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Abstract: Technological factors and processes contributing to the scintillation mechanism have
been considered in quaternary garnet ceramics doped with Ce(Gd,Lu)3Al2Ga3O12. The super-
stoichiometric additive of gadolinium in the material composition or its co-doping with a low
concentration of Mg were found to be effective tools to suppress phosphorescence in the quaternary
garnet, confirming that it is not an intrinsic property of the material. The Monte-Carlo simulation
of electronic excitation transfer demonstrates that the hopping migration along the gadolinium
sublattice plays an essential role in forming the scintillation kinetic parameters. Breaking the integrity
of the gadolinium sublattice by substitution with heavier lutetium ions increases the role of self-
trapped states in the excitation of Ce3+ ions, which ensures both an increase in the fraction of short
~20 ns and very long ~600 ns components in the scintillation kinetics.

Keywords: scintillation; cerium; lutetium; quaternary garnet; light yield; decay time; phosphorescence

1. Introduction

Scintillation materials used for the detection of different kinds of ionizing radiation
demonstrate a spectacular improvement in their operational parameters when composi-
tional disorder is introduced either in the cationic or anionic subsystem [1,2]. In particular,
this progress is seen when transferring from binary to ternary compounds with a garnet
structure [3]. In line with this research, large-diameter Gd3Al2Ga3O12:Ce (GAGG:Ce) single
crystals were grown a few years ago by the Czochralski method and exhibited a higher light
yield (LY) of 46,000 ph/MeV [4]. A partial substitution of Gd with Y in the composition
makes the crystal quaternary, which reveals an even better LY of ~50,000 ph/MeV and faster
scintillation kinetics as well [5]. The incorporation of Gd in the composition of multi-cationic
garnets for brighter scintillation is preferable due to the capability of the Gd sublattice in
the crystal to be a reservoir for Frenkel-type excitons, providing further electronic excitation
transfer to luminescence centers, as evidenced by photoluminescence and scintillation
measurements [6]. The effect of the Ga/Al ratio on the luminescence decay rate and
other scintillation properties has been studied in single crystals of Gd1Y2Al5−xGaxO12:Ce,
Gd2Y1Al5−xGaxO12:Ce, and Mg–co-doped Gd3−yYyAl5−xGaxO12:Ce (GYAGG) grown by
the micro-pulling down technique and in a ceramics form [7–13]. Disorder in the distribu-
tion of Al and Ga ions in oxygen-coordinated tetrahedra and octahedra ensures a possibility
for engineering the bandgap and the crystal field strength acting on the activator ion and
creating a diversity of sites for Ce activator localization in the matrix host [14]. The GYAGG
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has a low density when the Gd/Y ratio provides the best performance. It results in a small
photo-absorption coefficient of annihilation γ-quanta that are detected in widely used
medical imaging positron emission tomography (PET) scanners. As a result, the material
was discovered to be less competitive than LSO and LYSO scintillation crystals, which have
been widely used in the latest generation of PET scanners that utilize the time-of-flight
technique for detection [15].

