
Pauli blocking effects in thermalization of relativistic plasma

M. A. Prakapenia
ICRANet-Minsk, B. I. Stepanov Institute of Physics,

National Academy of Sciences of Belarus, 220072 Nezaležnasci Av. 68-2, Minsk, Belarus and
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We investigate the effects of Pauli blocking on thermalization process of relativistic plasma by
solving relativistic Uehling-Uhlenbeck equations with QED collision integral for all binary and triple
processes. With this purpose we consider nonequilibrium initial state of plasma to be strongly
degenerate. We found that when electron-positron annihilation is active, initial plasma degeneracy
is quickly destroyed. As a result in a wide range of final temperatures ranging from nonrelativistic
to mildly relativistic 0.1mec

2 ≤ kBT ≤ 10mec
2 thermalization is not affected by Pauli blocking.

Conversely, when electron-positron annihilation process is inactive, thermalization process in such
degenerate plasma is strongly affected by Pauli blocking. This is possible either in a nonrelativistic
plasma, with equilibrium temperature kBT ≤ 0.3mec

2, or in photon-electron plasma. In these cases
all reaction rates are strongly suppressed by Pauli blocking and thermalization does not occur until
electrons can populate energy states above the Fermi energy. Soon after this happens thermalization
proceeds suddenly in an avalanche-like process.

I. INTRODUCTION

Pauli exclusion principle is a fundamental principle of
quantum mechanics and it manifests in many branches of
physics: condensed matter, chemistry, molecular biology,
etc. Such phenomena as insulator-conductor transition
or Mott effect, Feshbach resonance and atom-exchange
chemical reactions [1–5] deal with Pauli blocking. Pauli
principle plays a crucial role in a dense matter state [6],
it affects conductivity in a dense Coulomb plasma [7], for
extreme plasma densities it leads to depression of ioniza-
tion potential [8], it is crucial in many nuclear physics
problems [9–12]. The development of new techniques for
atomic gases cooling allows to create Fermi gases in a lab-
oratory. Suppression of interactions in such a degenerate
Fermi gases is subject of active research [13–16]. Lat-
tice Fermi gas can serve as direct probe of Pauli blocking
[17]. Existence and stability of such compact astrophys-
ical objects as white dwarfs [18, 19] and neutron stars is
possible due to Pauli blocking [20], which modifies the
equation of state at high densities and prevents gravita-
tional collapse of stars with mass below ∼ 3 solar masses
after their nuclear fuel is exhausted.

Another arena of manifestation of the Pauli blocking
effect is relativistic plasma. In addition to astrophysi-
cal environments, it is also of interests in laboratory ex-
periments targeting observation of QED processes [21].
Attempts to create electron-positron plasma with high
power lasers or laser interactions with matter [22–25] are
under way. Such plasma is typically formed out of equi-
librium. Thermalization process of non-equilibrium rela-
tivistic plasmas has been studied [26, 27], and thermal-
ization timescales were determined [28], but so far Pauli

blocking in this process has been neglected.
Kinetic equations accounting for Pauli blocking and

Bose enhancement effects are called Uehling-Uhlenbeck
equations. These equations correctly describe the limit
of fully degenerate state, when Pauli blocking reduce re-
action rates of fermions to zero. The present work deals
with optically thick relativistic plasma composed of elec-
tron, positrons and photons [29] and focuses on strongly
degenerate initial plasma states. The paper is organized
as follows. In Section II conditions of plasma degeneracy
are reviewed. In Section III relativistic Boltzmann equa-
tions are introduced. In Section IV thermalization pro-
cess of superdegenerate plasma is discussed. The main
results are summarized in Section V. In appendix we
present a table describing Bose enhancement and Pauli
blocking factors for all binary and triple reactions con-
sidered.

