of the scalar field XðrÞ, the pressure
pðrÞ, the shear force sðrÞ and the function CðrÞ are displayed at ω ¼ 0.90 for some set of values of the gauge coupling g.
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Making use of the decomposition of the stress tensor (12),
we can identify the pressure and the shear forces of the
gauged Friedberg-Lee-Sirlin-Maxwell Q-ball as

pðrÞ ¼ ðωþ gAÞ2X2 −
1

3
ðX0Þ2 − 1

3
ðY 0Þ2 þ 1

6
ðA0Þ2

− μ2ð1 − Y2Þ2 −m2X2Y2;

sðrÞ ¼ 2ðX0Þ2 þ 2ðY 0Þ2 − ðA0Þ2: ð30Þ

Hence, the Q-ball stability criteria (20) for the model (24)
becomes

CðrÞ ¼ ðX0Þ2 þ ðY 0Þ2 − 1

2
ðA0Þ2 þ ðωþ gAÞ2X2

−m2X2Y2 − μ2ð1 − Y2Þ2 > 0 ð31Þ

Spherically symmetric solutions of the model (24) have
been studied before [22]. The general pattern is that, by
analogy with the one component model (1), the Uð1Þ
gauged Q-balls exist for a restricted domain of values of the
parameters of the system. The repulsive electromagnetic
interaction reduces the allowed range of values of the
angular frequency ω. Note that, in the decoupled limit
g ¼ 0, the ordinary Friedberg-Lee-Sirlin Q-balls exist for

all nonzero values of scaled frequency ω ∈ ½0;ωmax�. where
the upper critical value corresponds to the mass of free
charged quanta of scalar excitations, ωmax ¼ m. In our
numerical simulations we set m ¼ 1.
For μ ≠ 0, there are two branches of EðωÞ curves with a

bifurcation at ω ¼ ωcr (see Fig. 5, left upper plot). By
analogy with the corresponding dependencies in the model
(1), the energy of scalar interactions is dominating along
the lower branch while the electrostatic energy becomes
much larger on the second forward branch (cf., Fig. 1).
It was noticed [40] that, as the angular frequency

approaches the minimal critical value, the real scalar
component becomes very close to zero inside some domain
at the center of the Q-ball. Within this region both the
complex scalar component ϕ and the gauge field A0 are
massless. As the angular frequency increases along the
second branch, the dominating electrostatic interaction
forms a compact domain with a wall which separates the
vacuum ψ ¼ 1 on the exterior and confining the massless
fields in the interior. The gauged Q-ball rapidly inflates
along the second branch, however both the total energy and
the charge remain finite as ω → ωmax.
This pattern is not much different from that discussed

above for the gauged Q-ball in the one-component model
(1), although the range of allowed values of the gauge
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coupling constant g can be different. Similarly, the stability
criteria (20) becomes violated on the second branch,
see Fig. 6.
The situation changes dramatically in the massless limit

μ ¼ 0 [38,39]. This is a case of “hairy” gauged Q-balls with
long-range real scalar component. In such a case the second
(upper) branch disappears and both the total energy and the
charge of the configuration increase monotonically as ω
decreases.Notably, they both tend to zero forω → ωmax ¼ m
and diverge at some critical minimal value of the angular
frequency ωcr [21], see Fig. 7, upper left plot. This value
increases with the gauge coupling, in the decoupled limit
g ¼ 0 the ungauged massless Friedberg-Lee-Sirlin Q-balls
exist for the whole range of values of the angular frequency
ω ∈ ½0; 1�. Remarkably, the “hairy”Q-balls are always stable
with respect to linear perturbations [39].
Indeed, numerical results confirm that the function CðrÞ

(31) always remain positive as μ ¼ 0, see Fig. 8, upper left
plot. In this figure we also displayed the corresponding
profiles of the energy density distribution ϵðrÞ (29), the
pressure function pðrÞ and the shear force sðrÞ, defined
as (30), of the particular “massless” solutions, labeled as
I; II, and III on the Fig. 7, respectively.

III. CONCLUSIONS

In the present paper, we revisited the problem of classical
stability of Uð1Þ gauged Q-balls in a nonrenormalizable
one-component scalar model with a sextic potential and in
the two-component Maxwell-Friedberg-Lee-Sirlin model
with symmetry breaking potential. Our approach is based
on a treatment of the interior of a gauged Q-ball as an
elastic medium and consideration of the corresponding
matrix elements of energy momentum tensor, which con-
tains information about spatial distribution of internal
forces [25,27–29]. This analysis supplements the well-
known classical Vakhitov-Kolokolov stability criterion
[37], previously modified for the Uð1Þ gauged Q-balls
[36]. We derived the expressions for the distributions of the
pressure and shear forces, acting in the interior of the
gauged Q-balls and showed that the von Laue stability

condition is always satisfied. Further, we analyse a local
stability criteria, suggested previously in studies of
hadrons. We show that this criteria becomes violated on
the second forward branch of solutions, as the electrostatic
energy becomes much larger than the energy of scalar
interactions. We would like to emphasize that the stability
condition (20) is stronger than the usual relation between
the mass of a Q-ball and the mass of Q free scalar
excitations, as it becomes violated on the upper branch,
the Q-ball may not decay into radiation but rather may emit
some part of energy in a transfer to the lower branch.
On the other hand, the inequality (20) is always satisfied

for ungauged Q-balls [25,26]. Similarly, the results of
our numerical simulations demonstrate that the Uð1Þ
gauged Q-balls in the two-component Friedberg-Lee-
Sirlin-Maxwell model are stable for all range of values
of the parameters of the system in the massless limit as
there is just one branch of solutions.
It should be noted that, unlike the Vakhitov-Kolokolov

stability criterion [37], the inequality (20) is not related
with a perturbative consideration of spectra of linearized
perturbations of a soliton. This inequality follows from an a
naive approximation of a Q-balls as a continuous media and
related concepts of pressure and shear forces, which is not
always well justified. An interesting question is if the
inequality (20) can be obtained as an effective relation
derived from the quantum microscopic theory. It would be
interesting to clarify, if the suggestion about possible
relation of the criterion (20) and the restriction on the
speed of sound [27,34] is correct. Another interesting task
is to study full 3þ 1 dynamical evolution of the gauged
Q-balls for all range of values of the parameters. We hope to
address these questions in our future work.
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