Introducing lutetium (Lu) ions and creating the quaternary garnet composition would
resolve this problem. Surprisingly, LY was measured for the composition Lu1Gd2Al2Ga3O12:
Ce (GLAGG) (30,600 ph/MeV), whereas scintillation kinetics had two components—75.7
ns (38%) and 326 ns (62%); a nearby LY value in Lu1Gd2Al2Ga3O12:Ce (25,800 ph/MeV)
was demonstrated further on [16]. A single crystal of the Lu2Gd1Al2Ga3O12:Ce composi-
tion was grown by the Czochralski method and demonstrated an LY of 25,000 ph/MeV
and scintillation decay constant of 53.6 ns [17]. The GLAGG:Ce scintillation films with a
Lu/Gd ratio 1/1 demonstrated an LY at 145% of Y3Al5O12:Ce; the material was found to
be quite useful for alpha/gamma discrimination; however, the scintillation kinetics was
slow [18]. Photoluminescence and scintillation kinetics were shown to be very different
when transferring from Ce-doped LuAG to LuAGG [19]. At a concentration of Ce 0.2 at.%,
LuAGG scintillation kinetics was evaluated by three components—15, 44, and 632 ns,
correspondingly. In [20], quaternary garnets YGd2Al2Ga3O12:Ce and LuGd2Al2Ga3O12:Ce
were compared. The light yield was measured to be 37,900 and 35,400 ph/MeV, corre-
spondingly. However, slow components in the scintillation were observed through a strong
dependence of the LY on a shaping time. A comparative study of LuGd2Al2Ga3O12:Ce and
Lu2GdAl2Ga3O12:Ce single crystals was performed [21]. The LuGd2Al2Ga3O12:Ce sample
demonstrated a LY of 35,400 ph/MeV, but its scintillation kinetics was found to be rather
slow at 78 ns (42%) and 392 ns (58%), and, as a consequence, the time resolution was worse
at 800 ps. Recently, authors [22,23] noticed a high light yield of the (Gd,Lu)3Al2Ga3O12:Ce
(GLAGG) ceramic scintillator. Scintillation decay was shown to consist of three compo-
nents: 75 ns, 190 ns, and 1300 ns. Despite the ability of Mg2+ co-doping to shape the
photoluminescence and scintillation kinetics in GLAGG epitaxial films [24], the material
was found to be slower than (Gd,Y)3Al2Ga3O12:Ce or LYSO, limiting its application in
novel PET scanners.

Nevertheless, the quaternary GLAGG garnet would possess technological benefits.
The melting temperature of the material is ~200 ◦C lower than that required for the LYSO,
making the operational lifetime of the crucibles made from the precious metals longer.
Moreover, GLAGG has a cubic spatial symmetry, which allows one to obtain a quality
crystalline mass by different technological methods [25].

In-depth comprehensive studies have been performed over the past five years to
improve the scintillation performance of GLAGG [26–30]. So far, it has not been possible
to elucidate a generalized approach to stabilize the set of material parameters at a level
exceeding the LYSO performance.

As a matter of fact, the incorporation of Lu in the garnet matrix creates some tech-
nological problems. First, one should note antisite centers due to a possible localization
of small Lu3+ ions in the oxygen octahedra [31]. Further, the evaporation of the gallium
during the compound synthesis can be diminished by the procedure of the raw material
preparation [32].

In the current work, we focused on the study of the influence of the partial substi-
tution of Gd with Lu ions in the Ce-doped GLAGG crystalline ceramics. The role of the
creation of nonequilibrium carriers near various cationic subsystems in the quaternary
compound was revealed, which made it possible to interpret scintillation kinetics and
define technological actions for further improvement of the properties of this promising
material. The study was supported by Monte-Carlo simulations of the energy transfer
process, investigations of photo- and X-ray-excited luminescence spectra at different tem-
peratures, measurements of light yield and photoluminescence and scintillation kinetics,
and evaluation of afterglow effects.
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2. Materials and Methods
2.1. Chemicals and Synthesis

Two sets of the fine powder garnet structure samples, either solely with Gd or with
a partial substitution by Lu, were prepared by the coprecipitation method. The method
consists of mixing all the desired components in a solution and the formation of a joint
precipitate and, therefore, provides a homogeneous product, allowing phase formation at a
lower temperature, which is favorable to diminish Ga evaporation. Solutions containing
Gd, Lu, Ce, Al, and Ga nitrates were mixed in appropriate ratios to produce the desired
compositions. The mixed solution was slowly added to a 2 mol/L solution of NH4HCO3
under constant stirring to form a precipitate. The precipitate was filtered, washed with
water twice and with isopropyl alcohol once, dried at 100 ◦C in an air-ventilated oven for
8 h, and calcined at 850 ◦C for 2 h. Afterward, the powders were milled down to a median
particle size of 1.0–1.5 µm in a planetary ball mill with corundum grinding media.