II. FERMION CRITICAL DENSITY

The degree of plasma degeneracy is characterized by
the parameter [30]

D =
1

nλ3th
, (1)

where n is number density of particles in plasma, λth =
c~
kT

is the thermal wave-length, k is Boltzmann constant,

T is temperature, ~ = h/(2π), h is Planck constant. The
number density – energy density diagram for relativistic
electron-positron plasma is presented in Fig. 1. The black
line corresponds to D = 1; below this curve D > 1 and
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FIG. 1: Number density - energy density diagram of a photon-
electron-positron plasma. Green curve corresponds to ther-
mal equilibrium state. Black curve shows the transition from
nondegenerate D > 1 to degenerate D < 1 plasma, where
D is defined by Eq. (1). Red curve corresponds to fully de-
generate pair state defined by Eq. (2). Vertical line on the
left corresponds to the transition from nonrelativistic to rel-
ativistic pair plasma (θfin = 0.3). Vertical line on the right
corresponds to relativistic pair plasma with θfin = 1. (Initial
conditions for calculations are denoted by dots for pairs (red)
and photons (blue).

plasma is nondegenerate, while above this curve D < 1
and plasma is degenerate. Green curve corresponds to
thermal equilibrium state. Red curve shows the max-
imum number density for electron-positron pairs (fully
degenerate state). Note that thermal equilibrium state
is very near to the border D = 1.

Regarding fermions only (electrons and positrons with-
out photons) it is important to note that both fully de-
generate and thermal states have comparable number
density of particles for ultrarelativistic average energy
per particle (see Fig. 2, bottom), specifically number
density for fully degenerate state is

ncr =
8π

3h3c3
ε3F , (2)

and number density in ultrarelativistic limit for thermal
state is

nth =
12πζ(3)

h3c3
(kT )3, (3)

where εF is the Fermi energy, which plays a role of an
upper particle energy boundary.

Occupation number of pairs < n >= h3f/g, where f
is distribution function, g is the number of helicity states
is shown in Fig. 2 (top) for selected temperatures, along
with the corresponding spectral energy density dρ/dε ,
see Fig. 2 (bottom). It is clear that for ε � kT in
thermal state 〈n〉 ' 1/2.

To compare ncr with nth we solve equation ρcr = ρth
for εF , so we obtain ncr as a function of total energy
density ρ (or final equilibrium temperature θ). On Fig.
3 we show the ratio ncr/nth as computed from the inte-
gral over the distribution function (red) and as computed
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FIG. 2: Thermal average occupation numbers (top) and ther-
mal spectral energy density (bottom) of pairs for selected tem-
peratures: θ = 0.5 (blue), θ = 10 (orange), θ = 100 (green).
The limiting spectral density for pairs according to Pauli prin-
ciple is shown in red.
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FIG. 3: The ratio ncr/nth computed numerically (red) and
analytically in ultrarelativistic approximation (blue).

from ultrarelativistic expressions, eq. (3) and (2) (blue).

The relation ncr/nth is limited with high energy

asymptotic 21/473/4π3

9×153/4ζ(3) ' 1.9. The last result shows that

photonless plasma state cannot have D � 1. In other
words, highly degenerate plasma should contain large
number of photons in addition to pairs.
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III. RELATIVISTIC BOLTZMANN EQUATIONS

In order to study the influence of quantum degeneracy
on thermalization process of electron-positron-photon
plasma one should solve relativistic Boltzmann equations
with Pauli blocking and Bose enhancement factors in col-
lision integrals (Uehling-Uhlenbeck equations). In this
work we focus on highly degenerate pair state and the
effect of the Pauli blocking on plasma thermalization.
Time evolution of one-particle distribution functions of
electrons e−, positrons e+ and photons γ are found by
numerical integration of relativistic Boltzmann equations
[29] including quantum corrections

1

c

∂fi
∂t

=
∑
q

(ηqi − χ
q
i fi) , (4)

where fi(ε, t) are their distribution functions, index i de-
notes the sort of particles, ε is their energy, ηqi and χqi are
the emission and the absorption coefficients of a particle
of type ”i” via the physical process labelled by q, c is the
speed of light. The emission and absorption coefficients
for the particle I in a binary process I + II � III + IV
have the following form:

η2pI =

∫
d3p2d

3p3d
3p4 W(3,4|1,2) fIIIfIV (5)

× (1 + ξfI) (1 + ξfII) ,

χ2p
I fI =

∫
d3p2d

3p3d
3p4 W(1,2|3,4) fIfII (6)

× (1 + ξfIII) (1 + ξfIV ) ,

where transition rates are W(3,4|1,2)d
3p3d

3p4 =

V dw(3,4|1,2) and W(1,2|3,4)d
3p1d

3p2 = V dw(1,2|3,4),
V is normalization volume, dw is differential reaction
probability per unit time, ξ = ψh3/2 and ψ is +1,-1,0
for Bose-Einstein, Fermi-Dirac, Maxwell-Boltzmann
statistic, respectively. In what follows we refer to these
cases as quantum (ψ = ±1) and classical (ψ = 0),
respectively, h is Planck’s constant.

