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A B S T R A C T

Characterizing nonhomogeneous elastic property distribution of soft tissues plays a crucial role in disease diag-
nosis and treatment. In this paper, we will apply the optical coherence elastography to reconstruct the shear
modulus elastic property distribution of a bilayer solid. In the computational aspect, we adopt a well-established
inverse technique that solves for every nodal shear modulus in the problem domain (NO method). Additionally,
we also propose a novel inverse method that assumes the shear moduli merely vary along the thickness of the
bilayer solid (TO method). The inversion tests using simulated data demonstrate that TO method performs better
in reconstructing the shear modulus distribution. Further, we utilize the experimental data obtained from the
optical coherence tomography to reconstruct the shear modulus distribution of a bilayer phantom. We observe
that the quality of the reconstructed shear modulus distribution obtained by the partial displacement measure-
ment is better than that obtained by the full-field displacement measurement. Particularly, merely using the
displacement component along the loading direction significantly improves the reconstructed results. This work is
of great significance in applying optical coherence elastography (OCE) to characterize the elastic property dis-
tribution of layered soft tissues such as skins and corneas.
1. Introduction

Characterization of spatially-varying elastic properties distribution of
biological tissues plays a significant role in biomedical engineering and
clinical medicine [1,2]. For instance, lumps is usually about 5–10 times
stiffer than the normal tissue [3]; the shear modulus value of cribriform
plate in patients with glaucoma was higher than that in healthy people
[4]; the valve leaflets become stiffer during calcification [5]. Therefore,
identifying the nonhomogeneous material property distribution of bio-
logical tissue is of great significance in disease diagnosis and treatment.

In order to obtain the nonhomogeneous material parameter distri-
bution of soft tissues, the imaging facilities should be combined with
inverse algorithms. That is, the imaging facilities including but not
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limited to ultrasound technology [6], magnetic resonance imaging (MRI)
[7], optical coherence tomography (OCT) [8–10], are used to measure
the displacement field of the soft tissue. The acquired measured
displacement field is subsequently utilized to solve the inverse problem
in elasticity so as to reconstruct the nonhomogeneous elastic property
distribution of soft tissues. Since reconstructing the nonhomogeneous
elastic property distribution of solids requires to solve a large-scale
optimization problem, a typical way to solve the inverse problem of
elasticity with high efficacy is the optimization scheme with the adjoint
method [11]. This adjoint based optimization method has been used to
identify the nonhomogeneous linear elastic [12], hyperelastic [13], and
viscoelastic property distributions [14] of soft solids.

Usually, the nonhomogeneous elastic property distribution of solids is
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acquired using the full-field displacement measurement. However, in
practice, even the state of art imaging techniques cannot guarantee that
the displacement measurement is accurate everywhere in the domain of
interest. Thus, whether it is possible to reconstruct elastic property dis-
tribution with high accuracy merely using partial data remains an open
question.

Compared to other imaging modalities, OCT can provide fast non-
inverse measurement with high resolution [15]. To this end, this paper
will utilize the optical coherence elastography (OCE) to characterize a
bilayer tissue mimicking phantom with full-field and partial displace-
ment measurements. In the Method section, we will discuss the experi-
mental and computational aspects of OCE. In the Results section, we will
present the reconstruction results obtained by both synthetic data and
experimental displacement measurement. The observations in Results
sections are thoroughly discussed in the Discussion section. Finally, the
Conclusion section will summarize this work.

2. Method

The general framework of the proposed method to identify the spatial
variation of the shear modulus distribution of soft solids is shown in
Fig. 1. Firstly, we measure the displacement field of a bilayer soft solids
with OCT. Subsequently, the measured displacement field is used to solve
the inverse problem in elasticity to characterize the nonhomogeneous
elastic property distribution of the bilayer solid.
Fig. 1. The general framework o
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2.1. Experiments