The composition of the samples investigated and their abbreviations are listed in
Table 1. As well as the determination of the general set of the scintillation properties, to
clarify the scintillation mechanism, the GAGG series of the samples targeted a study of
the concentration dependence of the light yield (LY), photoluminescence, and scintillation
kinetics. These results were used to define the optimal concentration of the activator for
the GLAGG series. The GLAGG set was also prepared to ensure understanding of the
technological factors that lead to phosphorescence.

Table 1. Composition of the samples under investigation.

GAGG Series GLAGG Series

Gd3−xAl2Ga3O12:Cex (x = 0.005 or 0.167 at.%) (G1) Gd1.195Lu1.79+xAl2Ga3O12:Ce (x = 0.015 or 0.5 at.%) (GL1)

Gd3−xAl2Ga3O12:Cex (x = 0.01 or 0.33 at.%) (G2) Gd1.493Lu1.492+xAl2Ga3O12:Ce (x = 0.015 or 0.5 at.%) (GL2)

Gd3−xAl2Ga3O12:Cex (x = 0.015 or 0.5 at.%) (G3) Gd1.2Lu1.77+xAl2Ga3O12:Ce (x = 0.03 or 1 at.%) (GL3)

Gd3−xAl2Ga3O12:Cex (x = 0.02 or 0.67 at.%) (G4) Gd1.2Lu1.77+xAl2Ga3O12:Ce (x = 0.03 or 1 at.%) + 20 ppm (Mg), (GL4)

Gd3−xAl2Ga3O12:Cex (x = 0.03 or 1 at.%) (G5) Gd1.26Lu1.77+xAl2Ga3O12:Ce (x = 0.03 or 1 at.%)(GL5);
the super-stochiometric additive of Gd

Gd3−xAl2Ga3O12:Cex (x = 0.04 or 1.33 at.%) (G6) Gd1.26Lu1.77+xAl2Ga3O12:Ce (x = 0.03 or 1 at.%) + 20 ppm (Mg) (GL6);
the super-stochiometric additive of Gd

Gd3−xAl2Ga3O12:Cex (x = 0.06 or 2 at.%) (G7) Gd1.2Lu1.755+xAl2Ga3O12:Ce (x = 0.045 or 1.5 at.%) (GL7)

Gd1.26Lu1.755+xAl2Ga3O12:Ce (x = 0.045 or 1.5 at.%) (GL8); the
super-stochiometric additive of Gd

Contrary to single crystals, for which the concentration of the activator in the crystal
is typically less than x = 0.002, in this series, we focused on the high concentration of Ce
achievable exclusively in the ceramics. The results of [33] demonstrated that segregation of
Ce ions along the boundaries of the grains occurs. However, a fraction of such Ce ions is too
small to affect the scintillation parameters. The change in properties with Ce concentration
was evaluated using a simpler GAGG ternary crystalline system, and then a less variable
concentration range was used in the preparation of GLAGG samples.

Ceramic samples were prepared from the powders to evaluate the scintillation pa-
rameters of the materials. A size of 1.5 mm-thick green bodies of 20 mm in diameter were
prepared by uniaxial pressing at 64 MPa. The tablets were sintered in air for 2 h at 1600 ◦C.
The resulting ceramic samples were translucent and had ~97–98% of the theoretical density.
The samples were ground to a thickness of 1 mm for the study of their scintillation proper-
ties. Polishing of the samples was carried out on a POLYLAB P12M machine. For finishing
polishing, Kemet Aquapol-M diamond suspensions were used. Thermal etching of the
samples was carried out at a temperature of 1250 ◦C for 10 min in a Linn EVA 1700 oven.
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2.2. Instrumentation

