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In recent years, the convolutional neural network (CNN) technique has

emerged as an efficient new method for designing porous structure, but a

CNN model generally contains a large number of parameters, each of which

could influence the predictive ability of the CNN model. Furthermore, there is

no consensus on the setting of each parameter in the CNN model. Therefore,

the present study aimed to investigate the sensitivity of the parameters in the

CNNmodel for the prediction of the mechanical property of porous structures.

10,500 samples of porous structure were randomly generated, and their

effective compressive moduli obtained from finite element analysis were

used as the ground truths to construct and train a CNN model. 8,000 of the

samples were used to train the CNN model, 2000 samples were used for the

cross-validation of the CNN model and the remaining 500 new structures,

which did not participate in the CNN training process, were used to test the

predictive power of the CNN model. The sensitivity of the number of

convolutional layers, the number of convolution kernels, the number of

pooling layers, the number of fully connected layers and the optimizer in

the CNN model were then investigated. The results showed that the

optimizer has the largest influence on the training speed, while the fully

connected layer has the least impact on the training speed. Additionally, the

pooling layer has the largest impact on the predictive ability while the optimizer

has the least impact on the predictive ability. In conclusion, the parameters of

the CNN model play an important role in the performance of the CNN model

and the parameter sensitivity analysis can help optimize the CNN model to

increase the computational efficiency.

KEYWORDS

convolutional neural network, bone scaffold, finite element modeling, sensitivity
analysis, compressive modulus

OPEN ACCESS

EDITED BY

Andrea Vernengo,
AO Research Institute, Switzerland

REVIEWED BY

Youwen Yang,
Jiangxi University of Science and
Technology, China
Cijun Shuai,
Jiangxi University of Science and
Technology, China

*CORRESPONDENCE

Lei Li,
changhaibai@163.com

SPECIALTY SECTION

This article was submitted to Tissue
Engineering and RegenerativeMedicine,
a section of the journal
Frontiers in Bioengineering and
Biotechnology

RECEIVED 04 July 2022
ACCEPTED 19 August 2022
PUBLISHED 15 September 2022

CITATION

Lu Y, Huo Y, Yang Z, Niu Y, Zhao M,
Bosiakov S and Li L (2022), Influence of
the parameters of the convolutional
neural network model in predicting the
effective compressive modulus of
porous structure.
Front. Bioeng. Biotechnol. 10:985688.
doi: 10.3389/fbioe.2022.985688

COPYRIGHT

© 2022 Lu, Huo, Yang, Niu, Zhao,
Bosiakov and Li. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 15 September 2022
DOI 10.3389/fbioe.2022.985688

https://www.frontiersin.org/articles/10.3389/fbioe.2022.985688/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.985688/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.985688/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.985688/full
https://www.frontiersin.org/articles/10.3389/fbioe.2022.985688/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2022.985688&domain=pdf&date_stamp=2022-09-15
mailto:changhaibai@163.com
https://doi.org/10.3389/fbioe.2022.985688
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2022.985688


Introduction

In recent years, the machine learning and deep learning

techniques have emerged as new techniques widely used in

many fields, including in the prediction of the mechanical

properties of materials and the design of porous structures.

In the field of prediction of the mechanical properties of

materials, Li et al. (2019) used the machine learning method to

establish the implicit mapping between the effective mechanical

property and the mesoscale structure of heterogeneous materials,

and the results showed that the machine training model can

accurately predict the elastic modulus of the structures.

However, this study simplified the parameters in the CNN

model through algebraic operations and the influence of

parameters on the CNN model is not mentioned. Wu et al.

(2019) proposed a machine learning method for predicting the

effective diffusivity of two-dimensional porous structures, and

the results showed that this model can accurately predict the

transport properties of porous structures. Besides, one of the key

issues of the research is how to select the parameters to avoid

overfitting the CNN model. Graczyk and Matyka (2020) utilized

CNN to predict porosity, permeability and tortuosity of porous

structures, and found that the error between the predicted results

of the CNNmodel and the theoretical value can be kept in a very

small range. Besides, the parameter is reduced by 10% every

50 epochs of the training. Paul and Bhattacharjee (2018) used

artificial neural network (ANN) to investigate the effects of

temperature, humidity and other conditions on the properties

of metal materials, and the accuracy of the ANN network

prediction of fracture toughness of metal materials is close to

80%. Besides, machine learning is also widely used in some

biological problems of bone tissue replacement. For example,

Wu et al. (2021) proposed a new model based on machine

learning techniques to predict bone ingrowth. Compared with

the traditional FE model, the new prediction model of bone

ingrowth based on machine learning has higher efficiency and

accuracy.