An OCT system was used to measure the three-dimensional (3D)
displacements of a bi-layer phantom under compression. The OCT system
consists of a swept source OCT imaging system and a compressive
loading device. The laser emitted from the scanning laser source (HSL-
20-100-B, Santec, Aichi, Japan) interferes after splitting. The balance
detector (EBR370006-02, Exalos, Schlieren, Switzerland) converts the
interference signals of the two beams into electrical signals and transmits
them to the acquisition card (U5303A, Germany technology,
Switzerland). A photo of the loading device with the OCT scanning lens is
shown in Fig. 2(a). The central wavelength of OCT is 1315 nm; the
bandwidth is 88 nm and the axial resolution is 7.09 μm in tissue. The
lateral resolution of the OCT system is 18.7 μm. The penetration depth to
the soft solids is about 2 mm. The compressive loading device consists of
an optical window to deform the specimen and allow the OCT light to
pass through. A force sensor was set on the base of the loading device to
measure the applied load as shown in Fig. 2(a). The top layer of the
phantom was made by mixing 1 μm and 0.5 mg/mL TiO2 scatters with 0-
degree silica gel, and the bottom layer was mixed with 15-degree silica
gel. The preparation of silica gel experimental sample and the selection of
calculation area can ensure the flatness of surface leveler, and the sample
can be regarded as isotropic material. Young's moduli of each layer was
120.8 kPa and 426.1 kPa by tensile tests. The dimensions of the double-
layer phantom were 4.20mm � 4.00mm � 1.90 mm. During the exper-
f the proposed OCE method.



Fig. 2. (a) A photo of the loading device and the OCT scanning lens of the OCE system; (b) a 3D OCT image of a bi-layer phantom.
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iment, the phantom was preloaded for 1.320 N, then compressed by
0.247 N. Two volumetric OCT images were obtained before and after
compression. One of the images is shown in Fig. 2(b). Then a volume of
interest(VOI) of Lx¼ Ly¼ 2.8611mm and Lz¼ 0.3972mmwere selected
to perform digital volume correlation(DVC). Full-field 3D displacements
of the VOI were then obtained. Details about the experimental setup and
the measurement procedure can be found in Ref. [10].

2.2. Inverse algorithm

2.2.1. Forward problem
The forward problem in linear elasticity is stated as follows:

r �σ ¼ 0 on Ω
u ¼ u

0
on Γu

σ � n ¼ t
0

on Γσ

(1)

where r denotes the divergence operator; u and σ are the displacement
vector and Cauchy stress tensor, respectively.Ω is the problem domain of
interest. u

0
is the prescribed displacement on the displacement boundary

Γu, t
0 is the prescribed traction on the traction boundary Γσ . The re-

lationships between traction and displacement boundaries are Γu[ Γσ ¼
∂Ω and Γu \ Γσ ¼ ∅. We also assume the soft solid obeys incompressible
and linear elastic law where shear modulus is the only material property
in the stress-strain relation.

2.2.2. Inverse problem
Characterizing elastic property distribution of solids can be consid-

ered as a constrained optimization problem. With the acquired measured
displacement fields, the objective function can be written as:

J ¼ 1
2

Z
Ω

ðu� umeasÞ2dΩþ α
2

Z
Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrμÞ2 þ c02

q
dΩ (2)

where u and umeas are computed displacement field obtained by the finite
element simulation and measured displacement field, respectively. α is
the regularization factor which controls the weight of the regularization
term (the second term in the objective function) [16]. μ denotes the
unknown shear modulus. c0 ¼ 0:01 is a small constant, which avoids the
singularity issue when calculating the gradient of the objective function
with respect to shear moduli.

In this paper, the limited Broyden-Fletcher-Goldfarb-Shanno(L-BFGS)
method [17] is utilized to solve the constrained optimization problem.
L-BFGS method is a gradient-based method, and we need to calculate the
3

gradient of the objective function with respect to every optimization
variable in each minimization iteration. Thus, it is computationally
expensive for calculating gradients for a large-scale optimization prob-
lem. To address this issue, we will utilize the adjoint method to compute
the spatial gradients of the objective function efficiently.

In this paper, we will utilize two inverse methods: NO and TO
methods to solve the inverse problem. In the NO method, we define the
material property nodally in the discretized domain and optimize every
nodal shear modulus in the inverse scheme. In the TOmethod, we assume
the material property merely varies along the thickness. Thus, fewer
optimization variables are required in this inverse scheme. For instance,
for a cubic domain discretized by 100 � 100 � 100 nodes, the total
number of optimization variables in the NO method is 106, while in the
TO method, the total number of optimization variables reduces to 100.

