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•  The mechanical-mathematical model is developed for rock massif in vicinity of underground goafs.
•  The internal block-layered structures of the rock massif are constructed numerically.
•  A new constitutive model is investigated to describe the negative Poisson's ratio for the lock-layered structure.
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The construction of mechanical-mathematical model and numerical method for the deformation
processes  of  rock  massifs  with  goafs  and  underground  structures  is  very  complex  and  also
important  task  in  modern  rock  mechanics.  In  this  study,  the  mechanical-mathematical  model  is
developed for rock massif in vicinity of underground goafs considering the internal block-layered
structure of  the rock massif.  A new constitutive model  is  introduced in this  study to describe the
negative Poisson's ratio for the lock-layered structure. Two types of defining equations systems for
studying the state  of  a  rock massif  taking into account the block-layered structure are described.
Finally, several examples are given using the present mechanical-mathematical model.
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The  relationship  between  the  rock  massifs  deformation  and
theirs internal structure belongs to the actual problems of mod-
ern rock mechanics.  Construction of relative mechanical-math-
ematical and numerical models for these deformation processes
of rock massifs is one of the most important and complex task of
rock mechanics.

In  general,  different  structural  states  are  generated  in  the
rock massif of underground structures [1]. In discontinuity areas
of the rock massif in the vicinity of underground workings, block
structures can be formed [2]. Deformation of such structure oc-
curs  due  to  the  sliding  between  blocks  and  their  rotations.  It  is
obvious  that  the  resistance  of  the  rock  massif  decreases  during
its deformation when a block structure is generated, but still re-

mains finite.  This  phenomenon  is  characterized  by  the  appear-
ance of a descending branch in the stress-strain diagram. Obvi-
ously,  the  relationship  between  stresses  and  strains  of  the  rock
massif  under  this  new  state  is  different  from  the  standard  one.
The relationship between stresses and strains is  not unambigu-
ous in the descending branch, but can be determined independ-
ently and separately from the basic laws of mechanics [3].

Since the formation of the block structure is generated at dif-
ferent scales with the similarity property, the present arguments
are  suitable  for  describing  the  processes  both  around  single
goafs  and  in  areas  with  a  large-scale  system  of  underground
structures.

τ∗

Areas of discontinuity are formed in the rock massif when the
shear stresses reach their limit values. The rock massif domain is
divided by slip lines to form a block structure. This structure has
its  own  durability .  The  interactions  between  the  blocks  are
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characterized  as  slip  and  friction,  as  well  as  adhesion  between
adjacent blocks.

The  following  algorithm  can  be  adopted  to  determine  the
block structure region,  where the classical  elastic  relations can-
not  be  suitable.  A  development  approach  for  the  mechanical-
mathematical models  can  be  introduced  to  study  the  deforma-
tion processes  of  rock  massifs  considering  the  presence  of  do-
mains under the ultimate condition.

σg

We accept the following assumptions [3, 4]. The directions of
the principal stresses remain constant after the formation of un-
derground  cavities  in  the  rock  massif.  The  principal  directions
are related to the direction of  gravity  and directions perpen-
dicular to the direction of gravity. When the shear stress exceeds
its  strength,  slip  sites  appear  in  the  considered  area  of  the  rock
massif and the allocated volume is divided into blocks.

Γl

Γ

T13 = (σ1 −σ3)/2 T12 = (σ1 −σ2)/2
T23 = (σ2 −σ3)/2 Γ13 = (ε1 −ε3)/2 Γ12 = (ε1 −ε2)/2 Γ23 = (ε2 −ε3)/2

T = 1

2

√(
σy −σx

)2 +4τ2
x y

Γ= 1

2

√(
εy −εx

)2 +4ε2
x y

In accordance with the introduced assumptions, it is physic-
ally justified to assume the existence of limit values Tl and  for
invariants  of  the  strain  and  stress T  states  or  principal  shear
stresses and principal shear strains, which can be defined in the
three-dimensional  case  as: , ,

, , , .

In  the  case  of  2D-deformation,  we  have 

and .