Samples were evaluated for luminescent and scintillation properties. The photolumi-
nescence (PL) kinetics were measured with the PicoQuant Fluotime 250 spectrofluorometer
under pulsed LED excitation with a pulse width (FWHM) shorter than 600 ps at 340 and
450 nm and the luminescence detection at 550 nm with a spectral width of 10 nm. Room
temperature scintillation kinetics were measured with a 22Na source by the start-stop
method with XP2020 photomultipliers in both channels, providing a response function
width (FWHM) of 1.2 ns. The first three channels, corresponding to the triple response
function width, were excluded from consideration at the approximation of the scintillation
kinetics. The change in the light yield (LY) in the GAGG and GLAGG series was evaluated
by the measurement of the full absorption peak position of 241Am alpha-particles as used
for the measurements with translucent or powdered samples in [34]. A Y3Al5O12:Ce (YAG)
single crystal of 1 mm thick with grinded surfaces and a LY of 20,600 ph/MeV was chosen
as a reference sample. The errors in light yield measurements were defined to be ±2%,
whereas fitting results for decay constants fit ±2 ns, correspondingly. In addition, the
radio-luminescence (RL) properties of several fabricated samples were evaluated under
excitation by X-rays of apparatus URS-55A equipped with an X-ray tube BSV-2 (Cu anode,
30 kV, 10 mA). The luminescence was dispersed using the LOMO monochromator MDR-23
(spectral width of 2 nm) and detected by the photomultiplier FEU-106 in a photon-counting
mode. Spectra were corrected for the spectral sensitivity of the registration bench. The
bench has been used for RL temperature dependence and thermo-stimulated luminescence
(TSL) measurements above room temperature.

3. Results and Discussion
3.1. Microstructure Properties

A comparison of SEM images of a typical ceramics sample (G3, GL2) obtained with Jeol
JSM 7100 F at 20 kV accelerating voltage is presented in Figure 1. The sample demonstrates
grains of garnet habitus, confirming the phase homogeneity of the ceramics. Different
contrasts on the backscattered electron image (Figure 1b,d) correspond to different grain
orientations. As seen, both types of ceramics have a practically similar microstructure of
chaotically oriented grains.
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Figure 1. SEM images of Gd1.5Lu1.5Al2Ga3O12:Ce (GL2) (a,b) and Gd3Al2Ga3O12:Ce (G3)
(c,d) ceramics in secondary electron and backscattered electron modes, respectively. Images obtained
in backscattered electron mode (b,d) demonstrate random orientation of crystallites in the ceramics.

3.2. Results on GAGG:Ce Series

Figure 2 shows photo-luminescence kinetics of GAGG series measured at excitation to
the Ce3+ 5d2 state (3.67 eV) at room temperature.
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Figure 2. Photoluminescence kinetics of GAGG series at 3.67 eV excitation measured at room
temperature. Ce index of G1–G7 samples is indicated.

At excitation to the 5d2 level, which overlaps the bottom of the conduction band in
Al/Ga mixed garnet structure materials [35], the cerium center is partially autoionized and
an electron can be captured by shallow traps. Thus, at the lowest Ce concentration, photo-
luminescence kinetics has a remarkable tail. In the range of the Ce index, x = 0.01–0.02,
and the initial part of the kinetics remains close to a single exponential, whereas a further
Ce index increase in the composition makes decay shorter, indicating a concentration
quenching. Figure 3 shows the scintillation kinetics of representative samples of the GAGG
series measured at room temperature. A low concentration sample shows remarkable
phosphorescence. Its presence might be characterized by a larger number of coincidences
due to increasing the rate of the pulses detected prior to the scintillation [36].
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Figure 3. Scintillation kinetics of G1, 3, 6 samples of GAGG series measured at room temperature.