In the field of the design of porous structures, Gu et al. (2018)

proposed a method to design hierarchical materials using

machine learning, and the results showed that tougher and

stronger materials can be obtained by the method. It is worth

pointing out that the study built blocks into a single unit cell to

reduce the number of parameters needed in their machine

learning model. Tan et al. (2020) proposed a deep learning

model based on CNN for the design of microstructural

materials, and found that the obtained microstructural

materials with desired compliance tensor showed better

mechanical properties. Besides, the proposed model reduced

the number of design parameters from 4,096 to 25. Wang

et al. (2018) reconstructed porous structures using the CNN

model, and the results showed that the proposed method greatly

improved the connectivity of the structures and exhibits better

performance than conventional methods. Bessa et al. (2017)

developed a new data-driven computing framework to assist

in structural design, using machine learning to replace empirical

constitutive models with experimental data. The results show

that the mean square errors, mean relative errors, and the

absolute fraction of variance values of the ANN for predicting

friction factors were 1.26, 4.36 × 10−7 and 0.9993, respectively.

Besides, the bone scaffold is used to replace the defected bone

tissues and the machine learning has been widely used in the

design of bone scaffolds, Conev et al. (2020) trained a machine

learning model to predict the printing quality for a given printing

configuration accurately for the material. They identified which

parameters mostly affect the printing quality. Thus, the proper

bone scaffolds can be designed to avoid poor print quality. Cilla

et al. (2017) used machine learning techniques to optimize the

bone joint replacements, which can be used in the field of the

design of the bone scaffolds.

These previous studies showed that machine learning and

deep learning techniques are of great significance in the fields of

the prediction of mechanical properties of materials, the design of

porous structures and so on. Besides, the previous study also

pointed out the importance of parameter sensitivity. However,

the parameter sensitivity studied in these models has not been

fully understood. Therefore, it is of great importance to study the

parameter sensitivity of CNN model and improve the efficiency

of machine learning.

The CNN is one main branch of the deep learning techniques

and the CNN networks are inspired by biological processes, in

which the connectivity pattern between neurons resembles the

organization and each neuron in one layer are connected to all

neurons in the next layer. The CNN models consist of

convolutional layers, pooling layers, and fully connected layers

(Yamashita et al., 2018). The parameters of each layer of the

neural network have a certain influence on the training speed and

prediction ability of the entire convolutional neural network.

Thus, finding the optimal parameter design is one of the

important parts of the training of the convolutional neural

network. However, the convolutional neural network needs to

be re-trained when the parameters are adjusted. Therefore, using

the optimal parameters plays a crucial role in saving

computational time and increasing the model performance.

However, the parameter sensitivity analysis has not been fully

understood in the previous studies, which means that the

prediction performance of the CNN models may be further

improved and the computational efficiency can be further

improved.

The present study aimed to investigate the sensitivity of the

parameters in the CNN model for the prediction of the

mechanical property of porous structures. A CNN model with

convolutional layers, pooling layers and fully connected layers

was first constructed to predict the effective compressive

modulus of porous structures and then the influence of

various parameters in the CNN on the training speed and

prediction ability of the CNN model was investigated.
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Materials and methods

