
  

Letter

Modified virtual internal bond model based on deformable Voronoi particles
Oleg Konovalova,b, Shunying Jib,c, Michael Zhuravkovb,d,*
 
a Research Laboratory of Information Technologies and Computer Graphics, Belarusian State University, Minsk 220030, Belarus
b DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116023, China
c State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116023, China
d Department of Theoretical and Applied Mechanics, Belarusian State University, Minsk 220030, Belarus

H  I  G  H  L  I  G  H  T  S

•  The set of edges of Delaunay tetrahedralization are considered as structure of normal springs (bonds).
•  The deformation of dual Voronoi cells leads to modification of bond's lengths based on special heuristic.
•  The proposed approach give possibility to simulate the diversity of the Poisson ratio, including auxetic effect, for the normal springs model.
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In  last  time,  the  series  of  virtual  internal  bond  model  was  proposed  for  solving  rock  mechanics
problems.  In  these  models,  the  rock  continuum  is  considered  as  a  structure  of  discrete  particles
connected  by  normal  and  shear  springs  (bonds).  It  is  well  announced  that  the  normal  springs
structure  corresponds  to  a  linear  elastic  solid  with  a  fixed  Poisson  ratio,  namely,  0.25  for  three-
dimensional  cases.  So  the  shear  springs  used  to  represent  the  diversity  of  the  Poisson  ratio.
However,  the shearing force calculation is  not rotationally invariant and it  produce difficulties in
application  of  these  models  for  rock  mechanics  problems  with  sufficient  displacements.  In  this
letter, we proposed the approach to support the diversity of the Poisson ratio that based on usage
of deformable Voronoi cells as set of particles. The edges of dual Delaunay tetrahedralization are
considered  as  structure  of  normal  springs  (bonds).  The  movements  of  particle's  centers  lead  to
deformation of tetrahedrals and as result to deformation of Voronoi cells. For each bond, there are
the corresponded dual face of some Voronoi cell. We can consider the normal bond as some beam
and in this case, the appropriate face of Voronoi cell will be a cross section of this beam. If during
deformation  the  Voronoi  face  was  expand,  then,  according  Poisson  effect,  the  length  of  bond
should  be  decrees.  The  above  mechanism  was  numerically  investigated  and  we  shown  that  it  is
acceptable  for  simulation  of  elastic  behavior  in  0.1–0.3  interval  of  Poisson  ratio.  Unexpected
surprise  is  that  proposed  approach  give  possibility  to  simulate  auxetic  materials  with  negative
Poisson's ratio in interval from –0.5 to –0.1.
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A number of authors used the lattice spring (LS) approach for
modeling the crack propagation in elastic rock environment [1].
In bound of this approach, the virtual internal bonds (VIB) mod-
el has been developed, where a continuous medium are determ-
ined  as  discretized  model  of  microstructural  relationships.  The

improved  model  of  virtual  multidimensional  internal  bonds
(VMIB)  was  proposed  by  Zhang  and  Ge  [2].  In  VMIB  model
bonds are  broken  down  into  components:  normal  and  tangen-
tial forces are considered separately. At the current time, Zhao et
al.  [3]  proposed  the  real  multidimensional  internal  bonds
(RMIB) model,  where the bonds are  determined by the contact
of the particles in some packaging of the simulated medium. In
our research we will using packaging structure based on the or-
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dinary Voronoy  discretization.  In  this  case,  bonds  are  the  net-
work  of  edges  in  dual  Delaunay  tetrahedralization  of  modeled
domain.