Thus, the invariants of the strain and stress can be written as
[4]:

T = Tl , Γ=Γl . (1)

In  the  destruction  areas,  there  are  no  connections  between
stresses and strains in the conventional sense. Therefore, the two
criteria  of  Eq. (1)  are  independent  in  the  general  cases.  In  the
fracture  region,  the  stress  and  strain  tensors  are  not  coaxial.  At
the boundary  points  of  the  fracture  region,  the  principal  direc-
tions are rotated to take strains remain joint.

Therefore,  to  study the mechanical  behavior  of  rock massifs
in the deformation diagram at the post-peak stage, it is conveni-
ent to  adopt  the  following  three  functions  instead  of  the  stand-
ard invariants as [5]:

T = (σ1 −σ3)/2, (2a)

σn = (σ1 +σ3)/2, (2b)

µσ = (2σ2 −σ1 −σ3)/(σ1 −σ3) , (2c)

σn µσwhere  is the normal stress,  is the Lode–Nadai parameter.
σn

µσ

µσ = (T23 −T21)/T

The parameters T and  characterizes the massif strength at
the  site  of  force T13 ;  the  parameter  characterizes  the  massif
strength on the other two sites of T12  and T23  since it  can be ex-
pressed as .

ε1 > ε2 > ε3

In accordance with the observation on the independence of
criteria  in  Eq. (1) ,  Eq. (2)  is insufficient  to  obtain  complete  in-
formation  about  the  exhaustion  of  the  bearing  capacity  of  the
rock massif  in  a  particular  situation.  An additional  condition of
the principal strains  is adopted to study the post-peak
in rock behaviors. Since the stresses and strains are not connec-
ted  by  a  single-valued  dependence  in  the  post-peak  state,  it  is
necessary to introduce the following three new invariants to de-
scribe the irreversible deformations and fracture by:

Γ= (ε1 −ε3)/2, (3a)

ε= (ε1 +ε3)/2, (3b)

µε = (2ε2 −ε1 −ε3)/(ε1 −ε3) . (3c)

Γ=Γl

εx ,εy ,εz

So,  the  mechanical-mathematical  formulation  of  the  block
structure  in  the  rock  massif  includes  the  following  equations.
The  criterion  for  the  block  structure  formation: ;  the
strains  satisfy  the  Saint–Venant  compatibility  condition
to describe  the  deformations  in  the  area  of  rock  massif  discon-
tinuity. The stresses are determined from a system including the
equilibrium equations and the extreme condition T=Tl. The for-
mulation above  can  be  applied  to  study  the  deformation  pro-
cesses  at  various  scales.  The  formulation  above  shows  that  the
coincidence  of  the  basic  equations  with  the  equations  for  the
elastic-plastic state of the deformed body.

Considering the  deformation  process  of  the  solid  deform-
able block  structure  with  various  internal  connections,  the  ele-
ments are individual blocks, and the links are interblock spaces.
The  essential  portion  is  the  choice  of  the  blocks  and  interblock
space  behavior  laws.  Blocks  can  be  considered  as  rigid  or  as
elastic  bodies.  The  interblock  space  can  be  considered  as  an
elastic coupling  between  neighboring  blocks.  During  the  de-
scription of the deformation of the rock mass block structure,  it
is necessary to know the physical-mechanical properties of indi-
vidual elements  and  interblock  space,  to  determine  the  condi-
tions  of  static  or  dynamic equilibrium of  the  blocks  system at  a
given type of  loading,  and to set  the sequence of  loads applica-
tion  not  only  at  each  boundary  point  of  the  blocks  set  but  also
within the block structure at the interblock spacing [6].

n2 =
(
α,β,γ

)
In this  study,  a  three-dimensional  element of  a  layered rock

massif in the form of a cube is considered. The layers are paral-
lel to each other and have the same roughness. The planes of the
layers are defined by the normal vector .