The design setting of the 2D porous
structure and the CNN model

In the present study, a two-dimensional (2D) porous

structure was used as an example to investigate the parameter

sensitivity of a convolutional neural network in predicting the

mechanical property of the porous structure. Because the CNN

model needs too many parameters, it is unrealistic to study all the

parameters one by one, so 2D models are used in most of the

current studies. For example, Wu et al. (2019) used 2D porous

structures to simplify the parameters and it has been proved that

the accuracy of the 2Dmodel can meet the requirements. The 2D

3 × 3 porous structure was used for the demonstration in the

present study (Figure 1). The dimension of the structure was set

to 18.0 × 18.0 mm. In each cell of the structure, the four-

dimensional parameters were set as the independent design

variables. Therefore, for the entire structure, there are

36 independent design variables (t1 ~ t36). It is worth noting

that the emergence of additive manufacturing (AM) enables the

fabrication of structures with complex geometries, especially the

porous structures. For example, Gu et al. (2018) used AM

technique to manufacture and test the enhanced porous

structures. Since in the previous studies, the fabrication of

porous structures was achieved by AM technique, it is

meaningful to consider the constraints of AM technique. The

additive manufacturing constraint puts additional requirements

for the dimension and aperture of the porous structure, i.e., the

minimal thickness of the struts should be larger than the

precision of the AM technique (0.2 mm in the present

setting). To meet these requirements, the minimum unit for

changing the dimensional variables was set to 0.2 mm. In other

words, there are only three possibilities for t1 ~ t36, i.e., 0.2 mm,

0.4 mm and 0.6 mm.

The effective compressive moduli of the porous structures

calculated from the finite element (FE) analysis were taken as

the ground truths and used to train the CNNmodel constructed

in the present study. As shown in Figure 2, the nodes on the one

(down) side of the porous structures were fully constrained

while the nodes on the opposite (up) side were subjected to a

compressive displacement loading. The effective compressive

modulus of the porous structures was calculated by the total

reaction force and the displacement applied. The Ti-6Al-4V

was used to make the porous structure. Therefore, in the FE

model, the Young’s modulus of the solid part was set to

113.8 GPa and the Poisson’s ratio was set to 0.34 (Niinomi,

1998).

A CNN model was trained firstly and the procedure for the

training and testing of the CNN model is presented in Figure 3.

The training process of the CNN model can be briefly described

as below: First, 10,000 groups of variables were randomly

generated and each group of variables contained

36 independent variables (t1 ~ t36). Then, the corresponding

FIGURE 1
Schematic diagram of porous composite structure (The
shaded areas are the pores).

FIGURE 2
Loading and constraint defined in the finite element analysis
(“ε” refers to the strain).
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1000 FE models were built based on these dimensional variables.

The effective compressive modulus of each sample was obtained

from FE calculation and used as the ground truth for building the

CNN model. Among the 10,000 samples, 8,000 were used for the

training (Figure 3A), and 2,000 were used for the cross-validation

(Figure 3B). It should be noted that both the 8,000 training

samples and the 2000 cross-validation samples are involved in

the adjustment of the parameters of the CNN model. The

2000 cross-validation samples have to be different from the

8,000 training samples. Otherwise, the CNN models

constructed will have no ability to predict the elastic modulus

of new porous structures.

The constructed CNN model is shown in Figure 4 and was

guided by the work done by Li et al. (2019) which was created to

solve a similar problem, i.e., predicting the mechanical property

of porous materials using image based deep learning technique. It

should be noted that there are many different types of CNN

models in the literature and the CNN model in the present study

is just one demonstration of the parameter sensitivity study. In

the CNNmodel constructed (Figure 4), the input is the design of

the porous structure (Figure 1) and the output is the effective

compressive modulus of the input porous structure. In the CNN

model constructed, four convolutional layers, two pooling layers

and three fully connected layers were applied to the image. The

FIGURE 3
The workflow for the (A) training and (B) cross-validation of the convolutional neural network (CNN) model.

FIGURE 4
The convolutional neural network model constructed in the present study.
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size of all the convolution kernels was set to 3 × 3. The maximal

pooling was applied after the convolutional layers to simplify the

information of the output neurons. To improve the accuracy of

the CNN model, 10% dropout was used after the two pooling

layers. A convolutional layer is the main building block of the

CNN model, which contains a set of kernels learned throughout

the training process. A pooling layer is usually incorporated

between two successive convolutional layers. The pooling layer

reduces the number of parameters and computational by down-

sampling the representation. The fully connected layers are the

last a few layers where all the inputs from the previous layer are

connected to every neuron of the next layer. In the CNN model

constructed in the present study, the fully connected layers

compile the data extracted from the convolutional layers to

form the final output. The CNN model proposed by Carneiro

et al. (2017) can be seen as a typical CNN model, which contains

the convolutional layers, pooling layers and fully connected

layers. The convolutional layers usually contain the model

parameters formed by the input weight matrices.