In  RMIB  model,  each  bond  contains  two  springs:  a  normal
spring  and  a  shear  spring  where, kn  and  ks  are  respectively  the
normal and shear stiffness of bond. The deformation vector uij of
the  bond  (Fig.  1),  that  connected  particles i  and  j ,  decomposes
into a normal uij

n  and a shear uij
s  components. The normal and

shear forces acting on the particle are: Fij
n = kn*uij

n, Fij
s = ks*uij

s. If
the bond's deformation reach the critical value (i.e. uij  > δ0), the
bond  goes  to  the  broken  state.  In  this  state,  the  normal  spring
still  elastically  works  on  compression,  but  does  not  exert  a
tensile  strength.  The  forces,  that  arise  when  the  shear  spring  is
deformed, should be are decreased and works as friction forces.
In RMIB  theory,  the  relationship  between  properties  of  discret-
ized 3D model kn, ks and properties of continuous 3D model E, ν
is given [2]:

kn = 3E

α3D(1−2ν)
, (1)

ks = 3(1−4ν)E

α3D(1+ν)(1−2ν)
, (2)

α3D =
∑

l 2
i

V
, (3)

where E,  ν,  V ,  and l  are  respectively  the  Young's  modulus,
Poisson  ratio,  volume  of  modeled  media  and  average  bond
length.

For  the  shear  spring,  the  relative  shear  displacement
between two particles can be obtained simply as uij

s =uij
n–uij like

in some conventional lattice spring models. However, the shear-
ing  force  calculated  in  this  way  is  not  rotationally  invariant.  To
overcome the problem, Zhao et al. [3] has proposed a local strain
based method.

In this method, the local strain of one particle is evaluated by
a least square scheme which only uses the displacement of itself
and  other  particles  which  have  intact  bonds  with  the  particle.
Based  on  above  neighbor  information  the  inverse  of  global

transformation's  matrix  can  be  calculated.  Unfortunately,  in  a
practical simulation, the inverse of transformation's matrix may
not exist in some conditions [3].

Take into  accounting  that  the  shear  springs  used  to  repres-
ent  the diversity  of  the Poisson ratio,  our  proposal  is  to  remove
shear springs from calculation scheme. The diversity of the Pois-
son  ratio  will  be  implemented  based  on  another  mechanism  -
local deformation of particles.

Voronoi tessellation  has  many  applications  in  natural  sci-
ence, engineering,  geometry,  etc.  Polycrystalline  microstruc-
tures  are  generally  represented  using  Voronoi  tessellations  in
material science.  In geotechnical  engineering,  Voronoi  tessella-
tion is commonly used to generate block geometry.

Each Voronoi vertex is the circumcenter (CC) of some tetra-
hedron  from  the  dual  Delaunay  3D  tessellations.  In  common
case, the CC do not belong to pattern tetrahedron, but it is linear
complexity problem to find tetrahedron contained CC.

Once  above  tetrahedron  was  found,  the  problem  of  finding
the barycentric coordinates of CC are reducing to inverting a 3×3
matrix:

T =

 x1 −x4 x2 −x4 x3 −x4

y1 − y4 y2 − y4 y3 − y4

z1 − z4 z2 − z4 z3 − z4

 , (4)

where (xi, yi, zi) is the Cartesian coordinates of the tetrahedron's
vertices.

3D barycentric CC coordinates may be used to interpolate a
new coordinates of Voronoi vertices after particles movement on
next  RMIB  iteration  step  (exclude  shearing  force  calculat).  As
result,  we  receive  some  transformation  of  Voronoi  cell,  which
will be considered by us as local deformation of RMIB particle.

It  should  be  noted,  that  after  this  deformation,  the  Voronoi
cell  will  not  remain  convex.  The  lumps  of  Voronoi  face  (Fig.  2)
that  belong  to  different  tetrahedrons,  will  not  remain  belong  to
one 3D plane.

The  movements  of  particles  centers  lead  to  deformation  of
bond's tetrahedral network and as result to deformation of Voro-
noi cells. For each bond, there are the corresponded dual Voron-
oi face. We can consider the normal bond as some beam and in
this case, the appropriate face of Voronoi cell will be a cross sec-
tion  of  this  beam.  If  during  deformation  the  Voronoi  face  was
constrict,  then,  according  Poisson  effect,  the  length  of  bond
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Fig. 1.   Shear and normal displacement in RMIB
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Fig. 2.   Lump of Voronoi face and it's diagonal edge
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should be increase (Fig. 3). This can be approximated by follow-
ing simple equation:

△L = υmicroL (r in − rdf)/r in, (5)

where  ∆L is  enlargement  of  bond's  length, rin  is  radius  of
circumscribed  circle  of  initial  Voronoi  face, rdf  is  radius  of
circumscribed circle  of  deformed  Voronoi  face,  νmicro  is
micromechanical Poisson ratio.