Under  the  global  coordinate  system O-xyx , a  local  coordin-
ate system with axes 1, 2, 3 is introduced. The direction of axis 2
is determined by the vector n2 .  Axes 1 and 3 are defined so that
they are parallel to the layer planes and perpendicular to the Ox
and Oy axes, respectively. Their directions are given respectively
by vector n1 and n3 (as shown in Fig. 1), and can be written as:

n1 =
(

0,
γ

β
√

1+γ2/β2
,

1√
1+γ2/β2

)
, (4a)

n3 =
(

β

α
√

1+β2/α2
,

1√
1+β2/α2

,0

)
. (4b)

Let the  initial  state  of  the  body  is  under  the  action  of  com-
pressive forces Nx, Ny, Nz, attracting layers to each other, and the
body  is  in  a  state  of  static  equilibrium.  Then,  for  example,  the
normal load N2 and the tangental loads N21 and N23 acting on the
interblock spaces can be written as:

N2 =−Nxα
2 −Nyβ

2 −Nzγ
2, (5a)

N12 =−γ(Ny +Nz )/
√

1+γ2/β2, (5b)
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N23 =−β(Nx +Ny )/
√

1+β2/α2. (5c)

To  determine  the  relationship  between  stresses  and  strains,
the physical equations can be written as [6]:

εx = a11σxx +a12σy y +a13σzz +a14σx y +a15σxz +a16σy z ,
εy = a21σxx +a22σy y +a23σzz +a24σx y +a25σxz +a26σy z ,
εz = a31σxx +a32σy y +a33σzz +a34σx y +a35σxz +a36σy z ,
2εx y = a41σxx +a42σy y +a43σzz +a44σx y +a45σxz +a46σy z ,
2εxz = a51σxx +a52σy y +a53σzz +a54σx y +a55σxz +a56σy z ,
2εy z = a61σxx +a62σy y +a63σzz +a64σx y +a65σxz +a66σy z , (6)

ai , j

(
i , j = 1,6

)
λ1,λ1,λ3 λ12,λ13,λ23

(
α,β,γ

)

a1 j

(
j = 1,6

)

where, the coefficients  are determined through the
yielding strength ,  and guiding cosines 
of the normal n2 to the layers. Since these relationships are very
complex,  here  we  only  give  an  example  for  the  coefficients

 [7]:

a11 =
α4λ2 +2α2

(−β2 +γ2
)
λ23 +

(
β2 −γ2

)2
λ3(

α2 +β2 +γ2
)2 ,

a12 = α2

β2
(
α2 −β2 +γ2

)2

[
γ4 (λ1 −2λ13 +λ3)+β4 (λ2 −2λ23 +λ3)

−2β2γ2 (λ12 −λ13 −λ23 +λ3)
]

,

a13 = a2γ2 (λ1 −2λ13 +λ2)(
α2 −β2 +γ2

)2 ,

a14 = 2α

β
(
α2 −β2 +γ2

)2

{
α2

[
β2 (λ2 −λ23)+γ2 (−λ13 +λ23)

]
−(

β2 −γ2
)[
β2 (λ23 −λ3)+γ2 (−λ13 +λ3)

]}
,

a15 =
2αγ

[
α2 (λ12 −λ2)

]− (
β2 −γ2

)
(λ13 −λ23)(

α2 −β2 +γ2
)2 ,

a16 =
2α2γ

[
β2 (−λ12 +λ13 +λ2 −λ23)+γ2 (λ1 −λ12 −λ13 +λ23)

]
β
(
α2 −β2 +γ2

)2 . (7)

|σ2|≪ N2

σ2

Thus, Eqs. (6) and (7) descript the deformation behavior of a
rock  massif  with  block  structure  in  the  three-dimensions  when

.  This  means  compared  to  the  effect  of N2  on  the  shift
process, the effect of  is negligible.

Compared with the classical deformable media, block struc-
tures  perform  non-standard  mechanical  properties,  including

µ> 3K /2

the  negative  Poisson's  ratio.  Based  on  the  knowledge  of  solid
mechanics,  the  negative ν  are  possible  under  the  condition

, here μ is the shear modulus and K is the bulk deforma-
tion  modulus.  This  means  the  effective  shear  modulus  of  the
medium  is  one  and  half  times  larger  than  its  bulk  deformation
modulus. This situation possibly depends on the internal struc-
ture of the block medium. A block structure in a rock massif can
be  formed  in  such  pattern.  The  rock  massif  continuity  is  kept,
and its deformation occurs due to the sliding and rotations.