In the training process, because the purpose of the CNNmodel

was to make an accurate prediction of the effective modulus of the

porous structures, a loss function was defined to quantify the

difference between the effective compressive modulus predicted

from the CNN model and those calculated from the FE analysis,

which was taken as the golden answers. Then, the kernels and

biases in the convolutional layers and the weights in the fully

connected layers were adjusted using the backpropagation

algorithm (Rubio et al., 2011). In the present study, the mean

absolute error (MAE) was set as the objective function:

MAE[Y, f(X)] � 1
n
∑

n

i�1
∣∣∣∣Y − f(X)∣∣∣∣ (1)

where Y is the effective compressive modulus of the porous

structures calculated from the FE analysis; f(X) is the

corresponding effective compressive modulus calculated from

the CNN model and n is the number of samples used for the

cross-validation (n = 2000 in the present study).

The CNN model was built using the Tensorflow 2.0 module

in Python 3.7. The training process was conducted on a desktop

computer with the setting of i7-8700 CPU, 32G RAM, and the

Nvidia GTX1060. The batch size was set to 128 and the training

was iterated for 50 epochs.

Parameter sensitivity analysis

The CNN model mainly consisted of convolutional layers,

pooling layers, and fully connected layers, among which the

pooling layers and dropout were interspersed. In the present

study, the parameter sensitivity analysis was carried out by

changing some parameters and maintaining other parameters

unchanged in each analysis. The parameters involved are the

number of convolution layers, the number of convolution

kernels, the number of pooling layers, the number of the fully

connected layer and the optimizer. Specifically, the number of

convolutional layers was chosen from 4, 6 and 8 layers, the size of

the convolution kernel in each convolutional layer was chosen

from 2, 4, 6, 8, 10 and 12, the number of pooling layers was

chosen from 0 to 1, the number of fully connected layers was

chosen from 2, 3 and 4 and the optimizer was chosen from

AdaGrad, RMSprop (Elyanow et al., 2020) and Adam

(Christiansen et al., 2018). After the training, 500 new

samples that did not participate in the training and cross-

validation process were randomly generated (following the

same procedure for generating the 10,000 samples) to assess

the predictive ability of the CNN model.

The samples of porous structures firstly passed through the

convolutional layer, then through the pooling layer, and finally

through the fully connected layer. Therefore, the parameter

sensitivity study was divided into four stages: 1) The

sensitivity of the convolutional layer, 2) the sensitivity of the

pooling layer, 3) the sensitivity of the fully connected layer and 4)

the sensitivity of the optimizer. The best parameter design from

the previous stage was retained when entering the next stage. In

the initial design, there were 4 convolutional layers, 2 the pooling

layers, 3 fully connected layers and the optimizer was RMSprop.

The parameter sensitivity was investigated firstly using the

speed of convergence. In the present study, the CNN model was

considered convergent when the MAE is stabilized and below

200.0 MPa. It should be noted the convergence condition

depends on the applications and could be different in

different scenarios. The parameter sensitivity was then

FIGURE 5
The relationship between the mean absolute error and the
Epoch.
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investigated using the relative prediction error (RPE), which is

defined as below:

RPE �
∣∣∣∣PCNN − PRVE

∣∣∣∣
PRVE

× 100% (2)

where PCNN is the effective compressive modulus calculated from

the CNN model and PRVE is the corresponding value calculated

from the FE analysis.

Result

Training and cross-validation of the CNN
model

The relation between the mean absolute error (MAE) and

the training iteration is shown in Figure 5. Since the initial

values of the weights and biases are randomly assigned, the

MAE at the first a few iterations is high. However, after several

iterations, the MAE rapidly descends. Therefore, no over-

fitting is observed in the cross-validation.