It should be pointed that νmicro is not equal to macro Poisson
ratio.  It  is  follow  from  well-known  fact  that  the  normal  springs
random  structure  corresponds  to  a  linear  elastic  solid  with  a
fixed  Poisson  ratio,  namely,  0.25  for  three-dimensional  cases.
This reasoning leads us to conclusion that for macro Poisson ra-
tio 0.25 the νmicro  should be equal  to zero.  As will  be shown be-
low, it is not strictly sou. It should be noted that the range of val-
ues of the micromechanical Poisson ratio is much larger than for
the  macro  Poisson  ratio,  so  its  value  can  be  more  than  0.5.  We
have find that proposed numerical scheme stable works in range
from  –0.8  to  0.8.  In  any  case,  the  relationship  between  macro
and micro  Poisson  coefficients  should  be  investigated  experi-
mentally.

The real transformation of Voronoi face is match more com-
plex than described by Siméon Poisson phenomenon (constric-
tion  and  expansion).  To  estimate  (rin–rdf)/rin in  more  complex
cases we will use simple heuristic:

(r in − rdf)/r in ≈ (1/N )
∑[(

I j
in − I j

df

)
/I j

in

]
, (6)

I j
in

I j
df

where N is number of vertices in Voronoi face,  is length of j-m
diagonal  edge  in  initial  Voronoi  face,  is  length  of  deformed
diagonal edge.

If  we  try  to  describe  the  proposed  model  formally,  we  can
pointed following main features:

•  this is real onedimensional internal bonds model;
•  we use packaging structure based on the ordinary Voronoi

discretization;
•  lengths of  bonds  are  modified  on  each  iteration  step  ac-

cording local deformation of Voronoi cells.
We  named  the  above  model  as  deformable  Voronoi  (DV)

model.  The  first  numerical  experiments  with  DV  show  that  this

very simple model have very big simulation potential.
The  above  approach  is  acceptable  for  simulation  of  elastic

behavior in  0.1–0.3  interval  of  Poisson  ratio.  Unexpected  sur-
prise is that DV model give possibility to simulate auxetic materi-
als with negative Poisson's ratio (Fig. 4) in interval from –0.5 to –0.1.

Table 1   Dynamic parameters of numerical series

Series_1 Series_2

F (MPa) 0.05 0.5

νmicro –0.8, –0.7,···, 0.0, ···, 0.7, 0.8 –0.8, –0.7, ···, 0.0, ···, 0.7, 0.8
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Fig. 3.   Micromechanical Poisson effect
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Fig. 4.   DV-simulation of Poisson effect

 

 

Fig. 5.     Linear relationship between the square beam length en-
largement and there cross section constriction
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Fig. 6.   Reconstructed Poisson ratios for series 1 and 2
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Figure  5 demonstrates  linear  relationship  between  square
beam  length  enlargement  and  there  cross  section  constriction
during DV simulation.

We  had  incorporated  in  our  model  the  micromechanical
Poisson effect  to  reach the diversity  of  the  macro Poisson ratio.
To investigate  the  relationship  between  macro  and  micro  Pois-
son  ratios  the  series  of  numerical  experiments  was  performed.
As it  present on Fig.  4,  the left  end of  the beam is  fixed and the
right  end  is  subjected  to  a  normal  force.  The  scope  of  varied
parameters  are  presented  in Table  1 and  the  static  parameters
are: E = 20 MPa, ρ = 2500 kg/m3, ν=0.25.