A shortening of the luminescence kinetics due to concentration quenching is accompa-
nied by a luminescence quantum yield decrease, which affects the yield of scintillations as
well. Figure 4 summarizes the results of the GAGG series. In our consideration, we com-
pared the effective decay constant (<τ> photoluminescence) calculated for the initial part
of the photoluminescence kinetics in the time interval 200 ns with the effective scintillation
decay time (<τ> scintillation), which is defined to be <τ> = ∑

i
τi fi. The parameter fi is a

fraction of the component τi. Parameter <τ> scintillation is of particular interest; it has a
practical importance to define an integration time at the detection. The LY measured with
samples having different Ce indexes is shown as well.
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3.3. Results on GLAGG:Ce Series

Figure 5 summarizes the results on luminescence and scintillation kinetics measure-
ments of the GLAGG series. A detailed analysis of photoluminescence kinetics was per-
formed by approximation with a larger number of exponential functions. The results are
shown in convenient coordinates: x—decay constant, y—its fraction to see the trend in a
change. In general, it is characterized by three decay components: the fast one, having a
decay constant of ~10 ns; a dominating component, with a decay constant of ~40 ns; and
a slow component, with a decay of ~160 ns. The distribution of the decay constants in
Figure 5a shows that super-stochiometric additives (GL5,8), introducing a small amount of
aliovalent cooping (GL4) or their combined application (GL6) in the composition, have a
weak influence on photoluminescence kinetics.
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Based on the results of the GAGG series, the range of the Ce index in the GLAGG
series was chosen to be in the range compromising between LY drop and faster scintillation
kinetics. In scintillation, a fast component of ~20 ns becomes dominating, whereas a slower
component of ~60 ns shows a decrease in its contribution to the level of ~30%. Nonetheless,
scintillation of GLAGG at relatively high Ce concentrations is characterized by the presence
of fast and slow stages of the scintillation kinetics with decay constants that differ by an
order of magnitude.

Furthermore, the decay components and their fractions are barely dependent on
the concentration of Ce in the range of x = 0.015 to 0.045; the co-dopant presence in the
composition or the presence a super-stochiometric additive. As seen from the comparison
of the number of coincidences detected prior to the scintillation pulse in Figure 5, the
small concentration additive of Mg, similarly to the case of single crystals of the GAGG
family, suppresses phosphorescence. The same effect is observed at the super-stochiometric
additive of Gd in the composition.

The sample GL1, which displays bright phosphorescence after exposure to an X-ray
source, was evaluated for a TSL above room temperature. Figure 6a depicts typical lumi-
nescence and luminescence excitation spectra in GLAGG. The phosphorescence spectrum
coincides with Ce3+ luminescence and the TSL spectrum shows a strong thermo-activation
band peaked near 340 K (Figure 6b,c).
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It should be noted that the position of the TSL band correlates rather well with the
maximum in the RL yield temperature dependence. As an example, Figure 7 demonstrates
the temperature dependence of the RL yield measured with GL1 and GL2 samples. The
higher the Lu content in the ceramics, the more pronounced the peak is.
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3.4. Monte-Carlo Simulation of Excitation Transfer in GAGG:Ce and GLAGG:Ce

Results shown in Figure 5 demonstrate evidence that phosphorescence, whose pres-
ence is characterized by a background created by coincidences detected prior to the scin-
tillation, is not an intrinsic property of quaternary Ce-doped Gd-Lu garnets. The tech-
nological actions, including co-doping with a small quantity of aliovalent Mg2+ ions or
super-stochiometric additives of Gd, diminish the role of the defects created either un-
der evaporation of Ga at high-temperature treatment or antisite defects in the electronic
excitation’s relaxation.