Influence of parameters on the
convergence speed and predictive power
of CNN model

The influence of parameters in the CNN model on the

convergence speed is shown in Figure 6, where the black line

represents the fastest convergence speed, the red line

represents the initial convergence speed and the blue line

represents the slowest convergence speed. It is shown that

when the convolutional layer is modified, the convergence of

the CNN model can be changed from 10 epochs (the best

FIGURE 6
The relationship between the mean absolute error and the epoch. (A) Sensitivity of the convolution layer; (B) Sensitivity of the pooling layer; (C)
Sensitivity of the fully connected layer and (D) Sensitivity of the optimizer (‘Best’ refers to the case with the fastest iterative convergence speed and
the corresponding best parameters are listed in Table 1).
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scenario) to 17 epochs (the worst scenario) (Figure 6A). When

the pooling layer is modified, the convergence of the CNN

model can be changed from 10 epochs to 20 epochs

(Figure 6B). When the fully connected layer is modified,

the convergence of the CNN model can be changed from

12 epochs to 18 epochs (Figure 6C). When the optimizer is

modified, the convergence of the CNN model can be changed

from 10 epochs to 200 epochs (Figure 6D). The best

parameters corresponding to Figures 6A–D are listed in

Table 1 (a–d).

The influence of parameters in the CNN model on the

predictive power is shown in Figure 7, where the black line

represents the best prediction, the red line represents the

initial prediction and the blue line represents the worst

prediction. Since the data are not normally distributed, the

5th, 50th and 95th percentiles are reported. Regarding the 95th

percentile of the relative prediction error, it is shown in

Figure 7 that when the convolutional layer is modified, the

error can be changed from 0.41 (the best scenario) to 0.57 (the

worst scenario) (Figure 7A); when the pooling layer is

modified, the error can be changed from 0.36 to 0.54

(Figure 7B); when the fully connected layer is modified, the

error can be changed from 0.34 to 0.42 (Figure 7C) and when

the optimizer is modified, the error can be changed from

0.36 to 0.41 (Figure 7D). The best parameters corresponding to

Figures 7A–D are listed in Table 2 (a–d).

TABLE 1 The parameters used in the fastest convergent scenario.

Number of
convolutional layers

Number of
convolutional kernels

Number of
pooling layers

Number of
convolutional layers

Optimizer

(a) 2 2, 4 2 3 RMSprop

(b) 2 2, 4 1 3 RMSprop

(c) 2 2, 4 1 2 RMSprop

(d) 2 2, 4 1 2 Adam

FIGURE 7
The relationship between the cumulative percentile and the relative prediction error from the convolutional neural network model. (A)
Sensitivity of the convolution layer; (B) Sensitivity of the pooling layer; (C) Sensitivity of the fully connected layer and (D) Sensitivity of the optimizer
(‘Best’ refers to the case with the lowest 95th percentile of relative prediction error and the corresponding best parameters are listed in Table 2).
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Discussion

In the present study, a convolutional neural network (CNN)

model for predicting the effective compressive modulus of the

porous structures was developed and a parameter sensitivity

analysis was performed to investigate the influence of

parameters on the convergence speed and predictive power of

the CNN model. The present study showed that the parameter

sensitivity analysis is a crucial step in the development of the

CNN model and can help optimize the CNN model to improve

its efficiency. It should be noted that in the present study, the

CNN model was chosen as one representative machine learning

model to demonstrate the parameter sensitivity. Nevertheless, the

conclusion made in the manuscript, i.e., it is very necessary to

conduct a sensitivity analysis when a new model is constructed.

Besides, the sensitivity analysis should be not only limited to the

CNN model but also applicable to most machine learning and

deep learning models.