The emission and absorption coefficients for the parti-
cle I in a triple process I + II � III + IV + V have the
following form:

η3pI =

∫
d3p2d

3p3d
3p4d

3p5 W(3,4,5|1,2) fIIIfIV fV (7)

× (1 + ξfI) (1 + ξfII) ,

χ3p
I fI =

∫
d3p2d

3p3d
3p4d

3p5 W(1,2|3,4,5) (8)

× fIfII (1 + ξfIII) (1 + ξfIV ) (1 + ξfV ) ,

where W(3,4,5|1,2)d
3p3d

3p4d
3p5 = V dw(3,4,5|1,2) and

W(1,2|3,4,5)d
3p1d

3p2 = V 2dw(1,2|3,4,5). The expression for

Binary processes Triple processes

Møller, Bhabha Bremsstrahlung

e±e±′ ↔ e±
′′
e±
′′′

e±e±′↔e±′′e±′′′γ
e±e∓ ↔ e±′e∓

′
e±e∓↔e±′e∓′γ

Single Compton Double Compton

e±γ↔e±γ′ e±γ↔e±′γ′γ′′

Pair production Radiative pair production,

and annihilation triplet production

and three photon annihilation

γγ′↔e±e∓ γγ′↔e±e∓γ′′

e±γ↔e±′e∓e±′′

e±e∓↔γγ′γ′′

TABLE I: Binary and triple QED processes in the pair
plasma.

dw is given in QED as:

dw = c(2π~)4δ(εin − εfin)δ(pin − pfin)|Mfi|2V (9)

×

(∏
in

~c
2εinV

)∏
fin

d3pfin
(2π~)3

~c
2εfin

 ,

where pfin and εfin are respectively momenta and ener-
gies of outgoing particles, pin and εin are momenta and
energies of incoming particles, Mfi is the corresponding
matrix element, δ-functions stand for energy-momentum
conservation, ~ = h/2π. Therefore, collision integrals,
i.e. right-hand side of eqs. (4), are integrals over the
phase space of interacting particles, which include the
QED matrix elements, see e.g. [29, 31] for binary re-
actions and [32] for double Compton scattering, [33] for
relativistic bremsstrahlung and [34] for substitution rules
in computation of remaining matrix elements for triple
reactions. We consider all binary and triple interactions
between electrons, positrons and photons as listed in Tab.
I.

Details of numerical integration scheme which solves
the coupled system of integro-differential equations (4)
on the grid in the phase space using a finite difference
method is presented in [35].

IV. THERMALIZATION OF
SUPERDEGENERATE PLASMA

Thermalization process with quantum degeneracy
both in non-relativistic and relativistic cases was in-
vestigated in [36]. There the relative role of binary
and triple interactions has been studied. The only
case with strongly degenerate conditions considered in
that work was the case with the dominance of pho-
tons both in energy and in number. In this work we
are interested in thermalization process of pair plasma
with initially strongly degenerate distribution of electron-
positron pairs. In addition, we require that initial condi-
tions correspond to D � 1. Based on the results of the
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FIG. 4: Initial electron/positron spectral energy density:
critical energy density with εF = 0.0043mec

2 (red), power
law spectral energy density dρ/dε = a(ε/ε0)b,with a =
2.778 cm−3 and b = −81, ε0 = 10−5.74 erg (orange). Hori-
zontal axis shows kinetic energy without electron rest energy
mec

2.

previous section, the contribution of pairs correspond to
red dots in Fig. 1. It is clear that the density of photons
in such a state should be larger than the density of pairs,
and energy density of photons should be less than energy
of pairs. The latter condition arises because the contri-
bution of photons to the total energy density should be
minimized, while their density should be maximized. In
what follows we analyze specific initial conditions, repre-
sented in Fig. 1 by blue and red dots. We shall call this
state a superdegenerate state.

With the goal to have D � 1 in the initial state we
choose initial photon distribution as a delta function at
the lowest energy state on our finite numerical grid. The
distribution of pairs is chosen to be at equilibrium with
zero temperature and non-zero chemical potential equal
to the Fermi energy. We note that total critical pair
number can be obtained with some nonequilibrium spec-
trum, which does not represent a degenerate state. Such
cases are presented on figures below by solid and dashed
curves.