The phenomenon of dilatancy can be described as the beha-
vior of  a material  with a negative Poisson ratio.  Negative values
of v were measured in experiments with samples of granite rocks
containing microcracks.  In  addition,  this  anomaly  was  also  ob-
served in soils, such as porous sandstones.

We  can  consider  a  mechanical-mathematical  model  of  a
block medium with negative Poisson's ratio.  The structural unit
of the  block  medium  is  modeled  by  a  system  of  elastic  rod  ele-
ments  (as  shown  in Fig.  2a).  The  general  relationship  between
the stress and strain tensors for such medium are obtained with
equations relating the forces and displacements for this rod sys-
tem. The behavior of the material can be described if  you know
the deformation law of the structural unit ABC (Fig. 2a). To con-
struct the deformation law of the ABC fragment, we distinguish it
as a body in equilibrium, while the bonds at the ends of rods are
replaced by stretching Pi and bending Qi forces (Fig. 2b).

Based  on  Eq. (6) , the  mechanical  model  of  the  block  medi-
um as shown in Fig. 2 can be represented as [8, 9]:

σxx = a11εxx +a12εx y +a13εy y ,
σx y = a12εxx +a22εx y +a23εy y ,
σxx = a13εxx +a23εx y +a33εy y . (8)

σi j

εxx

εy y

εx y

νx y

(
α,φ,r,V f , vm ,Em

)
E y

(
α,φ,r,V f , vm ,Em

)

The  components  of  the  elastic  modulus  tensor  are de-
termined  separately  considering  the  equilibrium  problems  of
the selected element ABC.  Setting the value , we define three
coefficients of rigidity a11, a12, a13. Setting the value , we define
three coefficients of rigidity a13, a23, a33. Setting the value , we
define a12,  a22,  a23 ,  respectively.  Finally,  the  functions

 and  are obtained.

For the Poisson's ratio and Young's modulus, we have:

νx y = (a23a12 −a13a22)/
(
a12

2 −a11a22

)
, (9a)

E y =−a13νx y +a23 (a11a23 −a13a12)/
(
a12

2 −a11a22

)+a33. (9b)

φ≈ 0

φ≈π/2 νx y

For  example,  for  the  values  of  the  loading  angle  and
 when  becomes negative, we have:

νx y

(
φ= 0

)=− (r − sinα)sinα (N2 −M2)

2M1 +N2cos2α+M2sin2α
, (10a)

νx y

(
φ=π/2

)=− cos2αsinα (N2 −M2)

(r − sinα) N2con2α+M2sin2α
, (10b)

where r=b/a is the ratio of the lengths of the vertical and inclined
rods; Ni  and  Mi  are  the ABC  element  malleability,  and  can  be
written as:

 

−Nx

−Nx

T2

−Ny−Ny

−Nz

−Nz

x

z
2

1

3
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Fig. 1.   Geometric interpretation of layered rock massif in the three
dimensions
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Fig. 2.   Two-dimensional model of block structure of rock massif represented by a rod system and b corresponding structural elements.
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Fig. 3.   Deformation state in the vicinity of a goaf in a layered rock massif. a The presence of clay layers in the sides of the goaf, b, c the presence
of clay layers in the roof of the goaf, d the presence of inclined clay layers in the sides of the goaf, e the presence of clay layers and the compensa-
tion gaps in the sides of the goaf, f the presence of clay layer and the compensation gap in the bottom of the goaf.
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N1 =
4

[
r q2 + 1+ sinα

2cosα
(r −1)

]3

Em

+
3(1+ vm)

[
r q2 + 1+ sinα

2cosα
(r −1)

]
Em

,

(11a)

N2 = 4q2
3 +3(1+ vm) q2

Em

, (11b)

M1 =
r q2 + (r −1)

1+ sinα

2cosα
Em

, (11c)

M2 = q2

Em

, (11d)

here, we have

q2 =√
(r+2)2−4V f (r−sinα) (2+ sinα)−[

4V f (r−sinα) (1+sinα)−r−2
]

8V f cosα (r−sinα)
,

(12)

where vm and Em are the Poisson's ratio and Young's modulus of
rods material, Vf is the volume part of rods in the total volume of
the element АВС.