2.2.3. Adjoint method
For the NO method, the gradient of Eq. (2) with respect to the nodal

shear modulus μi is:

∂J
∂μi

¼ 〈ðu� umeasÞ; ∂u
∂μi

〉þ α
2

Z
Ω

rμi
∂ðrμiÞ
∂μiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrμiÞ2 þ c02
q dΩ (3)

where 〈u; v〉 is the inner product operator defined by
R
u � v dΩ; ∂u

∂μi
can be

solved by the finite element forward problem:

Ku ¼ F
∂u
∂μi

¼ �K�1∂K
∂μi

u
(4)

In the equation above, K is the global stiffness matrix, F is the force
vector.

Substituting Eq. (4) into Eq. (3), we obtain:

∂J
∂μi

¼ 〈ðu� umeasÞ; � K�1∂K
∂μi

u〉þ α
2

Z
Ω

rμi
∂ðrμiÞ
∂μiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrμiÞ2 þ c02
q dΩ

¼ 〈� K�Tðu� umeasÞ; ∂K
∂μi

u〉þ α
2

Z
Ω

rμi
∂ðrμiÞ
∂μiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrμiÞ2 þ c02
q dΩ

(5)

Then we can define KTQ ¼ � ðu � umeasÞ, where Q can be obtained
by solving the dual problem, Eq. (5) can be further simplified as:



Fig. 3. Flowchart of the inverse algorithm.
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∂J ¼ 〈Q; ∂K
u〉þ α

Z rμi
∂ðrμiÞ
∂μiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq dΩ (6)
Fig. 4. The target shear modulus distribution and the boundary conditions of
the domain of interest.
∂μi ∂μi 2
Ω ðrμiÞ2 þ c02

Hence, the gradient of the objective function with respect to the nodal
shear moduli can be solved by merely solving the forward problem twice
in each minimization iteration. The flowchart of the inverse algorithm is
presented in Fig. 3. A similar approach can be applied to the TO method,
thus we will skip the discussion.

2.2.4. Generation of the full-field simulated displacement field
To test the performance of the proposed approaches, we will solve the

inverse problem with simulated data generated by the finite element
simulation. To mimic the real measurement, we add up to 3% white
Gaussian noise into the full-field simulated data. The noise level is
defined as follows:

ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðunoisei � uiÞ2

PN
i¼1

ðuiÞ2

vuuuuut � 100% (7)

where N is the total number of FE nodes; unoisei and ui are the noise
displacement and accurate displacement of the i-th node, respectively.

To quantitatively analyze the reconstruction results, we define the
relative error of the reconstructed shear modulus:

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PS
k¼1

ðμk � μtargetk Þ2

PS
k¼1

ðμtargetk Þ2

vuuuuuut � 100% (8)
4

where S is the total number of FE nodes in the domain of interest; μk and
μtargetk are the reconstructed shear modulus and target shear modulus of
the k-th node, respectively.

3. Results

3.1. Simulated data

In this case, we consider a 3D cuboid with the dimension 2.8611 �
2.8611� 0.3972 mm3. The cuboid specimen consists of two layers and is
discretized by 1280 tetrahedral elements as shown in Fig. 4. For each
layer, we assume it is homogeneous. The target shear moduli of the upper
and lower layers are 42.53 kPa and 154.17 kPa, respectively [10]. To
avoid the rigid body motion, we fix the bottom face of the specimen and
apply uniform pressure on the upper face.



Fig. 5. Reconstructed results acquired by the NO method with varying noise levels. (a) 0% noise; (b) 1% noise; (c) 3% noise.

Table 2
Total operation time of reconstructed shear modulus for two methods.

Method Noise Level

No noise 1% noise 3% noise

NO 56495s 1025s 1393s
TO 250s 247s 222s
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Fig. 5 presents the reconstructed results by the NO method with full-
field simulated displacement data with different noise levels. The
reconstructed results show that the NOmethod performs well even in the
presence of 3% noise. Specifically, the interface between the two layers is
well preserved. In Table 1, we calculate the relative error of shear
modulus in the entire problem domain.We observe that with the increase
of the noise level, the error between the reconstructed shear modulus and
the target shear modulus increases.