Below we discuss four characteristic cases of initial con-
ditions indicated by blue dots in the number density -
energy density diagram in Fig. 1: nonrelativistic and rel-
ativistic plasma with D > 1 and D < 1. It is appropriate
to differentiate nonrelativistic and relativistic plasma by
means of its average particle energy in thermal equilib-
rium: in nonrelativistic case this quantity is less than
electron rest energy (ρthtot < mec

2nthtot), and in relativistic
case otherwise.

First, we show the result of the simulation for non-
relativistic pair plasma with total energy density ρtot =
9.4× 1020 erg cm−3 corresponding to a final equilibrium
temperature θfin = 0.1. Total initial particle number

density is nintot = 45nfintot , where nfintot = 4.2 × 1027 cm−3

is the final total particle number density in equilibrium.
Two different initial spectral distribution of pairs are con-
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FIG. 5: Time evolution of energy density (top) and particle
number density (bottom) for nonrelativistic pair plasma with
degenerate initial pair state (solid) and nondegenerate initial
pair state (dashed). Final equilibrium temperature is θfin =
0.1.

sidered, see Fig. 4: a power law pair spectrum (orange),
which is far from degenerate spectrum, or a fully degen-
erate state (red). The time evolution of basic thermody-
namic quantities is shown on Fig. 5. Solid curves corre-
spond to initial full degenerate pairs with zero tempera-
ture, while dashed curves correspond to non-equilibrium
non-degenerate distribution of pairs. Total energy den-
sity does not change in time due to energy conservation.
Total particle number density changes only due to im-
balance in triple processes. The kinetic equilibrium is es-
tablished at t ' 2× 10−11 sec. The thermal equilibrium
is reached with zero chemical potential and final temper-
ature θfin = 0.1 at t ' 10−8 sec. Spectral evolution of
electrons is shown in Fig. 6. Note that pair annihila-
tion is not subject to Pauli blocking so pair annihilation
leads to disappearance of degeneracy. This result shows
that thermalization process started from superdegener-
ate state is not influenced by quantum corrections and it
is in a full agreement with the previous results obtained
for the case of nondegenerate initial state [36]. Ther-
malization dynamics in the case of non-equilibrium and
non-degenerate distribution of pairs with the same par-
ticle energy density and particle number is presented by
dashed curves in Fig. 5. Both solid and dashed curves
show similar evolution.

Second, we turn to the case of electron-photon plasma.
The positive charge, needed to compensate for electron
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FIG. 6: Time evolution of electron/positron spectral energy
density for nonrelativistic pair plasma with degenerate initial
pair state for selected time moments: t = 1×10−19 sec (blue),
t = 8×10−19 sec (orange) and t = 9×10−19 sec (green). Final
equilibrium temperature is θfin = 0.1. Horizontal axis shows
kinetic energy without electron rest energy mec

2.

charge, is assumed to be present, but its careers are
not considered. The probability of creation of electron-
positron pairs from photons at nonrelativistic tempera-
ture is exponentially suppressed. Then an initial fully
degenerate electron state can be preserved for a time
larger compared to the characteristic pair annihilation
time. As a result, Pauli blocking multipliers might be-
come important for thermalization process. In Fig. 7
we show the result of the simulation for the case of
nonrelativistic photon-electron plasma with superdegen-
erate initial state (solid curves) and analogous simula-
tion with nondegenerate initial electron state (dashed
curves). Electron number is constant and photon num-
ber is changing due to imbalance in Double Compton
scattering and Bremsstrahlung processes. There is a
sharp difference between degenerate (solid curve) and
non-degenerate (dashed curve) cases. For fully degen-
erate initial conditions Pauli blocking significantly re-
duces reaction rates (see Apendix). As a consequence
kinetic evolution starts much later, only at t ∼ 10−15

sec with decrease of thermodynamic quantities. Then
electron distribution quickly establishes the Fermi-Dirac
form due to fast Coulomb scattering process. We note
that photon state at that moment is not described yet by
the Bose-Einstein distribution, because Compton scat-
tering timescale is longer than Coulomb scattering one.
The simulation shows that balance in Compton scatter-
ing process sets at the time moment t ∼ 6 × 10−12 sec
and thermal equilibrium sets at t ∼ 10−11 sec. Thus,
both binary and triple processes are unbalanced until fi-
nal thermal equilibrium.