For each numerical experiment two elastic parameter was re-
constructed: model's Young's modulus Edv and Poisson ratio νdv.
The  results  of  experiments  are  presented  in Figs.  6 and  7 .  To
avoid  the  misunderstanding  it  should  be  pointed  that  static
parameters E  and  ν  are  used  only  for  calculation  of  the  bond's
normal stiffness kn according Eq. (1).

The analysis of experiments gives us many interesting things.
The Poisson ratio reconstruction shows that it exist practical ap-
plicable interval (from 0.1 to 0.3) where the relationship between
macro and micro Poisson ratios is near linear. Another interest-
ing  fact  is  that  neighborhood  of νmicro  =  –0.5  correspond  to
volume  incompressible  cases.  When νmicro  <  –0.5  we  received
auxetic  effect.  What  is  surprised,  that  according  the  numerical
experiments  the  normal  springs  random  structure  corresponds
to a linear elastic solid with a Poisson ratio 0.2 instead of expec-
ted 0.25. This fact not understandable and need more depth in-
vestigation.

The  Young's  modulus  reconstructed  for  series  1  is  near  to

parabolic  low  with  center νmicro  =  –0.2.  The  maximum  diverge-
nce from expected E = 20 MPa is around 20%. To overcome above
we  incorporate  in kn  calculation  the  dependence  from νmicro:

kn = 6E

α3D
{
0.4

[
1.0− (νmicro +0.2)2

]+0.7
} . (7)

The  Young's modulus  reconstruction  for  series  2  was  per-
formed for kn calculated according Eq. (4). In this case, the max-
imum  divergence  from  expected E  is  around  10%.  The  above
give us expectation that during next investigation we will receive
more convenient way to calculate the bond's normal stiffness kn.

For verification of elastic behavior RMIB method, Zhao et al.
[3] performed  the  series  of  numerical  tests  .  The  RMIB  simula-
tion  results  of  the  “beam  subjected  to  bending”  problem  were
compared with finite  element method (FEM) solutions.  The es-
timated error of displacement in vertical direction was in around
1.5%.

We  used  for  verification  of  DV  method  the  same  approach.
Instead  of  Zhao  et  al.  [3]  we  used  bending  beam  problem  II.
Figure  8 gives the  geometry  information  and  boundary  condi-
tions. The left and right ends of the beam are fixed and the beam
is subjected to a  gravity  force.  The static  simulation parameters
are: E = 20 MPa, ρ = 2500 kg/m3.

The  beam  will  undergo  a  complex  stress  condition,  i.e.
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Fig. 7.   Reconstructed Young's modulus for series 1 and 2
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Fig. 8.   Size of simulated beam and boundary conditions
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Fig. 9.   DV-simulation of bending beam problem
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tensile,  compressive  and  shear  stress  would  appear. Figure  9
shows  the  DV-simulation  results.  It  was  found  that  the  normal
spring's model could reproduce the same displacement distribu-
tion as the FEM model. We performed the two numerical experi-
ments for Poisson ratios 0.15 and 0.2. Quantitative comparison is
given in Fig. 10, where the vertical and horizontal displacements
along the middle line (Fig. 3) of the beam predicted by FEM and
DV are shown.

For  the  vertical  and  horizontal  displacements  along  the
middle line, the maximum errors of the DV model for two men-
tioned experiments are around 1.5% and 2.5% respectively. This
means the DV model  can be regarded as  a  valid representation
of isotropic elastic material for geotechnical applications.

We considering the presented results as preliminary, but DV
method have big potential from our point of view. The removing
the shear  springs  make  this  method  more  robust  and  conver-
gence than RMIB model.

In current DV implementation, we are using the failure beha-

vior  of  RMIB  model.  However,  approximation  of  deformation
fields  based  on  deformable  Voronoi  cells  give  the  possibility  to
incorporate  more  complex  model  of  failure  behavior  based  on
the lumps of Voronoi face.

Our future works include also implementing the viscoelasti-
city behavior in DV-simulation of rock materials.
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