In the present study, the performance of the CNNmodel was

evaluated using both the iterative convergence speed and the

relative prediction error. In terms of the convergence speed, after

modifying the convolutional layer, the pooling layer, the fully

connected layer and the optimizer, the differences between the

best and worst numbers of iterations when CNN models are

converged are 7 epochs, 10 epochs, 6 epochs and 190 epochs,

respectively. It should be noted that the epochs refer to the

iteration number of the CNN model. To increase the prediction

accuracy of the CNN model, the CNN model will update its

parameters in each iteration (epoch). Therefore, the epochs will

increase the performance of the CNN model, and will indirectly

affect the performance of the porous structure if the machine

learning based inverse design framework is used in the design of

porous structures (Wang et al., 2022). Regarding the optimizer,

the results showed that the optimizer has the largest impact on

the speed of the training convergence, while the fully connected

layer has the least impact on the speed of the training

convergence. Therefore, it is recommended to choose Adam

or RMSprop instead of AdaGrad as the initial optimizer for

training the CNN model in the present study. The reason why

AdaGrad is slow is that Adaptive Gradient (AdaGrad) can adjust

a different learning rate for each different parameter, updating

important parameters with smaller steps and less important

parameters with larger steps (Duchi et al., 2011). Since the

CNN model constructed in the present study is a basic and

simple one, the convergence speed of the AdaGrad optimizer is

relatively slow. However, it is undeniable that the AdaGrad

optimizer would have a good performance in other complex

CNN models (Yuan et al., 2019).

Regarding the influence of the parameters in the CNNmodel

on the predictive power of the CNN model, the results showed

that the convolutional layer and pooling layer have a larger

impact, while the fully connected layer has the least impact.

Therefore, to improve the prediction power of the CNNmodel, it

is preferable to adjust the pooling layer and the convolutional

layer. It should be noted that the input sample used in this study

is a 6 × 6 matrix and each feature point is equally important.

Therefore, increasing the pooling layer would ignore the

important feature points, which would reduce the

computation time but decrease the prediction power (You

et al., 2021). Consequently, the pooling layer has a great

influence on the predictive ability of the CNN model in this

study. For samples with insignificant feature points, adjusting the

convolutional layer may have a larger influence on the predictive

power of the CNN model.

It should be noted that in the present study, the ‘best’ refers to

the case with the fastest iterative convergence speed in Figure 6,

or the best prediction accuracy in Figure 7, and the ‘worst’ refers

to the case with the slowest iterative convergence speed in

Figure 6, or the worst prediction accuracy in Figure 7, and the

‘initial’ refers to the setting of 4 convolutional layers, 2 the

pooling layers, 3 fully connected layers and the optimizer of

RMSprop. The initial setting of the parameters is taken from Li

et al. (2019). It should be noted that it is hard to find a set of

parameters that make the CNN model possess the fastest

convergence speed and the best prediction accuracy at the

same time. Therefore, depending on the specific requirements,

the definition of ‘best’would be different in different scenarios. In

the present study, the convergence speed and the prediction

accuracy were set as two independent parameters in the

parameter sensitivity analysis, and consequently the

parameters which influence the convergence speed and the

prediction accuracy were found respectively. On the other

hand, it should be noted that there are two types of

parameters in the CNN model. The first is the design

TABLE 2 The parameters with the lowest 95th percentile of relative prediction error.

Number of
convolution layers

Number of
convolution kernels

Number of
pooling layers

Number of
convolution layers

Optimizer

(a) 4 2, 4, 6, 8 2 3 RMSprop

(b) 4 2, 4, 6, 8 0 3 RMSprop

(c) 4 2, 4, 6, 8 0 2 RMSprop

(d) 4 2, 4, 6, 8 0 2 Adam

Frontiers in Bioengineering and Biotechnology frontiersin.org08

Lu et al. 10.3389/fbioe.2022.985688

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.985688


parameters, such as the number of convolutional layers and the

pooling layers, etc. These parameters are adjusted one by one and

while one parameter is changing, other parameters are

maintained until the expected convergence was achieved. The

second is the internal parameters of the CNN model, which are

adjusted internally and automatically in the training process of

the CNNmodel. In the present study, the Tensorflow is used and

thus the changing of the internal parameters cannot be

visualized, but they are adjusted by the program itself to

increase the predictive ability of the CNN model.

It is shown in the present study that different parameters

have different influence s on the performance of the CNN model

and thus it is necessary to perform the parameter sensitivity

analysis when a new CNN model is constructed and additionally

the parameter sensitivity analysis can help optimize the CNN

model to improve the computation efficiency. In some previous

studies, the sensitivity analysis of the parameters of the sample is

performed using the CNN model, but the sensitivity of the

parameters of the CNN model itself is always ignored.