Third, we show the result of the simulation for rel-
ativistic pair plasma with total energy density ρtot =
2.1× 1027 erg cm−3 corresponding to a final equilibrium
temperature θfin = 3. Total initial particle number den-

10-19 10-17 10-15 10-13 10-11
1024

1025

1026

1027

1028

1029

t, sec

n
,c
m

-
3

1017

1018

1019

1020

1021

ρ
,e
rg
cm

-
3

FIG. 7: Time evolution of energy density (top) and particle
number density (bottom) for nonrelativistic photon-electron
plasma with degenerate initial pair state (solid) and nonde-
generate initial electron state (dashed). Final equilibrium
temperature is θfin = 0.05.

sity is nintot = 20nfintot , where nfintot = 2.8× 1032 cm−3 is the
final total particle number density in equilibrium. Time
evolution of basic thermodynamic quantities is shown in
Fig. 8. The kinetic equilibrium is absent in this case.
The thermal equilibrium is reached at t ∼ 10−16 sec with
zero chemical potential and final temperature θfin = 3.
As in the nonrelativistic case degenerate (solid curve)
and non-degenerate (dashed curve) initial conditions lead
to the similar thermalization process due to pair anni-
hilation process. Thus, for the case of relativistic pair
plasma thermalization process started from superdegen-
erate state is not influenced by Pauli blocking. Thermal-
ization process goes in the same way as in the case of
degenerate pairless initial state reported in [36]. Note
that the faster onset of the evolution of the total particle
number density of particles caused by the to Bose en-
hancement of two-photon annihilation rate in radiative
pair production process, see Appendix, found previously
is also valid for the case of superdegenerate initial condi-
tions.

Finally, we discuss thermalization process with three
different cases of relativistic photon-electron plasma. In
contrast to nonrelativistic electron-photon plasma, rela-
tivistic plasma contains positrons. For a given total en-
ergy density the number of final positrons depends on
the number of initial electrons. In equilibrium chem-
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FIG. 8: Time evolution of energy density (top) and parti-
cle number density (bottom) for relativistic pair plasma with
degenerate initial pair state (solid) and nondegenerate ini-
tial pair state (dashed). Final equilibrium temperature is
θfin = 3.

ical potentials of electrons and positrons are equal on
magnitude and their sum is zero (µ− + µ+ = 0). If
for the final state µ− > 1 then final electron number
is much greater than final positron number and plasma
can be treated as electron-photon plasma. If for the
final state µ− � 1 then final electron number is ap-
proximately equal to final positron number and plasma
represents a transitional case between electron-photon
plasma (when µ− = −µ+ > 1) and pair plasma (when
µ+ = µ− = 0). First, the simulation for the relativistic
transitional electron-photon plasma with fully degenerate
initial electrons and D � 1 showed that thermalization
for both degenerate and nondegenerate initial electrons
proceeds in the similar way and Pauli blocking effects
are negligible (see solid and dashed curves on Fig. 9).
The reason is that initial electron number is much less
then final electron number (nine � nfine ) and the degree
of electron degeneracy is not sufficient to block any re-
action. This initial state is not a superdegenarate state
because of violation of the condition ρine > ρinγ . Second,
for the initial state with a large number of degenerate
electrons (when nine ' nfine ) and with highly energetic
photons (when D & 1) the Pauli blocking effects are also
negligible, because degeneracy of electrons vanishes due
to Compton scattering (energetic photons scatter elec-
trons to high energies). Third, we selected initial state
containing a large number of degenerate electrons (when
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FIG. 9: Time evolution of energy density (top) and particle
number density (bottom) for relativistic transitional electron-
photon plasma with degenerate initial pair state (solid) and
nondegenerate initial pair state (dashed). Final equilibrium
temperature is θfin = 3.

nine ' nfine ) and low energetic photons, that is the case
D � 1 and present thermalization dynamics in Fig. 10.
As energy of initial photons is much less than mc2, pair
creation process is suppressed and initial degenerate elec-
tron state can be preserved until photons acquire energy
more than mc2. For the simulation the following ini-
tial conditions are chosen: total energy density is ρtot =
2.1× 1027 erg cm−3 corresponding to a final equilibrium
temperature θfin = 1.9, total initial particle number den-

sity is nintot = 40nfintot , where nfintot = 3.2× 1032 cm−3. One
can see a sharp decrease of thermodynamic quantities
at the time moment t ∼ 2 × 10−19 sec, degenerate elec-
tron spectrum is preserved until the same time. The cre-
ation of positrons starts at the same moment. Thermal-
ization process has an avalanche-like character. At the
same time, simulation with nondegenerate initial elec-
trons shows a smooth monotonic thermalization process
(dashed curves in Fig. 10) which starts much earlier (solid
curves on Fig. 10).