Fig. 6 shows the reconstructed results by the TO method with full-
field simulated displacement data. The reconstructed results show that
even with 3% noise, the shear moduli of each layer are almost close to the
target shear modulus distribution, and the interface between two layers is
well reconstructed. Similar to the NO method, the TO method performs
worse with the increase of the noise level. However, compared with the
NO method, the error between the reconstructed shear modulus and the
target shear modulus is smaller as shown in Table 1. The maximum error
for the case with 3% noise is roughly 2%. In addition, we also report the
computational time of each numerical example of the NO and TO
Fig. 6. Reconstructed results acquired by the TO method with va

Table 1
Relative error of the reconstructed shear modulus for TO and NO methods.

Method Noise Level

No noise 1% noise 3% noise

NO 0.087% 1.61% 5.55%
TO 5.27 � 10�4% 0.23% 2.08%

5

methods in Table 2. Table 2 indicates that the TO method is computa-
tionally faster than the NOmethod since fewer optimization variables are
involved in the TO method.

Next, we evaluate the sensitivity of the identified shear moduli to the
initial guess values. We select the noise-free full-field displacement data
of the simulated data for inversion. We assume that the solid is homog-
enous initially with the shear moduli of 50 kPa, 100 kPa, and 200 kPa. It
seems that the initial guesses do not affect the reconstructed shear
modulus distributions as shown in Fig. 7. Moreover, Table 3 shows the
relative error of the shear moduli from the TO method is roughly 1000
times less than that from the NO method. This demonstrates that the TO
method is less sensitive to the initial guess.
3.2. Experimental data from OCT

In order to verify the feasibility of the proposed inverse algorithms,
we utilize a set of the experimental data acquired from OCT. The
rying noise levels. (a) 0% noise; (b) 1% noise; (c) 3% noise.



Fig. 7. Reconstructed results acquired by the two methods with varying initial guess of the shear modulus distribution. (a–c) Reconstructed results acquired by the NO
method with initial guess values 50 kPa, 100 kPa, and 200 kPa, respectively. (d–f) Reconstructed results acquired by the TO method with initial guess values 50 kPa,
100 kPa, and 200 kPa, respectively.

Table 3
Relative error of identified shear moduli in Fig. 7

Method Initial Guess

50 kPa 100 kPa 200 kPa

NO method 0.109% 0.104% 0.087%
TO method 5.269 � 10�4% 5.269 � 10�4% 5.269 � 10�4%
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measured displacement components in all three directions are shown in
Fig. 8. In this paper, we merely reconstruct a part of the entire specimen
which is depicted by the blue line in Fig. 8(a). Thereby, we solve the
inverse problem utilizing the full-field displacement measurement of the
domain within the blue line. However, we observe that the measure-
ments within green lines in Fig. 9(a) are noisy, thus we neglect the
measured data within green lines and utilize the measurement in the rest
part to solve the inverse problem (we will call this “partial region data”
for convenience in the following). Moreover, since the measurement
along the loading direction is usually more accurate than the measure-
ment in the lateral direction, we will also solve the inverse problem
merely using the z displacement component.

The reconstructed results using the NO method are shown in Fig. 10.
According to the shear modulus reconstruction, we can clearly visualize
the two layers using full-field measurement. However, the quality of the
6

shear modulus reconstruction is low as the upper left and right parts are
not well recovered. Besides, there are artifacts appearing on the lower
part. If we use the partial region data to solve the inverse problem again,
the quality of shear modulus distribution of the upper left and right parts
improves slightly. If we only utilize the z displacement component to
solve the inverse problem, we observe that the quality of the recon-
struction improves significantly. That is, the artifact on the bottom dis-
appears, and the interface between two layers is recovered much better
than the other cases. Additionally, the reconstructed shear moduli are of
the same order of magnitude as that reported in the reference [10].