A distinctive feature of GLAGG in comparison with GAGG is the presence of a
third long phase in the scintillation decay kinetics, which also does not manifest itself in
photoluminescence. An essential difference between GLAGG in comparison with GAGG
is the gadolinium sublattice under conditions of broken integrity. At the conditions of
integrity, an interaction associated with the excitations of the 5d04f7 configuration of the
Gd3+ ions and Ce3+ activator is described by the dipole-dipole interaction energy transfer.
At the same time, diffusion over the states of gadolinium also occurs due to the dipole-
dipole transfer between f -states. Thus, the energy transfer can be a diffusion-controlled
dipole-dipole transfer. However, the well-known solutions to the transfer problem based
on interpolation formulas [37,38] are of limited use in the case under consideration since the
migration of excitations along the gadolinium sublattice has a hopping character. The event
of Gd3+ interaction directly with the activator, in addition to the dipole-dipole transfer,
should also consider the exchange (Dexter) interaction.

A Monte-Carlo migration calculation model, accounting for the real crystallographic
structure of garnet, in which the distances between gadolinium ions form well-defined
cationic coordination spheres [39] (Figure 8), was used. Obviously, at a low concentration
of gadolinium, the connectivity of the lattice positions along which hopping migration
occurs is disrupted.
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The expressions for probabilities of excitation hops between gadolinium ions wGd→Gd
and from the Gd3+ ion to the Ce3+ wGd→Ce ion and the ranges of the parameters were
chosen in accordance with [40–44]:

wGd→Gd(r) = 1
τGd

R6
d−d,Gd→Gd

r6 + cGd→Gd exp
(
−2 r

αGd→Gd

)
,

wGd→Ce(r) = 1
τGd

R6
d−d,Gd→Ce

r6 + cGd→Ce exp
(
−2 r

αGd→Ce

)
.

(1)

where τGd = 4 × 10−4 s, Rd−d,Gd→Gd = 1 nm, Rd−d,Gd→Ce = 1.4 nm, cGd→Gd = 1.9 × 1015 s−1,
cGd→Ce = 2.1 × 1013 s−1, αGd→Gd = 0.04 nm, αGd→Ce= 0.063 nm. Photoluminescence kinetics
parameters obtained from the data in Figures 3 and 6a were used as well.

A supercell consisting of 3 × 3 × 3 garnet unit cells containing 648 gadolinium
positions for two gadolinium indexes y in (GdyLu1−y)3Al2Ga3O12 (GLAGG): y = 1 and
0.4 was used in the simulation. The location of gadolinium ions at a concentration of less
than 100% was chosen randomly. In accordance with the chosen cerium index (x = 0.015,
0.03, or 0.045), which corresponds to cerium concentrations of 0.5, 1.0, and 1.5 at.%, an
appropriate number of gadolinium ions (3, 6, or 10) were randomly replaced by cerium.
For the simulation, one of the randomly selected gadolinium ions in the supercell was set
excited; afterward, excitation hopping was simulated with a probability determined by
the distances to all ions, considering the exchange interaction. The time when excitation
reaches the Ce3+ ion was calculated for 105 realizations.

Figure 9 shows the intensity of the arrival of excitation on cerium in GAGG and
GLAGG for a few Ce3+ concentrations. The energy transfer to cerium proceeds in a sub-
stantially nonexponential manner in time; in all cases, there is a fast component associated
with the transfer to cerium from a nearby excited gadolinium ion. At a high concentration
of gadolinium in the composition, the longer tail part arises due to diffusion through the
regular gadolinium subsystem. However, as the Gd concentration decreases, the connectiv-
ity of the network along which diffusion occurs decreases, and the rate of excitation arrival
at cerium becomes nonexponential and has a slower tail part.
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The intensity of the excitation arrival on cerium was decomposed by many exponential
functions, the characteristic times of which are uniformly distributed over the logarithm
from 1 ns to 100 µs as expressed:

IGd→Ce(t) = ∑
n
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τn
exp

(
− t
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)
. (2)
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In this case, the analysis was carried out using regularization according to Tikhonov [45].
The desired luminescence kinetics of Ce3+ ions were obtained by convolving expres-

sion (2) with the decay law of Ce3+ luminescence measured and characterized by a set of
single exponential functions with decay constants τCe:

ICe(t) = ∑
n

An

τCe − τn

(
exp

(
− t

τCe

)
− exp

(
− t

τn

))
. (3)

The incorporation of Lu ions into the lattice leads to an increase in the role of scintil-
lation mechanisms, which are realized due to interaction with self-trapped states of the
lattice: excitons (STE) and holes (STH). STE sensitizes the luminescence of Ce3+ ions [25]:

STE + Ce3+ → Ce3+*→Ce3+ + hν. (4)

In the Lu-rich GLAGG compounds considered in this work, the Gd sublattice is broken
and less efficient for converting STE into mobile Frenkel-type excitons (see, e.g., [46]). In fact,
Gd3+ individually competes with Ce3+ ions for exciton trapping. However, the oscillator
strength of the inter-configuration d–f transition of Ce3+ is about one hundred times higher
than that of the f–f transitions of Gd3+ ions, which makes their chances of capture almost
equal, despite the large difference in concentrations. Figure 10 demonstrates results of
the simulation of the contribution of different transfer mechanisms to Ce3+ ions from the
Gd sublattice and STE and the resulted luminescence kinetics at a few concentrations of
Ce3+ ions in the compound. The rate of STE to Ce3+ transfer for a concentration of 1% of
cerium was chosen to be 10 times larger than the rate of conversion of STE to f–f excitation
of gadolinium.
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Figure 10. Results on the simulation of the scintillation kinetics of GAGG (a) and GLAGG (b) on Ce
concentration (indicated). Dashed curves show a contribution of the mechanisms of the electronic
excitations transfer via the Gd sublattice and a direct transfer from STE at Ce concentration of 0.5
at.%. The integrals under the kinetics are the same.

In GAGG, the scintillation kinetics has two distinguished phases called τfast and
τmedium-fast. Their decay constants decrease with an increase in the Ce concentration in the
compound, which is in good agreement with the experimental data (Figures 3 and 11).
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in GAGG samples (G-series) in a comparison with GLAGG samples (G1,3,7). An average distance
between Ce ions in GAGG calculated in a homogeneous distribution approximation is shown in
panel (b).

When the gadolinium sublattice is diluted in GLAGG, the fractions of both phases in
the scintillation kinetics are less dependent on the Ce concentration, which correlates well
with experimental data presented in Figure 11a,b.

A change in the decay time of the τmedium-fast component in the kinetics of scintillations
in GAGG correlates well with a decrease in the average distance between Ce ions in GAGG
(Figure 11b). Apparently, it occurs with an increase in the Ce index in the compound
because the region of the gadolinium subsystem in which hopping migration occurs is
significantly reduced; the prompt capture of excitations by cerium ions begins to dominate.

3.5. The Origin of the Slow Component of GLAGG:Ce

As seen, the fast and medium-fast scintillation components in GLAGG are weakly
dependent on Ce concentration, which correlates well with the experimental results. How-
ever, the diminished role of the Gd subsystem in the delivery of electronic excitations to
Ce3+ ions causes a drop in LY. Table 2 summarizes light yield measured with samples of
the GL series. Systematically, a super-stoichiometric additive and co-doping decrease the
light yield, which is in line with the results of [47,48]. Worth noting, when Gd is completely
removed from the crystal matrix, the ternary Lu-Al-Ga garnet demonstrates a LY at the
level of YAG or even worse [1].

Table 2. Relative light yield of GLAGG samples.