The area of rock massif with single underground goaf is con-
sidered  with  the  formulation  above.  The  rock  massif  is  a  set  of
layers that are parallel to each other and inclined at an angle to
the horizontal plane. Different layers are separated by interlayer
space. Materials in the interlayer space are clays which are more
malleable than  rock.  Therefore,  we  assume  that  the  deforma-
tions  in  the  massif  occur  mainly  due  to  the  deformation  of  the
interlayer space.

λ1

λ2

Equations (6)  and (7)  were applied to  describe  the  relation-
ships  between  stresses  and  strains  in  2D.  We  emphasize  that
Eqs. (6)–(10) are quite universal. Although they do not consider
each layer separately, it is possible to take into account the main
features  of  the  layered  massif  deformation  since  the  yielding
strength  along  the  direction  of  the  layers  is  different  to  the
yielding strength  in the perpendicular direction. These equa-
tions make it possible to consider the characteristic directions of
layering and weakening planes of massif.

λ1 λ2The values  and  can be determined from physical exper-
iments. However,  it  is  not  always  possible  to  reproduce the  de-
formation process of  a rock sample in the laboratory,  therefore,
the elastic properties of massif can be known exactly. Due to the

large  error  in  experimental  data,  it  is  recommended  to  use  the
data of in-situ experiments and computer modeling results.

ν= 0.29
λ1 = 2/E (λ1 = 1/E) λ2 = 1/E λ12 = 1/(2G)

α=π/36 = 5◦

Case 1. To study the effect of the layers presence on the mas-
sif  deformations  around  of  single  goaf,  the  compensation  gaps
approach is used here. The values of the main parameters of the
goaf: the width –4.5 m, its height –3.0 m, the depth of the work-
ings  –800  m.  For  the  rock  layers,  we  set ρ=2300  kg/m3, ,
E=1.75  GPa, , , ,

. Some simulation results are plotted in Fig. 3.
Case 2. To study the deformation state of the layered massif,

the method of longwall mining was adopted to model the cavity
with  two  large  horizontal  sizes  considering  the  placement  of
waste rock in the cavity. The deformation processes in the waste
rock strips was made by specifying the multilinear behaviour of
the waste rock. The multilinear behaviour of a waste rock mater-
ial  is  understood  since  it  performs  linear  behavior.  The  law  of
waste rock strain can be expressed as:

ε= ε0

[
1−exp

(−1/q0

)]
, (13)

ε ε0where  is  the waste rock strain,  %;  is  the maximum strain of
waste rock, %; q0 is the compression parameter of the waste rock,
MPa.

ε0

Equation (13)  in  the  framework  of  the  pseudoelastic  model
characterizes  the  stiffness  of  the  waste  rock  material  using  the
equivalent elastic modulus q0 . The averaged compression para-
meters  of  the  waste  rock  material  can  be  set =  24.83%, q0=
14.7 MPa. The value of the elastic modulus at each iterative step
is  selected  depending  on  the  current  value  of  the  equivalent
strain. The numerical model was constructed using the coupled
FEM-DEM technology. Some results are presented in Fig. 4. The
length of the excavation is 150 m.

Case 3. The modeling of the columnar pillar deformation and
destruction.

Equations (6)  and (7)  are also used to describe the relation-
ship between stresses and strains. We simulated the behavior of
a columnar pillar under load. The sequence of model problems
was considered when the load on the pillar increased. The prop-
erties of the material correspond to carnallite. Example numeric-
al simulation results are presented in Fig. 5. The model showed
adequate  qualitative  behavior  that  corresponds  to  rigid  pillar.
That is, for a quite long time, the pillar is in a solid and accumu-
lates  internal  destruction  (as  shown  in Fig.  5a).  Then  the  pillar
loses  its  bearing  capacity  and  is  destroyed  (as  shown  in Fig.  5b
and 5c).

 

a b

 

Fig. 4.   Distribution of vertical displacements components in the massif around of longwall mining using the mining scheme a with a waste rock
and b without a waste rock .
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Fig. 5.   Modeling of a columnar pillar deformation and fracture
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