Furthermore, it should be noted that the parameter sensitivity

study of the newly constructed CNN model is always skipped in

the previous studies. For example, Xiao et al. (2021) developed a

CNN model to evaluate the anisotropic elastic behaviors of

trabecular bone. In the study, four different dual energy x-ray

absorptiometry (DXA) projections (i.e., one, three, six and nine)

and seven DXA image resolutions (i.e., 0.05 mm/pixel, 0.15 mm/

pixel, 0.3 mm/pixel, 0.6 mm/pixel, 1.2 mm/pixel, 2.0 mm/pixel

and 3.0 mm/pixel) are used to train the CNNmodel. It should be

noted that if the sensitivity analysis of the parameters of CNN

was carried out, the prediction power of the CNNmodel could be

further improved. Although the parameter sensitivity analysis of

the CNN model is performed in some studies, it is not

comprehensive. For example, to predict the mechanical

properties of various soils, Ng et al. (2019) identified the

important spectral wavelengths using the CNN model. In

their study, the sensitivity analysis of only the convolutional

layer was investigated and the sensitivity analysis showed that a

high prediction power with R2 = 0.95 can be achieved using a

suitable convolutional layer. It can be seen from their study that

the sensitivity analysis can help select the parameters that

increase the prediction power of the CNN model. However,

only the sensitivity of one parameter was investigated in their

study. In comparison, in the present study, the sensitivity of most

parameters in the CNN model was analyzed.

Some shortcomings in the present study should be noted.

First, although the sensitivity of the parameters in the CNN

model was investigated in the present study, it still did not

consider all the parameters. For example, the size of padding in

the convolutional layer (Khanolkar et al., 2021), the choice of

the activation function (Leshno et al., 1993), the size of

dropout (Srivastava et al., 2014) and other parameters are

not considered. There are still many parameters in the CNN

model the sensitivity of which still needs to be analyzed. In

addition, the sensitivity of the parameters is also different for

different input samples. Nevertheless, these do not

compromise the message delivered in the present study,

i.e., a parameter sensitivity analysis is required to optimize

the CNN model when a new model is built. Second, there is a

lack of real data support for the experiment to validate the

prediction. Nevertheless, the FE modeling technique has been

widely accepted as a reliable technique for predicting the

effective compressive modulus of porous structure. For

example, de Galarreta et al. (2020) performed FE analysis

of porous structures to investigate the modulus and yield

strength. Besides, the compression test was performed to

verify the modulus and yield strength of the structures. The

results showed that the FE simulation results were in good

agreement with the experimental results, which means FE

modeling technique is reliable. Despite this, it is still

worthy to validate the predictions of the CNN models,

especially for the post-elastic mechanical properties of the

porous structure, such as ultimate strength. Third, when using

different samples to train the CNN model, the influence of the

parameters in the CNN model on the convergence speed and

prediction power may be different. Therefore, the results of the

present study may not be directly used when training a new

CNN model and a new parameter sensitivity analysis is

required. Nevertheless, the present study showed that it is

crucial to perform a parameter sensitivity analysis when a new

CNN model is built, which is always ignored or skipped in the

previous studies. Last but not least, 2D analysis instead of 3D

was performed in the present study. It should be noted even in

the 2D analysis, a large computational complexity was

involved, i.e., 10,500 samples and 36 independent design

variables in each sample were involved. In the setting of the

present study, the number of independent design variables will

be exponentially increased for the 3D case, which will create a

computational “disaster” in the machine learning study. On

the other hand, the 2D-based analysis has played an important

role in some applications, such as in the prediction of bone

strength using the 2D DXA-based images (Lu et al., 2019).

Therefore, despite the 2D analysis being performed, the aim of

the present study has been successfully demonstrated, i.e., the

importance of parameter sensitivity analysis in the CNN

model development and model optimization. On the other

hand, in the 3D application, the issues with biocompatible

performance of the scaffolds should also be dealt with (Shuai

et al., 2020).

Conclusion

In conclusion, it is revealed in the present study that the

parameters in the CNN model have a big influence on both the

convergence speed and the predictive power. Therefore, it is

very necessary to conduct a sensitivity analysis when a new
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CNN model is developed. Additionally, the parameter

sensitivity analysis can help effectively reduce the training

time of the CNN model and improve the prediction power of

the CNN model. From the parameter analysis, it is

theoretically possible to construct the most suitable CNN

model which possesses a fast convergence speed and a high

prediction power.
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