Sample GL1 GL2 GL3 GL4 GL5 GL6 GL7 GL8

LY relative to YAG:Ce with grinded
surfaces (20,600 ph/MeV) 1.45 1.31 1.18 1.13 1.11 1 1.13 1

When lutetium ions are introduced into the lattice, the ionization density is reshuffled
significantly. Lutetium has a high nuclear charge (Z = 71), greater than that of Gd (Z = 64).
Therefore, the probability of formation of photoelectrons due to primary interactions
with gamma-quanta in the compound near Gd and Lu ions is expected to be 1:1.5 due
to ~Z4 cross-section dependence. Heavy ions, as per Bragg’s additivity rule, provide a
larger contribution to ionization losses of the photoelectron. Thus, a sequential capture
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mechanism for the excitation of Ce3+ ions, which is controlled by the hole mobility, should
be assumed:

e− + STH + Ce3+ → Ce4+ + e− → Ce3+*→ Ce3+ + hν, (5)

where Ce4+ is a dynamical state of the Ce ion.
The predominant self-localization of holes in polyhedra around lutetium ions in

GLAGG with a highly diluted Gd sublattice limits their participation in migration along the
gadolinium sublattice with an effective participation in transformation into Frenkel-type
excitons. The capture of holes by Ce3+ ions having a ground state above the top of the
valence band of ~3 eV [35] is of a low probability. Therefore, process (5) may be responsible
for the slowest component in GLAGG scintillation. The slowest decay component in the
scintillation (500–700 ns), as seen from data in Figure 6, is slightly affected by variation
of the technological factors; therefore, its decreasing fraction is a matter of improving the
mobility of the holes in the compound. In GYAGG, when the gadolinium sublattice is
diluted by Y ions, the scintillation kinetics is well approximated by two fast and medium-
fast components; no slow component is observed. Light yttrium ion (Z = 36) provides the
probability of the formation of photoelectrons upon interaction with gamma-quanta in the
compound ten times lower than that of Gd ions. Therefore, the ionization within the Gd
sublattice still dominates in GYAGG.

The results obtained correlate with the observation of the slowing of the scintillation
kinetics at the incorporation of the Lu ions into the matrix host in the simpler oxide
compounds [49]. An increase in the fraction of lutetium in the perovskite (Y,Lu)AlO3:Ce
provides a scintillation component with a decay constant of 400 ns. It is worth noting
that the partial substitution of yttrium with lutetium changes the scintillation yield as
well. The best light yield [50] has been measured when 40% of Y was replaced by Lu in
the composition.

Despite, thus, the prominent fast component in the scintillation, the severe dilution of
the Gd3+ sublattice with Lu3+ in the compound leads to combining two effects, namely the
decrease in the light yield and the appearance of the slow component in the scintillation.
An increase in the Ce concentration in the ceramics does not promote a suppression of the
slow component in the scintillation as well. The slow decay component in the scintillation
varies in the range of 500–700 ns and having a fraction in the scintillation kinetics above 10%
is a little dependent on the technological conditions: co-doping with Mg2+ and variation
of the stoichiometry. Therefore, further development of the material should be targeted
for the search of the compound composition to obtain a balance between mechanisms,
providing the best combination of light yield and a minimal level of the slow part of the
scintillation kinetics.

4. Conclusions

The scintillation properties of ceramic samples of (Gd,Lu)3Al2Ga3O12 and Gd3Al2Ga3O12
doped by Ce were evaluated. We focused on the effects responsible for different stages
of radiative relaxation and having technological and physical origins. As was expected,
technological actions like super-stoichiometric additives of gadolinium in the material
composition or its co-doping with a low concentration of Mg provide suppression of the
phosphorescence in the material, which is quite similar to observations made for ternary
Gd3Al2Ga3O12:Ce and quaternary (Gd,Y)3Al2Ga3O12:Ce scintillators. It demonstrates that
phosphorescence is not an intrinsic property of such materials.

An increase in the compositional disorder in the crystal upon partial substitution of
gadolinium with lutetium ions triggers additional mechanisms for the transfer of excitations
of nonequilibrium carriers to Ce3+ ions.

The Monte-Carlo simulation of electronic excitation transfer demonstrates that break-
ing the integrity of the gadolinium sublattice increases the role of self-trapped states in the
excitation of Ce3+ ions. They enhance an increase in the fraction of short and very long
components in the scintillation kinetics.
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