V. SUMMARY

In this work the influence of Pauli blocking on ther-
malization process of relativistic plasma is studied for
the first time using relativistic Uehling-Uhlenbeck equa-
tions taking into account all binary and triple QED pro-
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FIG. 10: Time evolution of energy density (top) and parti-
cle number density (bottom) for relativistic photon-electron
plasma with degenerate initial pair state (solid) and nonde-
generate initial electron state (dashed). Final equilibrium
temperature is θfin = 1.9.

cesses. A wide range of initial conditions is analyzed, and
several characteristic cases are presented. Both electron-
positron-photon plasma, and photon-electron plasma are
studied in relativistic and non relativistic domains.

We show that fully degenerate electron-positron state
without photons corresponds to the degeneracy parame-
ter D & 1. Thus, in order study plasma evolution with
D � 1 initial state should contain photons, in addition
to degenerate electrons and positrons. The energy den-
sity and particle number density of plasma components
in a such a superdegenerate state should satisfy the con-
ditions: ρ± � ργ and n± � nγ .

We found that thermalization process of superdegen-
erate pair plasma with total energy density ranging from
1020 erg cm−3 to 1028 erg cm−3 is not influenced by
Pauli blocking and relaxation proceeds similarly both
for D � 1 and for D & 1. Pair annihilation process,
not affected by the Pauli blocking, plays a crucial role
here. This process quickly destroys initial degeneracy of
electrons and positrons diminishing the role of the Pauli
blocking effect.

At the same time, the process of thermalization in
electron-photon plasma is very different. In nonrelativis-
tic superdegenarate electron-photon plasma thermaliza-
tion is delayed due to Pauli blocking of interactions with
electrons. Once reactions are activated they have an
avalanche-like behaviour. This is because initial state
is preserved until photons can scatter degenerate elec-
trons above their Fermi energy, where they states are
not degenerate any more. The characteristic timescale
for the beginning of the avalanche can be estimated
as inverse reaction rate of the Compton scattering and
it equals to τaval ' 10−15 sec for the number density
ntot = 8.5× 1028 cm−3. This is an interesting effect and
it could manifest in laboratory and in astrophysical en-
vironments.

Relativistic electron-photon plasma contains positrons
and initial conditions can be separated in two different
classes defined by the conditions µfine � 1 and µfine > 1.
In the first case final positron number density approxi-
mately equals to final electron number density. At the
same time the number of initial degenerate electrons is
not sufficiently large to satisfy the condition ρe > ργ , and
thermalization process of this type of relativistic electron-
photon plasma is not affected by the Pauli blocking. For
the second type of relativistic electron-photon plasma
the superdegenerate state can exist and thermalization
process in that case shows avalanche behaviour. The
characteristic timescale for the beginning of avalanche
is τaval ' 10−19 sec.

Acknowledgments

This work is supported within the joint BRFFR-
ICRANet-2018 funding programme.

[1] W. Ebeling, D. Blaschke, R. Redmer, H. Reinholz, and G. Rpke, Journal of Physics A: Mathematical and Theoretical 42,
214033 (2009).

[2] G. M. Bruun, Few-Body Systems 45, 227 (2009).
[3] E. Wille et al., Phys. Rev. Lett. 100, 053201 (2008).
[4] S. Ospelkaus et al., Science 327, 853 (2010).
[5] L. De Marco et al., Science 363, 853 (2019).
[6] W. Ebeling, V. E. Fortov, and V. Filinov, Strongly interacting plasmas Quantum Statistics of Dense Gases and Nonideal

Plasmas, Springer, 2017.
[7] M. Schmidt, T. Janke, and R. Redmer, Contributions to Plasma Physics 29, 431.
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