The reconstructed results using the TO method are shown in Fig. 11,
and we observe that both the full-measured and partial datasets yield
better reconstruction results. The ratio of the estimated shear moduli
between the upper and lower layers is 0.276 in the reference [10], and
the reconstructed results of different measured datasets by the proposed
methods are reported in Table 4.

4. Discussion

In this paper, we perform a comparative study on the OCE using both
the full-field and partial displacement measurements. Both the simulated
and experimental datasets for bilayer soft solids are adopted. We also
propose two optimization methods to solve the inverse problem in
elasticity. The NO method is the most general way to characterize the
shear modulus distribution of solids. Taking advantage of the



Fig. 9. (a), (b) and (c) are normal strain component in the x, y, z directions, respectively. And the strain distributions along the section of interest are marked within
the red and blue dotted boxes.

Fig. 8. Displacement measurement. (a) In the blue box are the dimensions of the displacement measurement area and the origin of the coordinate axis; (b–d) The
measured displacement component in x, y and z directions, respectively. And the displacement distributions of the section of interest are marked within the red and
blue dotted boxes.
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characteristic of the layered structure, we also propose the TO method
that merely reconstructs the shear moduli along the thickness. Since the
experimental data is noisy, we also solve the inverse problem in elasticity
using partial displacement measurements.

The reconstructed results in this work demonstrate that the TO method
yields better reconstruction than the NO method. This observation is intui-
7

tive since feweroptimization variables are involved in theTOmothed. Thus,
the TO method might be very useful for characterizing the elastic property
distribution of layered structures such as skin [18,19] or lamina cribrosa [4,
20].

Theoretically speaking, full-field displacementmeasurement provides
more deformation information than partial data. Thus, with the full-field



Fig. 10. Reconstructed results of the NO method with different measured datasets. (a) Full-field displacement is utilized, (b) Partial region data is utilized, (c) Only z
displacement component is utilized. Two shear modulus maps on the right side of each 3D image are the cross-sections along the dashed lines on (a–c).

D. Zhao et al. Medicine in Novel Technology and Devices 15 (2022) 100134
displacement measurement, we should obtain better reconstructed re-
sults. However, we observed that the reconstructed results using the
partial data are better than those that using the full-field displacement.
This is probably due to the fact that the full-field displacement mea-
surement is noisy and might be even more noisy at some regions of in-
terest. Thus, it is not necessary to utilize the full-field measurement to
acquire accurate elastic property distribution. Additionally, since the
displacement component along the loading direction is usually less noisy,
thus merely using the displacement component along the loading di-
rection can significantly improve the solution to the inverse problem.

Though the values of the shear moduli obtained by the NO and TO
methods are in the same order with those reported in Ref. [10] where
VFM is utilized to estimate shear modulus values of the two layers, the
relative error between them is still high. Thereby, how to improve the
accuracy of the estimation of the shear modulus values at each region
with different material properties by the proposed OCE approaches still
needs more effort.
8

5. Conclusion

In this paper, we apply the OCE to characterize the elastic property
distribution of bilayer soft solids using both the full-field and partial
displacement measurements. We first utilize the simulated data to test
the feasibility of the inverse solver utilized in the OCE system. The shear
modulus distribution acquired with the simulated data has successfully
shown the proof of concept of the inverse solver. We also observe that the
TO method has shown a stronger capability of reconstructing shear
modulus distribution than the NO method. This observation is also
validated by the experimental data from OCT. By comparing the recon-
structed shear modulus distributions from the full-field and partial
displacement measurements, we also observe that using accurate partial
displacement measurement can improve the quality of the shear modulus
reconstruction. The results in this paper have great signification in
applying OCE into characterizing the elastic property distribution of
layered soft tissues such as skin and cornea.



Fig. 11. Reconstructed results of the TO method with different measured datasets. (a) Full-field displacement is utilized, (b) Partial region data is utilized, (c) Only z
displacement component is utilized. Two shear modulus maps on the right side of each 3D image are the cross-sections along the dashed lines on (a–c).

Table 4
The ratio of the estimated shear moduli between the upper and lower layers of
different measured datasets by TO and NO methods.

Method Datasets

Full-field
displacement

Partial
region

Only z displacement
component

NO 0.812 0.802 0.587
TO 0.130 0.121 0.073
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